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Amplitude equations for extended discrete systems: A study of an antiferromagnetic spin chain

B. Rumpf* and H. Sauermann
Institut für Festkörperphysik, Darmstadt University of Technology, Hochschulstrasse 8, 64289 Darmstadt, Germany

~Received 16 June 1997; revised manuscript received 27 April 1998!

We study the effect of the dynamical degrees of freedom resulting from the lattice structure of an antifer-
romagnet on pattern forming bifurcations. They are examined in a one-dimensional chain of damped and
driven classical spin oscillators. In addition to stationary states where all spins are parallel~quasiferromagnetic
state!, it exhibits states where the spins are lined up on two sublattices~noncollinear state!. Besides showing
instabilities against large scale perturbations, short wavelengths of the order of the lattice constant become
critical even for weak driving fields. A general formalism admitting a dynamical description of discrete
oscillator chains in the weakly nonlinear regime beyond the instabilities is developed. The ensuing amplitude
equation allows the examination of the formation of patterns in this domain. Special emphasis is laid on
instabilities of higher codimension. A codimension-3 bifurcation where all wave numbers become critical
simultaneously implies a direct transition to turbulence.@S1063-651X~98!04608-X#

PACS number~s!: 05.50.1q, 75.10.Hk, 02.30.Mv
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I. INTRODUCTION

Numerous experimental and theoretical investigations
the ferromagnetic response to time dependent external fi
have made driven magnets a paradigm of nonlinear scie
Following the observation by Bloembergen, Damon, a
Wang @1# of broadened power absorption spectra of fe
samples strongly driven by microwaves, theoretical tre
ments@2# have explained the emergence of a new state c
acterized by pairs of spin waves above a first instabi
threshold. Experimentally observed auto-oscillations h
been interpreted as limit cycles emanating from a second
Hopf bifurcation of this state. Driving fields well above th
threshold have led to intricate bifurcation phenomena incl
ing a period doubling route to chaos that has been re
duced in idealized model systems@3#. In detecting the re-
sponse of the whole sample and not resolving spa
patterns, such experiments are restricted to temporal dyn
ics.

Empirical and formal similarities of driven magnetic sy
tems to fluids suggest the occurrence of turbulent states@4#
and long scale patterns@5,6# in the magnetization. Funda
mental theoretical studies taking the nonlocal dipolar te
into account even predict pattern switching phenomena
ferromagnetic films@7#.

But unlike fluids or liquid crystals, magnetism has not y
become representative for nonequilibrium pattern formati
The reason for this seems to be twofold: firstly, availa
driving field strengths require samples with relatively sm
linewidths. In this case, the complex Ginzburg-Landau eq
tion typically obtained by perturbation theoretic expansio
is valid on extremely long time scales; beyond a small reg
above threshold it may be studied in the limit of the nonl
ear Schro¨dinger equation. Consequently, weakly damp
systems are frequently approximated by Hamiltonian
scriptions; such systems have been examined in therm

*FAX: 149 6151 16 4165. Electronic address:
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namics and the investigation of solitons@8–10#. Secondly, a
major obstacle lies in the experimentally difficult resolutio
of small variations of the magnetization in spatiotempo
patterns, using, e.g., the Faraday effect in thin ferrimagn
films. This method is well established@10# to visualize do-
main structures, moving domain walls or solitons where
considerable changes of the magnetization cause observ
rotations of the polarization of light. Also precession ang
in ferrimagnetic resonance were measured@11#. However, to
our knowledge visualizing the slow variations of an envelo
characteristic for dissipative pattern formation has not
been achieved. Rapid pattern switching in two dimensio
might also impede the observation.

Still, in strongly driven magnets nonequilibrium patte
formation should be observable; both the Faraday effect
the linewidth are enhanced by an appropriate dotting, wh
seems to be a promising way to observe one and two dim
sional patterns in thin magnetic films.

In formal descriptions, simplifications of the comple
mechanisms present in real magnets are indispensable.
oretical approaches are based, e.g., on theS theory or the
Landau-Lifshitz equation. Even though the microscopic d
scription of magnetism is purely quantum mechanical, m
roscopic dynamical properties are described appropriately
classical equations of motion. The Landau-Lifshitz equat
was originally a purely phenomenological description of t
dynamics of the magnetization density of a ferromagn
now, somewhat in analogy to Navier-Stokes in fluid mech
ics, there are sound microscopic derivations@12# including
assessments of its applicability.

