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Phase behavior of a system of particles with core collapse

E. A. Jagla*
Centro Atómico Bariloche, Comisio´n Nacional de Energı´a Atómica, (8400) S. C. de Bariloche, Rı´o Negro, Argentina

~Received 17 February 1998!

The pressure-temperature phase diagram of a one-component system, with particles interacting through a
spherically symmetric pair potential in two dimensions, is studied. The interaction consists of a hard core plus
an additional repulsion at low energies. It is shown that at zero temperature, instead of the expected isostruc-
tural transition due to core collapse occurring when increasing pressure, the system passes through a series of
ground states that are not triangular lattices. In particular, depending on parameters, structures with squares,
chains, hexagons, and even quasicrystalline ground states are found. At finite temperatures the solid-fluid
coexistence line presents a zone with negative slope~which implies melting with decreasing in volume! and the
fluid phase has a temperature of maximum density, similar to that in water.@S1063-651X~98!05808-5#

PACS number~s!: 64.60.2i, 64.70.Dv, 64.60.My
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I. INTRODUCTION

Determination of the phase structure of real mater
from first-principles calculations has been one of the aims
statistical mechanics for a long time. Although a qualitat
understanding of the processes leading to the different k
of phase transitions~between gas, liquid, and one or mo
solid phases! in the pressure-temperature~P-T! phase dia-
gram of a classical system has been gained, it is clear tha
quantitative fitting of the behavior of real materials require
detailed knowledge of the interaction between particles an
great deal of computational work, which only in recent ye
has become feasible.

In addition to the usual materials in which atoms or m
ecules are the basic constituents, in recent years collo
dispersions have provided a different kind of system
which parameters such as particle size and interaction po
tial can be varied greatly@1#. These systems consist of a s
of latex spheres in colloidal suspension, with the aggreg
of some amount of nonadsorbing polymer, which modifi
the interaction potential between the particles. Their stu
has practical importance in relation to the properties of m
common substances~such as ink, paints, cosmetics, an
blood!. It is clear that a knowledge of the phase behavior
different model systems is important in order to compare
theoretical predictions with the experimental results.

Much effort has been spent in the elucidation of the pr
erties of binary mixtures of particles of two different size
where segregation, flocculation, partial crystallization, a
other phenomena may occur@2#. On the other hand, othe
studies have been directed towards the determination o
phase behavior of identical particles interacting through
ferent model potentials. In this case the possibilities for
behavior of the system are not as wide as in the case
binary mixtures, but interesting phenomena occur. It w
shown, for instance, that the usual solid-liquid-gas phase
gram of particles interacting through a hard core repuls
plus a long-range attraction is modified when the range
the attraction is decreased@3#. More precisely, the liquid-gas
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coexistence curve disappears if the range of the attrac
potential is lower than about 30% of the hard core radi
More interestingly, when the range of the attractive poten
is reduced below about 8% of the repulsive range, a coex
ence curve separating two isostructural solid phases app

A more obvious isostructural transition occurs in the ca
in which the attractive well is replaced by a repulsive sho
der. In this case, for low pressures, the repulsive shou
can sustain a compact structure with a lattice parameter
lated to its range. However, when applying enough press
the system must collapse to a new compact structure wi
lattice parameter given by the real hard core of the partic
This kind of model, whether with a square shoulder or
linear ramp soft core~which is the one discussed in th
paper!, has been studied for a long time with the picture
core collapse in mind@4#. Extensions to a more general po
tential were also performed@5#. In recent papers the problem
has been revisited. In particular, the isostructural transit
has been studied numerically@6# and analytical results hav
shown that in three dimensions, the ground state of a sys
with a hard core plus a repulsive shoulder can be one
various crystalline structures depending on parameters@7#.

In this paper I show for the hard core plus linear ram
model in two dimensions that even the stable zero temp
ture structures may be very different from the expected
angular structures. The most stable configuration may be
of a variety of crystalline structures, and even a quasicrys
These structures melt with increasing temperature. The so
fluid border in theP-T diagram has a zone with a negativ
slope, which implies a melting with decreasing in volum
and in this region the fluid has an anomalous thermal exp
sion @8# up to a temperature at which a density maximum
attained.

