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Phase behavior of a system of particles with core collapse
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The pressure-temperature phase diagram of a one-component system, with particles interacting through a
spherically symmetric pair potential in two dimensions, is studied. The interaction consists of a hard core plus
an additional repulsion at low energies. It is shown that at zero temperature, instead of the expected isostruc-
tural transition due to core collapse occurring when increasing pressure, the system passes through a series of
ground states that are not triangular lattices. In particular, depending on parameters, structures with squares,
chains, hexagons, and even quasicrystalline ground states are found. At finite temperatures the solid-fluid
coexistence line presents a zone with negative stajpéch implies melting with decreasing in volupnend the
fluid phase has a temperature of maximum density, similar to that in W&&063-651X98)05808-5

PACS numbes): 64.60—i, 64.70.Dv, 64.60.My

[. INTRODUCTION coexistence curve disappears if the range of the attractive
potential is lower than about 30% of the hard core radius.
Determination of the phase structure of real materialdMore interestingly, when the range of the attractive potential
from first-principles calculations has been one of the aims ofs reduced below about 8% of the repulsive range, a coexist-
statistical mechanics for a long time. Although a qualitativeence curve separating two isostructural solid phases appears.
understanding of the processes leading to the different kinds A more obvious isostructural transition occurs in the case
of phase transitiongoetween gas, liquid, and one or more in which the attractive well is replaced by a repulsive shoul-
solid phasesin the pressure-temperatu(®-T) phase dia- der. In this case, for low pressures, the repulsive shoulder
gram of a classical system has been gained, it is clear that thein sustain a compact structure with a lattice parameter re-
quantitative fitting of the behavior of real materials requires gated to its range. However, when applying enough pressure
detailed knowledge of 'ghe interaction _between particles and g, system must collapse to a new compact structure with a
great deal of computational work, which only in recent yearsattice parameter given by the real hard core of the particles.
has become feasible. This kind of model, whether with a square shoulder or a

In addition to the usual materials in which atoms or mo"lipear ramp soft corgwhich is the one discussed in this

ecules are the basic constituents, in recent years colloid . ! . .
dispersions have provided a different kind of system in%ape), has been studied for a long time with the picture of

which parameters such as particle size and interaction poteﬁpref collapse in mingl4]. Extensions to a more general po-
tial can be varied greatlyl]. These systems consist of a set tential were al_sp performe[&_]. In recent_ papers the p“’b'e_"_‘
of latex spheres in colloidal suspension, with the aggregatgas been reV|§|ted. In pgrncular, the |sos_tructural transition
of some amount of nonadsorbing polymer, which modifies'@S Peen studied numericall§] and analytical results have
the interaction potential between the particles. Their studynOWn that in three dimensions, the ground state of a system
has practical importance in relation to the properties of manyVith @ hard core plus a repulsive shoulder can be one of
common substanceésuch as ink, paints, cosmetics, and various crystalline structures depending on paramé¢®rs
blood). It is clear that a knowledge of the phase behavior of In this paper | show for the hard core plus linear ramp
different model systems is important in order to compare thénodel in two dimensions that even the stable zero tempera-
theoretical predictions with the experimental results. ture structures may be very different from the expected tri-
Much effort has been spent in the elucidation of the prop-angular structures. The most stable configuration may be one
erties of binary mixtures of particles of two different sizes, of a variety of crystalline structures, and even a quasicrystal.
where segregation, flocculation, partial crystallization, andThese structures melt with increasing temperature. The solid-
other phenomena may occ[2]. On the other hand, other fluid border in theP-T diagram has a zone with a negative
studies have been directed towards the determination of thelope, which implies a melting with decreasing in volume,
phase behavior of identical particles interacting through dif-and in this region the fluid has an anomalous thermal expan-
ferent model potentials. In this case the possibilities for thesion[8] up to a temperature at which a density maximum is
behavior of the system are not as wide as in the case dittained.
binary mixtures, but interesting phenomena occur. It was The paper is organized as follows. In Sec. Il the model is
shown, for instance, that the usual solid-liquid-gas phase didntroduced and details of the simulation procedure to be used
gram of particles interacting through a hard core repulsiorin Sec. IV are provided. In Sec. Il the ground state configu-
plus a long-range attraction is modified when the range ofations are analyzed. In Sec. IV | present detailed results for
the attraction is decreas¢8l]. More precisely, the liquid-gas the P-T phase diagram for a particular value of the param-
eter @, which is defined below. In Sec. V the possible rel-
evance to real systems is discussed and a summary of the
*Electronic address: jagla@cab.cnea.edu.ar results is given.
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U(I‘) whendE=0), accounts for the kinetic energy term that, as
usual, can be integrated out in the expression for partition
function and thermodynamic potentials. Different runs were
performed at constant pressure starting from random con-
figurations at high temperature, cooling down to zero tem-
perature, and then warming up. Around 10000 Monte Carlo
steps were used for thermalization at each temperature, and
0 then 50000 steps were used to calculate thermodynamic
guantities, such as the mean volumeper particle at each
temperature, the enthalpy per partitiethe diffraction pat-
tern of the geometrical configurations, and the diffusion co-
efficient of the particle®.
L, I r The diffusion coefficient is calculated in the following
way. The distance traveled by each particle, starting from its
FIG. 1. The pair potential used throughout the paper. There is #nitial position, as a function of time is recorded abdis
hard core at distance, and a soft cordlinear ramp betweenr,  taken to be the slope of this function at long times. From this