For systems consisting of two or more@13# sublattices
such as antiferromagnets and weak ferromagnets@10#, the
situation is even more complicated. Each sublattice may
described separately by a classical Landau-Lifshitz equa
@14#. The effective field at each lattice site contains a co
pling term to the nearest neighbors on the other sublatt
The nonlocal dipolar term may be neglected if the result
magnetization is weak.

Microscopically, discrete models appear to be the m
adequate description for antiferromagnetism of ionic crys
1463 © 1998 The American Physical Society
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1464 PRE 58B. RUMPF AND H. SAUERMANN
with localized atomic momenta. Even then, working fro
the assumption that neighboring spins are approximatel
the same state, a continuum transition is often performe
the Hamiltonian @8,9# or in the primary Landau-Lifshitz
equation@15–18#. This assumption breaks down if there a
short wavelength excitations. We will show that this can
the case for damped and driven systems. We describe
system as a set of coupled ordinary differential equatio
thus taking the discreteness effects into account.

We formulate a model system that includes the ba
physical features of driven antiferromagnets, but is s
simple enough to admit analytical studies pattern format
mechanisms. The dynamics is restricted to one spatial
mension reflecting a strongly anisotropic exchange inte
tion in the crystal. The emphasis is put on bifurcational st
ies in a wide range of parameter space that may serve
guide for studies specified to particular materials.

To understand spatiotemporal dynamics near an insta
ity threshold, a systematic reduction of the degrees of fr
dom is often more helpful than the computation of particu
solutions. This reduction transforms the original equation
motion to a canonic amplitude equation, whose form is
termined entirely by the type of instability under conside
ation. The coefficients of the reduced equation are functi
of the original physical parameters. Different physical s
tems may therefore be treated in a unifying manner. S
reductions are well established as center manifold reduct
in low dimensional systems@19# and as solvability condi-
tions within a multiple scale perturbation theory of part
differential equations for spatially extended systems@20#.

While our system itself is discrete, its slowly varying am
plitude admits a description by partial differential equatio
We present a derivation of amplitude equations for qu
general chains of coupled oscillators. Applying this form
ism to the magnetic system yields all the parameters of
ensuing Ginzburg-Landau equation, which is well studied
the field of pattern formation@21#. This analysis provides a
nonlinear characterization of the dynamics beyond the in
bilities. Our formulas for the coefficients of the amplitud
equation can be easily used for all locally coupled oscilla
chains elucidating some universal aspects of magnetic
tern formation.

The one dimensional spin chain described in Sec. II c
tains a Landau-Lifshitz damping term and a rotating drivi
field. Bifurcations of the quasiferromagnetic state are stud
in Sec. III. Noncollinear stationary states, in which the ma
netization vectors of both sublattices deviate from the a
parallel alignment, are computed in Appendix A. Their mo
interesting instability represents a splitting of one sublatt
into two sublattices, each of which can be described b
smooth function. The corresponding bifurcation scenario
studied in Sec. IV. In Appendix B the loci of these bifurc
tions in parameter space are determined explicitly for w
damping. The survey of the dynamics beyond the instab
ties is carried out in Sec. V with the help of the gene
amplitude equation formalism presented in Appendix C. F
the application to the antiferromagetic spin chain, the form
ism is generalized to chains of two alternating types of
cillators. This is done in a parity-preserving way, which
developed from a discussion of frequently used continu
approximations of antiferromagnets~Appendix D!. A bifur-
in
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cation where all wavelengths become critical engender
turbulent motion is discussed in Sec. VI.

II. THE SYSTEM

As a model of a microwave-driven one-dimensional an
ferromagnet we study a one-dimensional lattice of coup
classical spin oscillatorsSn governed by the dissipative
Landau-Lifshitz equation:

2Ṡn5Sn3Hn1GSn3~Sn3Hn! ~1!

under the influence of the effective field

Hn5B0~excosvt1eysin vt !1Bzez1J~Sn211Sn11! .
~2!

S is a three dimensional real vector. The equation of mot
conserves the modulus ofS; we setuSu51. Classical spins
may be viewed as averaged magnetic momenta of sev
quantum mechanical spins, e.g., the spins of a sublattic
an antiferromagnet or the spins of a film in a superlatt
@22#. The lattice-structure of the crystal is reflected in t
discreteness of the chain. This admits to describe the sp
taneous formation of sublattices in a uniform system.

The system is driven by a time dependent fieldB0 rotating
perpendicularly to the stationary external fieldBz . J,0 is
the antiferromagnetic Heisenberg exchange constant.G is the
coefficient of the Landau-Lifshitz damping term. All thes
parameters are real.