The paper is organized as follows. In Sec. II the mode
introduced and details of the simulation procedure to be u
in Sec. IV are provided. In Sec. III the ground state config
rations are analyzed. In Sec. IV I present detailed results
the P-T phase diagram for a particular value of the para
eter a, which is defined below. In Sec. V the possible re
evance to real systems is discussed and a summary o
results is given.
1478 © 1998 The American Physical Society
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PRE 58 1479PHASE BEHAVIOR OF A SYSTEM OF PARTICLES . . .
II. MODEL AND NUMERICAL TECHNIQUE

The model interactionU(r ) between particles that will be
used here consists of a hard core repulsion at a radiur 0

@U(r )ur ,r 0
5`#, the interaction is zero for distances larg

than a valuer 1, and has a soft repulsive part forr 0,r ,r 1 of
the form U(r )5«0(r 12r )/(r 12r 0) ~Fig. 1!. This interac-
tion gives a model that is a candidate to have an isostruct
transition between compact configurations of lattice para
eter isr 0 and r 1 . Two particles interacting through this po
tential in the presence of an external forcef trying to bring
them together will have a jump in the interparticle distan
from r 1 to r 0 when f exceeds the critical value«0 /(r 1
2r 0). This model is preferred for numerical simulations i
stead of the square shoulder model because it has much
metastability when varying pressure or temperature. If te
perature is measured in units of the energy at contact«0 ~the
Boltzmann constant is taken to be 1! and distance is in units
of the hard core distancer 0, thena5r 1 /r 0 is the only free
parameter of the interaction potential.

Detailed numerical simulations were performed for a tw
dimensional system of 256 particles in theNPT ensemble,
using the Monte Carlo–Metropolis technique. A trial mov
ment of a particle consists of a displacement to a new p
tion chosen randomly inside a cube of a linear size of 1%
the mean distance between particles. The new positio
accepted with a Metropolis algorithm, considering the e
ergy change due to the movement. Once every five Mo
Carlo sweeps through all particles, a trial global rescaling
all particle coordinates and system size is proposed. The
caling is given by a factor chosen randomly within the int
val 60.2% and is done independently forx and y coordi-
nates in order to allow the system to accommodate
different crystalline structures that may appear. A maxim
aspect ratio for the system of 1.05 is imposed. If the t
volume change does not produce overlapping of the h
core of the particles, then it is accepted according to
Metropolis rule with the value of the energy changeDE
given byDE5PDV2(NT/V)DV1dE. HereN is the num-
ber of particles,V is the volume of the system,dE is the
energy change associated with the change of interpar
distances, and the term2(NT/V)DV, which ensures the cor
rect limiting equation of state in the case of an ideal gas~i.e.,

FIG. 1. The pair potential used throughout the paper. There
hard core at distancer 0 and a soft core~linear ramp! betweenr 0

and r 1 . The interaction vanishes beyondr 1.
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whendE50), accounts for the kinetic energy term that,
usual, can be integrated out in the expression for partit
function and thermodynamic potentials. Different runs we
performed at constant pressure starting from random c
figurations at high temperature, cooling down to zero te
perature, and then warming up. Around 10 000 Monte Ca
steps were used for thermalization at each temperature,
then 50 000 steps were used to calculate thermodyna
quantities, such as the mean volumev per particle at each
temperature, the enthalpy per particleh, the diffraction pat-
tern of the geometrical configurations, and the diffusion c
efficient of the particlesD.

The diffusion coefficient is calculated in the followin
way. The distance traveled by each particle, starting from
initial position, as a function of time is recorded andD is
taken to be the slope of this function at long times. From t
definition and the kind of simulations performed, it is cle
thatD tends to a constant at high temperatures. The phys
diffusion coefficient is obtained by multiplying by temper
ture. In addition, from the diffraction patterns an orient
tional order parameterBm will also be used. It is defined a

Bm5E K~k!P~k,u!exp~ imu!d2k. ~1!

HereP(k,u) is the intensity of the diffraction pattern in th
k plane, in polar coordinates,m is an integer chosen accord
ing the orientational order we are looking for, andK(k) is a
kernel that cuts off the integral at largek. The results are
qualitatively insensitive to the form ofK(k). The expression
used wasK(k)5exp(2k2).

Some comments are in order at this point. The use of
hard core plus linear ramp potential is motivated, as sta
before, by numerical reasons. Neither the analytical result
Sec. III nor the numerical results of Sec. IV change qual
tively if a square or a parabolic shoulder~with a negative
second derivative! is used instead of the linear ramp. Mo
precise conditions on the potential are discussed in Sec.