andr, . The interaction vanishes beyongd definition and the kind of simulations performed, it is clear
thatD tends to a constant at high temperatures. The physical
Il. MODEL AND NUMERICAL TECHNIQUE diffusion coefficient is obtained by multiplying by tempera-

ture. In addition, from the diffraction patterns an orienta-

The model interactiotJ(r) between particles that will be tional order parameteB,, will also be used. It is defined as
used here consists of a hard core repulsion at a ragjus
[U(r)|r<,0=oc], the interaction is zero for distances larger

than a value 1, and has a soft repulsive part fiqgy<<r <r, of
the formU(r)=¢gq(r,—r)/(r,—rg) (Fig. 1. This interac-
tion gives a model that is a candidate to have an isostructurddere P(k, 8) is the intensity of the diffraction pattern in the
transition between compact configurations of lattice paramk plane, in polar coordinates) is an integer chosen accord-
eter isry andr,. Two particles interacting through this po- ing the orientational order we are looking for, akidk) is a
tential in the presence of an external foffcérying to bring  kernel that cuts off the integral at larde The results are
them together will have a jump in the interparticle distancequalitatively insensitive to the form d€(k). The expression
from ry to ro when f exceeds the critical valueq/(r;  used was(k)=exp(k?).
—Tg). This model is preferred for numerical simulations in-  Some comments are in order at this point. The use of the
stead of the square shoulder model because it has much ldsard core plus linear ramp potential is motivated, as stated
metastability when varying pressure or temperature. If tembefore, by numerical reasons. Neither the analytical results of
perature is measured in units of the energy at conrtgéthe  Sec. Ill nor the numerical results of Sec. IV change qualita-
Boltzmann constant is taken to bgdnd distance is in units tively if a square or a parabolic shouldéwith a negative
of the hard core distanag, thena=r,/ry is the only free  second derivativeis used instead of the linear ramp. More
parameter of the interaction potential. precise conditions on the potential are discussed in Sec. V.
Detailed numerical simulations were performed for atwo- Results are presented for the two-dimensional case to
dimensional system of 256 particles in thNlT ensemble, clarify the discussion of the structures that will be presented
using the Monte Carlo—Metropolis technique. A trial move-in Sec. Ill. However, the basic properties of the system re-
ment of a particle consists of a displacement to a new posimain the same in three dimensions. The nature of the melting
tion chosen randomly inside a cube of a linear size of 1% ofransition in two dimensions is a controversial point in the
the mean distance between particles. The new position iterature. However, for rather small systems such as the one
accepted with a Metropolis algorithm, considering the enstudied here, indications of discontinuous melting transitions
ergy change due to the movement. Once every five Montare clearly observed, but it is not obvious whether they re-
Carlo sweeps through all particles, a trial global rescaling ofmnain when the system size goes to infinity. | will speak
all particle coordinates and system size is proposed. The refaroughout the paper of continuous and discontinuous melt-
caling is given by a factor chosen randomly within the inter-ing transitions when the simulations indicate each case for