The explicit time dependence can be eliminated by int
ducing a rotating coordinate systeme8x5excosvt
1eysin vt,e8y52exsin vt1eycosvt,e8z5ez . It leads to

2Ṡn5Sn3~Hn2vez!1GSn3~Sn3Hn! ~3!

with

Hn5B0ex1Bzez1J~Sn211Sn11!. ~4!

Making use of the conservation of modulus to reduce
number of field equations and applying the stereograp
projection into the complex planez5(Sx1 iSy)/(11Sz) we
obtain the equation of motion for the oscillator with indexn

żn5~ i 2G!Bzzn2 ivzn2~ i 2G!
B0

2
~12zn

2!

1J~ i 2G!~zn2zn11!
11znzn11*

11zn11zn11*

1J~ i 2G!~zn2zn21!
11znzn21*

11zn21zn21*
. ~5!

The system has states where the spins are arranged in
or two sublattices. In the following sections we will discu
their bifurcation scenario.
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III. BIFURCATIONS OF THE QUASIFERROMAGNETIC
STATE

A stationary state where all spins are parallel (Sn5Sm for
all n,m) is called a quasiferromagnetic state. In this case
Heisenberg coupling termSn3Sn11 is identically zero and
consequently such states are just the stationary solution
the equation of motion of a single spin

ż5~ i 2G!Bzz2 ivz2~ i 2G!
B0

2
~12z2!. ~6!

There are two such states

zA/B52
~ i 2G!Bz2 iv1jA/B

~ i 2G!B0
, ~7!

where we have used the abbreviation

jA/B56A@~ i 2G!Bz2 iv#21@~ i 2G!B0#2. ~8!

The root is defined so that RejA>0,RejB<0. We will now
discuss instabilities of these solutions. The eigenvalues
linear stability analysis are

lA/B1~k!5jA/B12J~ i 2G!~12cosk!, ~9!

lA/B2~k!5l̄A/B1~k!. ~10!

k is the wave vector of the perturbations. The fixed pointA is
always unstable, while the fixed pointB can be stable or
unstable. The real part of the eigenvalues has extremak
50 andk5p. For antiferromagnetic couplingJ,0 the real
part of the eigenvalues, RelB(k), is maximal atk5p and
there is a wave instability when

Re lB~p!5Re jB24JG50 ~11!

if Im jB14JÞ0. This bifurcation takes place at the boun
ary of the Brillouin zone and can be regarded as a H
bifurcation of a related 2-spin system@3#. Above this insta-
bility, the lattice splits up into two sublattices. Two neig
boring spins are excited with opposite phasesDSn
52DSn11.

This bifurcation corresponds to lineW0 in Fig. 1. In re-
gion S0 above lineW0 there is one stable and one unstab
quasiferromagnetic state. The strong external field neu
izes the antiferromagnetic interaction and stabilizes the e
getically unfavorable parallel orientation. BelowW0, the an-
tiferromagnetic interaction predominates and t
quasiferromagnetic states are both unstable.

For B0
2516J21G2Bz

2 andv5(11G2)Bz the eigenvalues
l1/2 vanish altogether~point a in Fig. 1!. A nonlinear analy-
sis of this bifurcation reveals saddle-node bifurcations of s
ondary fixed points@3# and also Hopf bifurcations and globa
bifurcations@23#. Instabilities of these noncollinear states f
from this bifurcation will be studied in the next section.

IV. BIFURCATIONS OF NONCOLLINEAR STATES

Stationary solutions of Eq.~1! with the property

S2n5SA ,S2n115SB ~12!
e

of

a

t

f

l-
r-

c-

for all n are called noncollinear states. They describe t
homogeneously magnetized sublattices which are usu
neither parallel nor antiparallel@Fig. 3~a!#. Such new 2-
sublattice states are generated by the driving field. The c
ing is provoked by the driving field balancing the antiferr
magnetic interaction. All these solutions can be determin
exactly with the help of the third order polynomial

G2v2~11m!2~B0
2216J2m!5@~11G2!B0

21~Bz2v!2

1G2Bz
2216J2~11G2!m#2m

~13!

for the square magnetizationm5 1
4 (SA1SB)2 ~see Appendix

A!. Oncem is known,SA andSB can be calculated. Due to
the translational symmetry of Eq.~1!, each solution of Eq.
~13! is twofold degenerate:

S2n5SA , S2n115SB ,

S2n5SB , S2n115SA . ~14!