Results are presented for the two-dimensional case
clarify the discussion of the structures that will be presen
in Sec. III. However, the basic properties of the system
main the same in three dimensions. The nature of the mel
transition in two dimensions is a controversial point in t
literature. However, for rather small systems such as the
studied here, indications of discontinuous melting transitio
are clearly observed, but it is not obvious whether they
main when the system size goes to infinity. I will spe
throughout the paper of continuous and discontinuous m
ing transitions when the simulations indicate each case
the particular size used in the simulations.

III. ZERO-TEMPERATURE BEHAVIOR

Since the numerical work of Alder and Wainwrigth@9# in
1962, it has been known that the existence of a high eno
external pressureP is sufficient to make a system of othe
wise repulsive particles freeze. The minimum energy c
figuration of a system of particles interacting in two dime
sions through a potential of the form;r 2g is a triangular
lattice for all positive values ofg. The great variety of
ground states that can be obtained for more general po

a
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1480 PRE 58E. A. JAGLA
tials is not so widely recognized, even keeping the restrict
of a monotonically decaying potential. We will concentra
on the already introduced hard core plus linear ramp po
tial ~Fig. 1!. The ground state configuration of a system
particles in two dimensions interacting through this poten
depends on the values ofP and a and is not necessarily
triangular lattice.

Depending on pressure, nearest particles tend to be at
tancer 0 or r 1 from each other. Intermediate values are n
preferred because they are not energy minima. The origi
complex ground state structures in the system is relate
the competition between two terms in the enthalpyH of the
system. One is the usualPV term, which tends to minimize
the volume, and the other is the repulsive energy term, wh
tends to maximize the interparticle distance. This produce
sort of frustration because both terms cannot be minimize
the same time. The two triangular structures with lattice
rametersr 0 andr 1 ~which will be referred to as structuresS0
andS1) correspond to two ways of reducing the enthalpy
minimizing one term while maximizing the other. These a
the best compromises in the case of very low or very h
pressures. However, when both energy terms are com
rable, lower-energy intermediate solutions can be found
arranging the particles with a coordination number~number
of neighbors at distancer 0) intermediate between 0 and
~which correspond to the structuresS1 andS0).

In fact, different crystalline configurations can be pr
posed and their enthalpy calculated in order to find the m
stable one as a function ofP̃ ([Pr0

2/«0) anda. The result of
this analysis is shown in Fig. 2. This figure shows the res
up to a value ofa for which the interaction to second neigh
bors in the most compact structure (S0) is still zero. The
structures in Fig. 2 were found by inspection, and they
the lowest-energy configurations found within each regi
but other ~more stable! structures may have been misse
Note that some of the structures have one particle per
cell ~all particles are in translationally equivalent sites!, but
in others (S3 and S4) this number is greater than one. F
some values ofa and as a function ofP, there are at leas
three intermediate structures between the triangular oneS0
andS1.

There is one point in theP̃-a diagram that deserves fur
ther discussion and this is the one marked by an asteris
Fig. 2 . It corresponds to a value ofa[aqc5112sin(18o)
>1.618, and P̃[ P̃qc51/sin(36o)>1.7013. At this point
structuresS2 and S3 become energetically degenerate, b
more importantly, many other degenerate structures can
constructed. In fact, structureS3 and structureS2 for this
value ofa may be considered as generated by a tiling of
plane using the two two-dimensional Penrose tiles as in
cated in Fig. 3@10#. Particles are located in the far vertices
the thin tile and in the nearest ones of the thick tile. At t
point Sqc the enthalpies per particle of the two Penrose ti
coincide. Any tiling, with the only restriction imposed by th
location of the particles in the above-mentioned vertices
the tiles~these are usually named soft matching rules and
kind of tiling they generate is known as a random tilin
@11,12#!, generates a possible ground state of the system.
proportion of thin to thick tiles used to construct the grou
state is arbitrary~as long as the soft matching rules can
n
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satisfied!. For proportions close to the value corresponding
a perfect Penrose lattice~nearly 1! the structure obtained is
random quasicrystal. For pressures lower thanP̃qc the struc-
ture with a maximum fraction of thin tiles (S2) is preferred
because the thin tile has lower enthalpy. On the contrary,
pressures higher thanP̃qc the preferred structure is that wit
the largest proportion of thick tiles (S3). Quasicrystalline
ground states are only stable at the pointSqc. However, the
soft matching rules allow for many ways of generating the

FIG. 2. Ground state configurations of the system as a func

of P̃ ([Pr0
2/«0) and a. At the point marked by an asterisk, th

ground state of the system is a random quasicrystal. The black
in the configurations represent the hard core of the particles.