val £0.2% and is done independently ferandy coordi-  the particular size used in the simulations.
nates in order to allow the system to accommodate the
different crystalline structures that may appear. A maximum
aspect ratio for the system of 1.05 is imposed. If the trial
volume change does not produce overlapping of the hard Since the numerical work of Alder and Wainwridi®] in
core of the particles, then it is accepted according to thed 962, it has been known that the existence of a high enough
Metropolis rule with the value of the energy chang& external pressur® is sufficient to make a system of other-
given by AE=PAV—(NT/V)AV+dE. HereN is the num-  wise repulsive particles freeze. The minimum energy con-
ber of particles,V is the volume of the systendE is the figuration of a system of particles interacting in two dimen-
energy change associated with the change of interparticlsions through a potential of the formr~” is a triangular
distances, and the term(NT/V)AV, which ensures the cor- lattice for all positive values ofy. The great variety of
rect limiting equation of state in the case of an ideal @&s, ground states that can be obtained for more general poten-

Bmzf K(k)P(k,8)exp(im@)d?k. (1)

lll. ZERO-TEMPERATURE BEHAVIOR
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tials is not so widely recognized, even keeping the restriction L
of a monotonically decaying potential. We will concentrate
on the already introduced hard core plus linear ramp poten-
tial (Fig. 1). The ground state configuration of a system of
particles in two dimensions interacting through this potential
depends on the values & and o and is not necessarily a
triangular lattice.

Depending on pressure, nearest particles tend to be at dis-

=

tancerg or r, from each other. Intermediate values are not
preferred because they are not energy minima. The origin of
complex ground state structures in the system is related to
the competition between two terms in the enthatpyf the
system. One is the usuBlV term, which tends to minimize
the volume, and the other is the repulsive energy term, which
tends to maximize the interparticle distance. This produces a
sort of frustration because both terms cannot be minimized at
the same time. The two triangular structures with lattice pa-
rameters o andr, (which will be referred to as structur&
andS;) correspond to two ways of reducing the enthalpy by
minimizing one term while maximizing the other. These are
the best compromises in the case of very low or very high
pressures. However, when both energy terms are compa-
rable, lower-energy intermediate solutions can be found by
arranging the particles with a coordination numkeumber
of neighbors at distance,) intermediate between 0 and 6
(which correspond to the structur8s and Sp).

In fact, different crystalline configurations can be pro-
posed and their enthalpy calculated in order to find the most

stable one as a function & (=Pr/e,) anda. The result of

+eeetere

this analysis is shown in Fig. 2. This figure shows the results F|G. 2. Ground state configurations of the system as a function
up to a value ofx for which the interaction to second neigh- ot B (=pr2/¢;) and a. At the point marked by an asterisk, the
bors in the most compact structur&y is still zero. The  ground state of the system is a random quasicrystal. The black dots
structures in Fig. 2 were found by inspection, and they argn the configurations represent the hard core of the particles.