In that sense there may be one or three nontrivial states.
now compute expressions for the saddle-node lines in q
tion. If an extremum of the polynomial~13! considered as a
function of m is zero, new fixed points are created in
saddle-node bifurcation. The resulting bifurcation lines S
are drawn in Figs. 1 and 2 in a parameter plane tha
spanned by the driving field and static field. They meet in
pointsa,ca ,cb and form the boundaries of a region in whic
three noncollinear states coexist. Outside this region ther
only one noncollinear state. Inside, the states may be n
bered in increasing order of the square magnetizationm. In
that sense, a saddle-node bifurcation of solutions 1 an
forms the bottom of the triangular structure, while its left a
right sides correspond to saddle-node bifurcations of
fixed points 2 and 3.

Magnetic resonance techniques commonly use weak d
ing fields and materials with correspondingly weak dissip

FIG. 1. Bifurcation scenario forJ520.49,v51,G50.01. A
trivial fixed point ~all spins are parallel!, which is stable in region
S0, becomes unstable at lineW0. Inside the triangular structure
whose borders are saddle-node lines SN three nontrivial fi
points exist, outside there is only one. In the shaded areas, ex
one fixed point is stable.
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1466 PRE 58B. RUMPF AND H. SAUERMANN
tion. Therefore, analytical results in this limit have a hi
relevance; we will first determine the corner points of th
structure. For a cusp bifurcation, the unique solution of
polynomial is an inflection point. Consequently, the polyn

FIG. 2. Section of Fig. 1 with small driving fields near res
nance containing the most interesting bifurcations. The saddle-n
lines SN12,SN23a ,SN23b bound a region with three nontrivial fixe
points. They are labeled in the order of their magnetizations;
indices indicate which one is involved in the corresponding bif
cations.ca and cb are cusp points. In the shaded areaS1 a non-
trivial stable stationary state exists. It is bounded by subcritical h
mode instabilities HM1a ,HM1b and a subcritical soft mode line
SM1. This line becomes physically irrelevant after intersecti
HM1a and HM1b . At the codimension-2 pointsx12 and x23—on
eigenvalue vanishes, two others are purely imaginary—the sad
node and the hard mode touch each other.d12 and d23 represent
Arnold-Takens-Bogdanov bifurcations. In the shaded areaS3,
which is bounded by SN23a , SN23b , HM3 and lineW3, solution 3
is stable. AtW3 there are imaginary eigenvalues forkc5p/2. At the
pointsbc3a/b solution 3 is critical forkc50 and forkc5p/2. The
broken part of line HM3 does not correspond to a global maximu
of an eigenvalue atkc50.
e
-

mial itself and its first and second derivative with respect
m must be zero. An expansion in terms ofG in lowest order
yields

B0
45

1024

27
J2v2G2,

~15!

B0
258~Bz2v!2

for the two cusp pointsca andcb in Figs. 2 and 5. At

B0
2516J21G2Bz

2 ,
~16!

v5~11G2!Bz

the polynomial and its first derivative vanishes atm51. In
this situation the spins of both sublattices become para
At this degenerate bifurcation point~point a in Fig. 1! the
noncollinear states 2 and 3 bifurcate from the ferromagn
state~see Sec. II and@3#!.

At the saddle-node bifurcation the discriminant of thir
order polynomial~13! vanishes; the polynomial has a sing
and a double root. Then forB0 andBz2v;G1/2,

~Bz2v!2@B0
21~Bz2v!2#314J2v2G2@64J2v2G2

18~Bz2v!4220B0
2~Bz2v!22B0

4#50 ~17!

holds. ForBz2v!G1/2 ~17! is solved byB0
4564G2v2J2,

which describes the saddle-node line SN12 at the bottom. The
lateral saddle-node lines SN23 can be approximated byB0

2

54J2G2v2/(Bz2v)21(Bz2v)2.
For a further study of the instabilities of the noncolline

states, it is useful to apply the stereographic projection in
direction ofSA1SB as outlined in Appendix A. It is possible
to relate stationary states ofS2n ,S2n11 to real numbersz2n
5x,z2n1152x on the complex plane. The dynamics of th
complex deviations Dz from equilibrium (z2n5x
1Dz2n ,z2n1152x1Dz2n11) is governed by

de

e
-

d

le-
D ż2n512~Q81 iQ9!xDz2n1~Q81 iQ9!Dz2n
2 24J~ i 2G!