FIG. 3. Tiling of the structuresS3 and S2 using the two-

dimensional Penrose tiles, forP̃5 P̃qc anda5aqc. The proportion

of thin to fat tiles is 1:3 inS3 and 2:1 inS2. At P̃qc, aqc, any
possible random tiling of the plane produces a degenerate gro
state.
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PRE 58 1481PHASE BEHAVIOR OF A SYSTEM OF PARTICLES . . .
~compared to the more rigid structuresS2 and S3) and this
implies that at finite temperature the quasicrystalline str
ture will be stabilized due to entropic effects, as we will s
in the next section using numerical simulations.

IV. PRESSURE-TEMPERATURE PHASE DIAGRAM

After having discussed its ground state properties, we
cus now on the behavior of the system at finite temperatu
The main interest is in the localization of the fluid-solid tra
sition line. I will present now the numerical results obtain
at different values of pressure, in the particular casea
51.65. The system is initially in a random configuration
high temperature~well inside the fluid phase! and the tem-
perature is progressively reduced to zero and then incre
again.

In the ranges of pressure in which the structuresS0 andS1
are the most stable zero-temperature configurations~accord-
ing to Fig. 2!, a sharp solidification transition is obtaine
when reducing temperature. This can be seen in Figs.
for three different values of pressure within this range. In
first two the solidification is into theS1 structure and for the
third one into theS0 structure. In the three cases the solid
fication transition is clearly identifiable by the hystere

FIG. 4. Volumev and enthalpyh̃ ([E/N1 P̃v) per particle,
sixfold orientational order parameterB6 , and diffusion coefficient

D of the system as a function of temperature forP̃50.5, for a swept
decreasing and increasing temperature (B6 and D are given in ar-
bitrary units,T is in units of«0). Note the difference in the snap
shots of the system at the same temperature on heating and co
within the hysteresis loop.
-
e

-
s.

t

ed

6
e

loop in the volume or the enthalpy of the system, whi
coincides with the vanishing of the diffusion coefficient a
the appearance of a finite sixfold symmetry of the diffracti
pattern.

An additional check of the existence of a sharp solid-flu
transition may be obtained through a long simulation at
equilibrium temperature between the solid and fluid. In t
case, the volume of the system should fluctuate between
clearly different values corresponding to solid and flu
phases. The results of this simulation are shown for the c
P̃51 andT50.082 in Fig. 7. For this simulation the syste
was initially in a fluid equilibrium configuration at the cor
responding values ofP̃ and T. After about 53105 Monte
Carlo steps the system jumps to the solid phase. After aro
2.73106 steps the systems makes a new short transition
the fluid state.

The most important characteristic to be noted in Fig. 5
that the melting occurs with a reduction in volume for th
value of pressure. In addition, the fluid right after meltin
also has an anomalous thermal expansion up to some
perature at which a density maximum is attained. Th
characteristics imply a negative slope of the solid-fluid co
istence curve, which is in fact obtained from the simulatio
as we will see later. The compressive melting of the syst
in this region has its origin in the fact that the usual volum
reduction when temperature is reduced is overcome by
expansion produced when particles diminish their kinetic
ergy and move out of the soft core of their neighbors. Illu
trating this effect, in Fig. 8 we see snapshots of the system
different temperatures passing through the liquid-to-so

ng,

FIG. 5. Same as Fig. 4 forP̃51.0.
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1482 PRE 58E. A. JAGLA
transition. In the fluid phase there are particles at distan
less thanr 1 from each other, whereas in the solid phase
minimum distance between particles isr 0 ~except for some
defects in the structure, which appear mainly because of
impossibility of accommodating 256 particles in a perfe
triangular lattice within a nearly square cage!.

The phasesS2 , S3 , and S4 , expected to be the groun
states of the system at intermediate pressures fora51.65,
are not straightforwardly obtained in the simulations.
stead, rather disordered states are obtained. In Figs. 9
and 11 we can see the magnitudesv, h̃, andD for pressures
P̃51.3, 1.7, and 3.8, together with the zero-temperature c

FIG. 6. Same as Fig. 4 forP̃56.0.