the lowest-energy configurations found within each region,

but other (more stablg structures may have been missed. satisfied. For proportions close to the value corresponding to
Note that some of the structures have one particle per uni perfect Penrose lattidaearly 1) the structure obtained is a

pell (all particles are in.translationlally equivalent sjiesut  3ndom quasicrystal. For pressures lower tﬁ’q@the struc-
in others G; and'S,) this number is greater than one. For y,re with a maximum fraction of thin tiless) is preferred
some values ofr and as a function oP, there are at least pecause the thin tile has lower enthalpy. On the contrary, for

pressures higher thd?nac the preferred structure is that with

) . _ the largest proportion of thick tilesS§). Quasicrystalline
There is one point in th®-« diagram that deserves fur- ground states are only stable at the pdgt. However, the

ther discussion and this is the one marked by an asterisk gyt matching rules allow for many ways of generating them

three intermediate structures between the triangular 8pes
ands;.

Fig. 2 . It corresponds to a value @f= a =1+ 2sin(18)

=1.618, andP=P, . =1/sin(36)=1.7013. At this point

structuresS, and qu become energetically degenerate, but &g‘&%“‘&g‘é‘
more importantly, many other degenerate structures can b G
constructed. In fact, structur8; and structureS, for this .:0:0:|:0:¢: :.:¢:
value ofa may be considered as generated by a tiling of the OLQ:A"“'O:A“.'O:A‘O.'Q
plane using the two two-dimensional Penrose tiles as ’ﬂ",#’ﬁ’f’#’ﬁ’f’#’“
cated in Fig. 310]. Particles are located in the far vertices of 6‘,‘0.&6‘:0%6‘:0.‘6
the thin tile and in the nearest ones of the thick tile. At the “::fv"j:f"j:f‘"‘.
point S, the enthalpies per particle of the two Penrose tiles <8 {,‘,.{,‘,.{,
coincide. Any tiling, with the only restriction imposed by the X VAKXV KV

location of the particles in the above-mentioned vertices of

the tiles(these are usually named soft matching rules and the FIG. 3. Tiling of the structuresS; and S, using the two-
kind of tiling they generate is known as a random tiling dimensional Penrose tiles, fé*=P,. anda= a,. The proportion
[11,12), generates a possible ground state of the system. Thg thin to fat tiles is 1:3 inS; and 2:1 inS,. At Py, g, any
proportion of thin to thick tiles used to construct the groundpossible random tiling of the plane produces a degenerate ground

state is arbitraryas long as the soft matching rules can bestate.
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0.01 T o1

FIG. 4. Volumev and enthalpyh (=E/N+Pv) per particle, FIG. 5. Same as Fig. 4 f@=1.0.

sixfold orientational order paramet8g, and diffusion coefficient . )

D of the system as a function of temperatureor 0.5, for a swept  100p in the volume or the enthalpy of the system, which

decreasing and increasing temperatlBg and D are given in ar- CO'nC|deS W|th the VanIShIng Of the dlfoSIOH COfoICIent al’ld

bitrary units, T is in units ofe,). Note the difference in the snap- the appearance of a finite sixfold symmetry of the diffraction

shots of the system at the same temperature on heating and coolirfggttern.

within the hysteresis loop. An additional check of the existence of a sharp solid-fluid
transition may be obtained through a long simulation at the

(compared to the more rigid structur8s and S;) and this ~ equilibrium temperature between the solid and fluid. In this
implies that at finite temperature the quasicrystalline struccase, the volume of the system should fluctuate between two

ture will be stabilized due to entropic effects, as we will seeclearly different values corresponding to solid and fluid
in the next section using numerical simulations. phases. The results of this simulation are shown for the case
P=1andT=0.082 in Fig. 7. For this simulation the system
was initially in a fluid equilibrium configuration at the cor-