12x2

11x2
Dz2n1J~ i 2G!F ~2x1Dz2n2Dz2n11!

3
11~x1Dz2n!~2x1Dz2n11* !

11~2x1Dz2n11!~2x1Dz2n11* !
1~2x1Dz2n2Dz2n21!

11~x1Dz2n!~2x1Dz2n21* !

11~2x1Dz2n21!~2x1Dz2n21* !
24x

12x2

11x2G , ~18!

D ż2n11522~Q81 iQ9!xDz2n111~Q81 iQ9!Dz2n11
2 24J~ i 2G!

12x2

11x2
Dz2n112J~ i 2G!F ~2x2Dz2n111Dz2n12!

3
11~2x1Dz2n11!~x1Dz2n12* !

11~x1Dz2n12!~x1Dz2n12* !
1~2x2Dz2n111Dz2n!

11~2x1Dz2n11!~x1Dz2n* !

11~x1Dz2n!~x1Dz2n* !
24x

12x2

11x2G . ~19!
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Q8,Q9,x are functions of the external fields~see Appendix A
for their definition!. Due to the different orientation of th
sublatticesS2n andS2n11 in the stationary state the variable
Re Dz,Im Dz at the lattice sites 2n and 2n11 are governed
by different differential equations. Consequently, the syst
can be regarded as a chain of two different types of nonlin
two-dimensional oscillators. They may be combined in
four-dimensional vector field.

For the stability analysis we linearize the equations
motion ~18!,~19!, insert the Bloch wave

S Re Dz2n

Im Dz2n

Re Dz2n11

Im Dz2n11

D 5S u1eik2n

u2eik2n

u3eik~2n11!

u4eik~2n11!

D 1c.c. ~20!

and obtain the Jacobian

2S Q8x1JG 2Q9x1J 2JGq cosk J cosk

Q9x2J Q8x1JG Jq cosk JG cosk

2JGq cosk J cosk 2Q8x1JG Q9x1J

Jq cosk JG cosk 2Q9x2J 2Q8x1JG

D
~21!

with q58x2/(11x2)221 and21<q<1. The wave vector
kc is restricted to the Brillouin zone@2p/2,p/2#. The coef-
ficients of the characteristic polynomial

l41K3l31K2l21K1l1K050 ~22!

are given explicitly in Appendix B. Because of the neare
neighbor coupling, the coefficients of Eq.~22! depend on the
wave numberk only via cos 2k and cos 4k.

The conditionK050 for one vanishing eigenvalue atkc
50 yields the saddle-node bifurcations that were descri
above. A zero eigenvalue atkcÞ0 indicates a soft-mode in
stability. Purely imaginary eigenvalues are obtained ifK1

2

2K1K2K31K0K3
250 and K1 /K3.0 hold. Forkc50 and

kcÞ0, the instability is designated as hard mode and w
instability, respectively~Fig. 3!. All these bifurcation condi-
tions have the form

d01d2cos 2k1d4cos 4k50. ~23!

The characteristic polynomial can be studied analytically
part. It reveals an intricate bifurcation scenario. Here we g
an overview of our results while we defer their derivation
Appendix B.

Within the shaded areasS1 andS3 in Fig. 2 there is one
stable stationary state, while outside all states are unsta
Therefore, noncollinear states are stable for sufficien
strong driving fields.S1 is bounded by the two hard-mod
instabilities HM1a and HM1b and the soft-mode instability
SM1 ~the index 1 refers to fixed point 1!. The areaS3, in
which fixed point 3 is stable, has the two saddle-node li
SN23a and SN23b , the hard-mode line HM3 and the lineW3
as its boundaries. The last line represents a wave instab
occurring atkc5p/2 with vÞ0. As coskc50, it takes place
for
ar
a

f

-

d

e

n
e

le.
y

s

ity

Q8x52JG. ~24!

Its critical eigenvectors

uc /uc* 5
1

A2S 1

6 i

0

0

D ~25!

have the eigenvaluesl56 i2(2Q9x1J). Consequently,
neighboring spins on one sublattice are excited with oppo
phases

DS2n125DS2ne2ikc52DS2n ~26!

while spins of the other sublattice remain unchanged.
analogy to the instability~11! at kc5p, it describes a split-
ting of a sublattice into two new sublattices@Fig. 3~c!#.

If the condition for imaginary eigenvalues is written in th
form ~23!, HM3 and W3 correspond tod01d21d450 and
d02d21d450, respectively. At the intersection pointsbc,
there are two pairs of imaginary eigenvalues atkc50 and
kc5p/2. They correspond tod01d450, d250.