FIG. 7. Time evolution of the volume per particlev for

P̃51.7 andT50.082, close to the fluid-solid transition. After abo
53105 Monte Carlo steps the system jumps to the solid pha
After around 2.73106 steps the systems makes a new short tra
tion to the fluid state.
es
e

he
t

-
10,

n-

figuration found and the diffraction pattern of the zer
temperature structure. In the entire intermediate press
range (1.2& P̃&4) the enthalpy at zero temperature obtain
in the numerical simulation is never lower than that cor
sponding to the expected ordered structures of Fig. 2, as
shown in Fig. 12, indicating that probably the configuratio
of Fig. 2 are really the fundamental states, but they were
reached in the simulations. The configurations obtained
the simulations reflect the equilibrium states at some fin
but small temperature, where entropic contributions to
free energy are important, and they are metastable at
temperature~note the existence of chains in Fig. 9 and t
pentagons and hexagons in Figs. 10 and 11!. Looking at the
diffraction patterns in Figs. 9–11, two of them (P̃51.3 and
3.8! show no sign of orientational order. Another (P̃51.7)
clearly indicates a tenfold symmetry, characteristic of a q
sicrystal. In the cases where the low-temperature state ha
orientational order, the volume or enthalpy of the syst
does not show any abrupt solidification transition. In t
cases where the low-temperature state has rotational o
the volume and enthalpy of the system show a small hys
etic behavior, suggesting an abrupt solidification transiti
To confirm this, long runs were performed at the expec
transition temperature, recording the temporal evolution
volume and enthalpy. An example of the results for the c
P̃51.7 is shown in Fig. 13. The histogram shows a cle
bimodal distribution between two values corresponding p
cisely to the values of enthalpy expected from Fig. 10 at t
temperature.

We saw in Sec. III that at zero temperature the quasicr

e.
i-

FIG. 8. Snapshots of the system forP̃51.7 when decreasing
temperature, through the fluid-solid transition, illustrating t
anomalous freezing. In the fluid state there are particles at dista
lower thanr 1 , whereas in the solid phase all particles~except a few
defects! are located at distancer 1 from their neighbors. The tem
perature in the second panel corresponds to the maximum dens
the system~see Fig. 5!.
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PRE 58 1483PHASE BEHAVIOR OF A SYSTEM OF PARTICLES . . .
talline structure is stable only at a particular value ofP̃ and
a. At finite temperatures this structure is stabilized due
entropic effects because there are many ways of construc
the random tiling, favoring this structure against the mo
rigid onesS2 andS3 @13#. A related model of a quasicrysta
using two kinds of particles of different sizes has been st
ied by Henley@11# and Strandburg@14#. In our case, the
quasicrystalline state is obtained in a system of only one k
of particle.

For other values of pressure, the smooth solidification
the system and the absence of any obvious order in the
temperature structures obtained suggest that the sy
freezes in a glassy state. However, more detailed calculat
of the diffusion coefficient and other magnitudes in larg
systems are needed to confirm this point.

The numerical results are summarized in the phase
gram of Fig. 14. The sharp fluid-solid transition in the ca
of structuresS0 and S1 are shown, as well as that corre
sponding to a quasicrystalline state. The error bars in th
cases are taken as the width of the hysteresis loop in
enthalpy or the volume of the system. In addition, the
proximate temperature where the system freezes in the o
cases is also indicated, and in this case the error bars ind
the approximate temperature range in which the diffus
coefficient changes between 10% and 50% of its value
high temperatures.

We know from the results of Sec. III that this phase d
gram~particularly at intermediate pressures! is metastable a
low temperatures. Since the numerical simulations are
able to reach the fundamental state in some cases, the d

FIG. 9. Volume per particlev, enthalpyh̃, and diffusion coef-

ficient D of the system as a function of temperature forP̃51.3, for
a swept decreasing and increasing temperature. The zero tem
ture configuration reached and its diffraction pattern are also sho
o
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mination of the equilibrium phase diagram at all values ofP
andT requires the direct comparison of the free energies
the structures found in the simulations and those known to

ra-
n.

FIG. 10. Same as Fig. 9 forP̃51.7. In this case the tenfold
orientational order parameterB10 is also shown in the last pane
Note the small hysteresis loop inv andh.