responding values oP and T. After about 5< 10° Monte
After having discussed its ground state properties, we foCarlo steps the system jumps to the solid phase. After around
cus now on the behavior of the system at finite temperature.7x 10° steps the systems makes a new short transition to
The main interest is in the localization of the fluid-solid tran- the fluid state.
sition line. | will present now the numerical results obtained The most important characteristic to be noted in Fig. 5 is
at different values of pressure, in the particular case that the melting occurs with a reduction in volume for this
=1.65. The system is initially in a random configuration atvalue of pressure. In addition, the fluid right after melting
high temperaturgwell inside the fluid phageand the tem- also has an anomalous thermal expansion up to some tem-
perature is progressively reduced to zero and then increase@rature at which a density maximum is attained. These
again. characteristics imply a negative slope of the solid-fluid coex-
In the ranges of pressure in which the structiBgandS;  istence curve, which is in fact obtained from the simulations,
are the most stable zero-temperature configuratiaosord-  as we will see later. The compressive melting of the system
ing to Fig. 2, a sharp solidification transition is obtained in this region has its origin in the fact that the usual volume
when reducing temperature. This can be seen in Figs. 4—f@duction when temperature is reduced is overcome by the
for three different values of pressure within this range. In theexpansion produced when particles diminish their kinetic en-
first two the solidification is into th&, structure and for the ergy and move out of the soft core of their neighbors. lllus-
third one into theS; structure. In the three cases the solidi- trating this effect, in Fig. 8 we see snapshots of the system at
fication transition is clearly identifiable by the hysteresisdifferent temperatures passing through the liquid-to-solid

IV. PRESSURE-TEMPERATURE PHASE DIAGRAM
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3x10° N T=.06 T=.021
%107 3 FIG. 8. Snapshots of the system fBr=1.7 when decreasing
I - 9 temperature, through the fluid-solid transition, illustrating the
1x10°F T anomalous freezing. In the fluid state there are particles at distance
- 4 [ ] lower thanr ,, whereas in the solid phase all particlegcept a few
0 E— defect$ are located at distanag from their neighbors. The tem-
0.1 T 1 perature in the second panel corresponds to the maximum density of

- the systen(see Fig.
FIG. 6. Same as Fig. 4 fd?=6.0. ystent 9-5

. . . . figuration found and the diffraction pattern of the zero-
transition. In the fluid phase there are particles at distance, L :

. . temperature structure. In the entire intermediate pressure
less tharr; from each other, whereas in the solid phase the

minimum distance between particlesrig (except for some ange (1.22P=4) the enthalpy at zero temperature obtained
defects in the structure, which appear mainly because of th® the numerical simulation is never lower than that corre-
impossibility of accommodating 256 particles in a perfectSPonding to the expected ordered structures of Fig. 2, as it is
triangular lattice within a nearly square cage shO\_/vn in Fig. 12, indicating that probably the configurations
The phasesS,, S;, andS,, expected to be the ground of Fig. 2 are really the f_undamental states, b_ut they were not
states of the system at intermediate pressuresifotl.65, reached |n.the simulations. Th_g c_onflgurauons obtalngd_m
are not straightforwardly obtained in the simulations. In-the simulations reflect the equilibrium states at some finite

stead, rather disordered states are obtained. In Figs. 9, 1put small temperature, where entropic contributions to the

. -~ free energy are important, and they are metastable at zero
and 11 we can see the magnitudesn, andD for pressures temperaturgnote the existence of chains in Fig. 9 and the

P=1.3, 1.7, and 3.8, together with the zero-temperature COMentagons and hexagons in Figs. 10 ang Laoking at the
diffraction patterns in Figs. 9—11, two of therR€ 1.3 and

3.8) show no sign of orientational order. Anothe?£1.7)
clearly indicates a tenfold symmetry, characteristic of a qua-
sicrystal. In the cases where the low-temperature state has no
orientational order, the volume or enthalpy of the system
does not show any abrupt solidification transition. In the
cases where the low-temperature state has rotational order
the volume and enthalpy of the system show a small hyster-
: ; ; etic behavior, suggesting an abrupt solidification transition.
0 1x10°  2x10°  3x10°  4x10° To confirm this, long runs were performed at the expected
MC steps transition temperature, recording the temporal evolution of
volume and enthalpy. An example of the results for the case
FIG. 7. Time evolution of the volume per particie for ~P=1.7 is shown in Fig. 13. The histogram shows a clear
P=1.7 andT=0.082, close to the fluid-solid transition. After about bimodal distribution between two values corresponding pre-
5x10° Monte Carlo steps the system jumps to the solid phaseCisely to the values of enthalpy expected from Fig. 10 at this

After around 2.% 10° steps the systems makes a new short transitemperature.
tion to the fluid state. We saw in Sec. Il that at zero temperature the quasicrys-
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FIG. 9. Volume per particle, enthalpyh, and diffusion coef-
ficientD of the system as a function of temperature Ror 1.3, for

1.8
>
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1.4}

4.0

<= r
3.8
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0.01

L) qh. pOg

bo

FIG. 10. Same as Fig. 9 fd?P=1.7. In this case the tenfold
orientational order paramet®&:, is also shown in the last panel.

a swept decreasing and increasing temperature. The zero tempeﬁ\égte the small hysteresis loop inandh.

ture configuration reached and its diffraction pattern are also shown.

mination of the equilibrium phase diagram at all value$of

talline structure is stable only at a particular valuePoaind
a. At finite temperatures this structure is stabilized due tot
entropic effects because there are many ways of constructing
the random tiling, favoring this structure against the more
rigid onesS, andS; [13]. A related model of a quasicrystal
using two kinds of particles of different sizes has been stud-
ied by Henley[11] and Strandburd14]. In our case, the
quasicrystalline state is obtained in a system of only one kind
of particle.

For other values of pressure, the smooth solidification of
the system and the absence of any obvious order in the low-
temperature structures obtained suggest that the system
freezes in a glassy state. However, more detailed calculations
of the diffusion coefficient and other magnitudes in larger
systems are needed to confirm this point.

The numerical results are summarized in the phase dia-
gram of Fig. 14. The sharp fluid-solid transition in the case
of structuresS, and S; are shown, as well as that corre-
sponding to a quasicrystalline state. The error bars in these
cases are taken as the width of the hysteresis loop in the
enthalpy or the volume of the system. In addition, the ap-
proximate temperature where the system freezes in the other
cases is also indicated, and in this case the error bars indicate
the approximate temperature range in which the diffusion
coefficient changes between 10% and 50% of its value at
high temperatures.

We know from the results of Sec. Il that this phase dia-
gram (particularly at intermediate pressurés metastable at
low temperatures. Since the numerical simulations are not
able to reach the fundamental state in some cases, the deter-

1.6 (1 E—

andT requires the direct comparison of the free energies of
he structures found in the simulations and those known to be

1.2 F

4x10”

Q-s
2x10

FIG. 11. Same as Fig. 9 f&?=3.8.
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FIG. 12. Ground state enthalpy per particle as a functio® of FIG. 14. Pressure-?emperature phase diagram from th_e simula-
from the simulationgblack dots and the analytical expression for ions (dsd stands for disorderedSee the text for more details.
the possible ordered structures. All points lie above at least one of
the lines corresponding to the ordered structures. quired structure. The reversible path from the ordered struc-
ture to that obtained in the simulation for a given point
more stable in some caséstructuresS,, Sz, andS, for @ Py, T, consisted of four steps: increasiy from zero to
=1.65). TheGibbs free energy of the system can be ob-some large value, increasif from T, to a large value,
tained from the numerical simulations through the formula decreasing/V down to zero, and decreasifigdown to Tj.
The difference in Gibbs free energyG between the two