FIG. 11. Same as Fig. 9 forP̃53.8.
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1484 PRE 58E. A. JAGLA
more stable in some cases~structuresS2 , S3, andS4 for a
51.65). TheGibbs free energy of the system can be o
tained from the numerical simulations through the formu

G2

T2
2

G1

T1
5E

1

2V

T
dP2

H

T2
dT, ~2!

where 1 and 2 stand for two set of valuesP1 ,T1 andP2 ,T2
and the integration is through an arbitrary~reversible! path in
the P-T plane joining points 1 and 2. This determines t
free energy of those structures obtained in the numer
simulations up to an overall constant. Also the free energ
structuresS2 , S3 , andS4 may be determined in this way b
setting up the configuration of the system at zero tempera
in these structures and then performing a numerical sim
tion with increasing temperature. After that, all that rema
to be able to compare the free energies is to fix the addi
constants. This was done by introducing in the model
additional external potential characterized by a strengthW,
with a periodicity chosen to favor the formation of the r

FIG. 13. Time evolution of the enthalpy per particle forP̃
51.7 andT50.0505, close to the fluid-quasicrystal transition. T
histogram shows a clear double peak structure, with mean va
compatible with those obtained from Fig. 10 for this temperatu

FIG. 12. Ground state enthalpy per particle as a function oP̃
from the simulations~black dots! and the analytical expression fo
the possible ordered structures. All points lie above at least on
the lines corresponding to the ordered structures.
-

al
f

re
a-
s
e
n

quired structure. The reversible path from the ordered str
ture to that obtained in the simulation for a given po
P0 ,T0 consisted of four steps: increasingW from zero to
some large value, increasingT from T0 to a large value,
decreasingW down to zero, and decreasingT down toT0 .
The difference in Gibbs free energyDG between the two
structures was calculated through this path by a genera
tion of formula ~2!, given by

D~G/T!uP0 ,T0
5 R S V

T
dP1

EW

TW
dW2

H1EW

T2
dTD ,

~3!

whereEW is the potential energy of the particles in the ar
ficial external potential andr indicates the integration alon
the above-mentioned path. This was done three times w
different external potential to fix all arbitrary constants b
tween free energies of structuresS2 , S3 , S4 , and the ones
obtained in the simulations. After that, the free energies
be compared and the thermodynamic phase diagram
structed.

The complete thermodynamic phase diagram is show
Fig. 15, where the stability region of each phase is shown
is seen that the quasicrystalline state is in fact thermo
namically stable in a finite range ofP andT, in spite of the
value of a (51.65), which is not the optimum value (aqc
>1.618) for the quasicrystalline structure. Only in the ca
a5aqc is the quasicrystal stable down to zero temperatu
at the pointP̃[ P̃qc>1.7013.

es
.

FIG. 14. Pressure-temperature phase diagram from the sim
tions ~dsd stands for disordered!. See the text for more details.

FIG. 15. Complete pressure-temperature phase diagram foa
51.65. The errors in the limit of structuresS2, S3, and S4 are
estimated to be60.01 in temperature. See the text for a discussi
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V. SUMMARY AND DISCUSSION

In this paper I have discussed the phase behavior
classical model of particles interacting through a particula
chosen isotropic potential. The interaction consists of a h
core plus a linear ramp potential, producing an effect
greater size of the particles at low energies. The ground s
of the system shows different periodic arrangements of
particles, depending on the values ofP and a. There is a
particular pair of valuesPqc and aqc at which the ground
state is a random quasicrystal. These periodic structures
when the temperature is increased through discontinu
phase transitions. In addition, at finite temperature, the q
sicrystalline state is stabilized due to entropic effects.

It is usually believed that ‘‘ . . . two-dimensional mon-
atomic systems interacting with central forces always form
triangular lattice’’ @15#. Although this is so for power laws
and other kinds of interactions, the ground state configu
tions of our system show that this is not true in general. E
considering only crystalline ground states, there may
more than one atom per unit cell~two for S3 and five forS4)
and unequivalent sites within the structure~two for S4).