G, G; ZVdP H T ,  Structures was calculated through this path by a generaliza-
T, T, L1 T2 " 2 tion of formula(2), given by

where 1 and 2 stand for two set of values, T, andP,,T,

and the integration is through an arbitrdrgversiblé path in AGIT)| _ jg !dP+ ﬂdw— H+ EWdT

the P-T plane joining points 1 and 2. This determines the Po:To T TW T2 ’

free energy of those structures obtained in the numerical 3

simulations up to an overall constant. Also the free energy of

structuresS,, Sz, andS, may be determined in this way by

setting up the configuration of the system at zero temperaturé@hereE,y is the potential energy of the particles in the arti-

in these structures and then performing a numerical simuldicial external potential and indicates the integration along

tion with increasing temperature. After that, all that remainsthe above-mentioned path. This was done three times with

to be able to compare the free energies is to fix the additivéifferent external potential to fix all arbitrary constants be-

constants. This was done by introducing in the model ariween free energies of structur€s, S;, S,, and the ones

additional external potential characterized by a stretyth  obtained in the simulations. After that, the free energies can

with a periodicity chosen to favor the formation of the re- be compared and the thermodynamic phase diagram con-
structed.

T ” T v The complete thermodynamic phase diagram is shown in

3.82 Fig. 15, where the stability region of each phase is shown. It
is seen that the quasicrystalline state is in fact thermody-
3.80 : . - . .
1 namically stable in a finite range & andT, in spite of the

3.78 value of « (=1.65), which is not the optimum valuex{.
=1.618) for the quasicrystalline structure. Only in the case

3.76 a=aq is the quasicrystal stable down to zero temperature,

0.0 at the pointP=P,=1.7013.
6 ) ] )
1000
500 A
5 600 e |

8400
200

0 =
~ 0 2
3.76 3.78 3.80 h 3.82 0.00 0.05 0.10

FIG. 13. Time evolution of the enthalpy per particle fBr T
=1.7 andT=0.0505, close to the fluid-quasicrystal transition. The  FIG. 15. Complete pressure-temperature phase diagram for
histogram shows a clear double peak structure, with mean values 1.65. The errors in the limit of structures,, S;, and S, are
compatible with those obtained from Fig. 10 for this temperature. estimated to be-0.01 in temperature. See the text for a discussion.

0.15
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V. SUMMARY AND DISCUSSION not satisfied for some lattice paramegerthen it indicates at

In this paper | have discussed the phase behavior of Kast the existence of an isostructural transition as a function
classical model of particles interacting through a particularlyof Pressure between two triangular structures with lattice pa-
chosen isotropic potential. The interaction consists of a hardametersa,<a anda,>a. However, if the nearest- neighbor
core plus a linear ramp potential, producing an effectiveinteraction dominates, it is easy to see thaSarstructure is
greater size of the particles at low energies. The ground stateore stable. In fact, consider two triangular structures with
of the system shows different periodic arrangements of théattice parameters, and a, that are degenerate at some
particles, depending on the values Bfand a. There is a pressureP. Their enthalpies per particle must be equal. This
particular pair of values. and a4 at which the ground implies, if only the nearest-neighbor interaction is important,
state is a random quasicrystal. These periodic structures methat
when the temperature is increased through discontinuous
phase transitions. In addition, at finite temperature, the qua- Pa(z)\/§/2+ 3U(ag)= Pai\/§/2+ 3U(ay). (5)
sicrystalline state is stabilized due to entropic effects.

It is usually believed that‘:..two-dimensional mon- Now the enthalpy of a5, structure with a nearest-neighbor
atomic systems interacting with central forces always form alistancea, and next-nearest-neighbor distaregis given
triangular lattice” [15]. Although this is so for power laws by
and other kinds of interactions, the ground state configura-
tions of our system show that this is not true in general. Even Payvai—agld+U(ag) +2U(ay), (6)
considering only crystalline ground states, there may be
more than one atom per unit céiwo for S; and five forS,)  and it is easy to see that this number is lower than that
and unequivalent sites within the structiteo for Sy). corresponding to the triangular structures. We conclude that

Having established the properties of the system for oustable structures other than the triangular one will occur if
model interaction, it is of basic importance to identify the the condition
conditions that an interaction potential must satisfy in order ,
to obtain the kind of structures we obtained in our model. U+ U (r)<0 o
Although it is rather difficult to solve the problem in general,
something can be said about it. It is clear that the nonanaly-
ticity of the potential used is not a crucial element. Actually,is satisfied for some value of In cases where long-range
analytic potentials arbitrarily close to the one used here majnteractions cannot be neglected, a case by case analysis
be easily constructed. First of all, let us analyze the necessakyased on Eq(4) is needed.
condition for the local stability of a triangular structure. Con-  Our model does not contain an attractive part in the po-
sider particles interacting through a potentiffr) and dis- tential, and for this reason it lacks a liquid phase. However, a
tributed in a triangular lattice of lattice parameterAt any  liquid phase can be obtained within a generalized van der
lattice site the potential created by all other particles musWaals approacti16], in which an attractive interaction is
have a minimum in order for the structure to Hecally)  included through an energy term proportionalt@ ~*. In
stable. The potential around that sftaken to ber=0) cre-  addition to the appearance of a liquid-gas coexistence line,
ated by a particle at a generic positionis, up to second this modification only renormalizes pressure and does not
order, of the formU”"(r)éx2+ [U'(r)/r]8y?+U’(r)éx  affect the structure of the phases or the nature of the anoma-
+U(r), whereédx (8y) is the coordinate of the tested point lies of the phase diagram that were discussed above.
along (perpendicular tpr. This potential must be summed  The qualitative features of the phase diagram in the two-
up for all particles, and for lattices with rotational symmetry dimensional case have also been obtained in simulations
C; or higher it must reduce to an isotropic form. Consideringwith a three-dimensional system. The minimum valuexof
the invariance of the trace of quadratic forms under rotationgjecessary to get the volume anomaly at melting is about 1.2

the quadratic part),(8r) of the final effective potential can for both two- and three-dimensional systems.
be written as The results presented here might have importance in an-

other context. The anomaly in the fluid-solid coexistence line
and the negative thermal expansion coefficient in this region
' @ are very similar to the same effects occurring in water. Ac-
tually, an interaction potential with a double minimum
where the sum is over all other particles, located at distancegvhich is related to the potential considered here one
d; (dy=a), andn; is the number of particles at those dis- dimension has been analyzed recently and has been sug-
tances(for three dimensions the term containibg gets an gested to be the origin of the density anomaly in waléf,
additional factor 2 The positiveness of this form is the con- but this proposal has been questioned since it seems to give
dition for the stability of the lattice under small displace- anomalous behaviors only in one dimens&8]. The results
ments of a single particl@global stability is more difficult to  presented here show clearly that simple models with anoma-
characterizg supposing that the lattice parameter is fixedlous behavior may be constructed in two and three dimen-
from outside. FolJ(r)~ 1/r” all terms of the sum in Eq4) sions. A comparison of the phase diagrams of water with that
are positive and the structure is locally stable. For our poteneorresponding to our system reveals in fact many coinci-
tial and analyzing a structure with the lattice parameter dences, such as the mentioned anomalies and the position of
r,>a>rq, nearest neighbors hak#’(r)=0 andU’(r)<0 the different crystalline phases in tieT diagram, which
and the structure is unstable. If the stability conditidihis  occur near the pressure where the melting temperature is

o2 2
Uz(5f)=7z n;
1

u’(d))
d;

u”(d;)+
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minimum. In addition, amorphous structures in ice are wellcondition (4). A colloidal system seems to be the natural
known[19], and the underlying mechanisms responsible fomplace to look for that realization.
their formation may be related to those that originate our

disordered structures when cooling down at intermediate

pressures.

Finally, in order to get a better understanding of the dy-
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