Having established the properties of the system for
model interaction, it is of basic importance to identify th
conditions that an interaction potential must satisfy in or
to obtain the kind of structures we obtained in our mod
Although it is rather difficult to solve the problem in genera
something can be said about it. It is clear that the nonan
ticity of the potential used is not a crucial element. Actual
analytic potentials arbitrarily close to the one used here m
be easily constructed. First of all, let us analyze the neces
condition for the local stability of a triangular structure. Co
sider particles interacting through a potentialU(r ) and dis-
tributed in a triangular lattice of lattice parametera. At any
lattice site the potential created by all other particles m
have a minimum in order for the structure to be~locally!
stable. The potential around that site~taken to ber50) cre-
ated by a particle at a generic positionr is, up to second
order, of the form U9(r )dx21 @U8(r )/r # dy21U8(r )dx
1U(r ), wheredx (dy) is the coordinate of the tested poi
along ~perpendicular to! r . This potential must be summe
up for all particles, and for lattices with rotational symmet
C3 or higher it must reduce to an isotropic form. Consideri
the invariance of the trace of quadratic forms under rotatio
the quadratic partU2(dr ) of the final effective potential can
be written as

U2~dr !5
dr 2

2 (
i 51

`

niFU9~di !1
U8~di !

di
G , ~4!

where the sum is over all other particles, located at distan
di (d15a), and ni is the number of particles at those di
tances~for three dimensions the term containingU8 gets an
additional factor 2!. The positiveness of this form is the con
dition for the stability of the lattice under small displac
ments of a single particle~global stability is more difficult to
characterize!, supposing that the lattice parameter is fix
from outside. ForU(r );1/r g all terms of the sum in Eq.~4!
are positive and the structure is locally stable. For our pot
tial and analyzing a structure with the lattice parametera,
r 1.a.r 0, nearest neighbors haveU9(r )50 andU8(r ),0
and the structure is unstable. If the stability condition~4! is
a
y
rd
e
te
e

elt
us
a-

a

a-
n
e

r

r
l.

y-
,
y
ry

t

s,

es

n-

not satisfied for some lattice parameterã, then it indicates at
least the existence of an isostructural transition as a func
of pressure between two triangular structures with lattice
rametersa0,ã anda1.ã. However, if the nearest- neighbo
interaction dominates, it is easy to see that anS2 structure is
more stable. In fact, consider two triangular structures w
lattice parametersa0 and a1 that are degenerate at som
pressureP. Their enthalpies per particle must be equal. T
implies, if only the nearest-neighbor interaction is importa
that

Pa0
2A3/213U~a0!5Pa1

2A3/213U~a1!. ~5!

Now the enthalpy of anS2 structure with a nearest-neighbo
distancea0 and next-nearest-neighbor distancea1 is given
by

Pa0Aa1
22a0

2/41U~a0!12U~a1!, ~6!

and it is easy to see that this number is lower than t
corresponding to the triangular structures. We conclude
stable structures other than the triangular one will occu
the condition

U9~r !1
U8~r !

r
,0 ~7!

is satisfied for some value ofr . In cases where long-rang
interactions cannot be neglected, a case by case ana
based on Eq.~4! is needed.

Our model does not contain an attractive part in the
tential, and for this reason it lacks a liquid phase. Howeve
liquid phase can be obtained within a generalized van
Waals approach@16#, in which an attractive interaction is
included through an energy term proportional to2v21. In
addition to the appearance of a liquid-gas coexistence l
this modification only renormalizes pressure and does
affect the structure of the phases or the nature of the ano
lies of the phase diagram that were discussed above.

The qualitative features of the phase diagram in the tw
dimensional case have also been obtained in simulat
with a three-dimensional system. The minimum value ofa
necessary to get the volume anomaly at melting is about
for both two- and three-dimensional systems.

The results presented here might have importance in
other context. The anomaly in the fluid-solid coexistence l
and the negative thermal expansion coefficient in this reg
are very similar to the same effects occurring in water. A
tually, an interaction potential with a double minimu
~which is related to the potential considered here! in one
dimension has been analyzed recently and has been
gested to be the origin of the density anomaly in water@17#,
but this proposal has been questioned since it seems to
anomalous behaviors only in one dimension@18#. The results
presented here show clearly that simple models with ano
lous behavior may be constructed in two and three dim
sions. A comparison of the phase diagrams of water with t
corresponding to our system reveals in fact many coin
dences, such as the mentioned anomalies and the positio
the different crystalline phases in theP-T diagram, which
occur near the pressure where the melting temperatur
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minimum. In addition, amorphous structures in ice are w
known @19#, and the underlying mechanisms responsible
their formation may be related to those that originate
disordered structures when cooling down at intermed
pressures.

Finally, in order to get a better understanding of the d
namic and thermodynamic properties of the kind of syst
we are dealing with, it would be interesting to find an expe
mental realization of an interaction potential satisfying t
e,

. S
ll
r
r
te

-

-

condition ~4!. A colloidal system seems to be the natur
place to look for that realization.
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