A particularly interesting bifurcation of codimension 3
given if d05d25d450. At this point (gc in Fig. 4! the real
part of two eigenvalues vanishes for allkc . This bifurcation
will be studied in Sec. V.

It is worthwhile to determine the position of HM3 andW3
at exact resonanceBz2v50. In Appendix B we find

B0
2516J2S 12

4J2

Bz
2 D ~27!

FIG. 3. Sketch of a noncolinear state~a!, a hard mode instability
~b!, and of the instabilityW3 ~c!: Neighboring spinsS2n andS2n12

get opposite phases,S2n andS2n14 are again parallel. The sublattic
with odd indices remains unchanged.
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1468 PRE 58B. RUMPF AND H. SAUERMANN
for the resonance point onW3. This point is near to the
maximum of this bifurcation line~see Figs. 4 and 5!. The
point of intersection of HM3 and the resonance line is give
by

B0
4564J2G2v2 ~28!

and is near to the minimum value of the bifurcation lin
These formulas reveal a resonance phenomenon betwee
internal exchange fieldJ and the external static fieldBz .
While the saddle-node and hard-mode lines are quite in

FIG. 4. NearBz
224J250 the wave instabilityW3 invades the

stability regionS3 rapidly. The linesW3 are plotted for severa
coupling parameters20.5<J<20.4, SN and HM3 only for
J520.49,v51,G50.01. Where the lines are broken, the critic
eigenvalue is not a global maximum of the spectrum. ForJ5
20.4, solution 3 is stable only in domain VI, forJ520.475 it is
stable in V and VI, etc. ForJ520.5 it is stable in I–VI andW0

does not appear.b f anddw are codimension-2 lines in theB0-Bz-J
parameter space. On the right side of the degeneration pointdw, the
bifurcation W3 is subcritical while on the left side ofb f it
is Benjamin-Feir unstable.dw and b f meet in the pointgc
(J520.4975), which is critical for all wave numbers.

FIG. 5. Asymptotic behavior of codimension-2 bifurcations f
weak damping. The solid lines in theB0-Bz plane atG50.01 are
the bifurcation lines of Fig. 2. The dotted lines show the analyti
expressions given in the text for the codimension-2 bifurcationsca ,
cb , a, x12. d12 and the resonance pointshr andwr of HM3 andW3

as functions ofG,B0 ,Bz .
.
the

n-

sitive to variations ofJ ~they are plotted forJ520.49 in
Fig. 4!, line W3 is highly sensitive to variations ofJ near
4J25Bz

2 . Above this thresholdW3 invades the domain o
existence of fixed point 3 strongly, thereby destabilizing it
a wide range~Fig. 4!. In experimental situations whereJ is a
material constant, the same can be achieved by varyingBz
andv.

Finally as is shown in Appendix B near resonance so
interesting codimension two bifurcations occur:

Line HM1b meets line SN12 in point d12. This case is
characterized by the linear part

S 0 1

0 0D ~29!

and represents an Arnold-Takens-Bogdanov bifurcation@19#.
Line HM1a meets line SN12 in point x12. The correspond-

ing linear part is

S 0 0 0

0 0 2v

0 v 0
D . ~30!

Following the hard-mode line HM2 of fixed point 2~which is
always unstable! one reaches the pointx23, which is again of
the type~30!. The pointsx23 on the saddle-node line SN23a
andd23 on the saddle-node line SN23b are connected by the
hard-mode line HM3 of fixed point 3;d23 is again of the type
~29!.

For small values ofG, d12 is located at~from K050,K1
50)

Bz~Bz2v!52
B0

2

8
, ~31!

64G2v2J25B0
4 , ~32!

while x12 is given by ~from K050,K1
22K1K2K31K0K3

2

50)

Bz~Bz2v!52
7

8
B0

2 ~33!

and again Eq.~32!. These conditions are asymptotically e
act for G,B0 ,Bz2v→0 and they excellently agree with th
numerical results forG50.01 ~Fig. 5!.

In the context of pattern formation, the lines HM1a ,
HM1b , SM1, HM3, andW3 are relevant because they co
cern stable solutions. The physical question is now whet
these instabilities lead to stable short and long scale patte

V. AMPLITUDE EQUATIONS FOR THE WEAKLY
NONLINEAR REGIME

The dynamics beyond the instabilities is governed by n
linear terms. At threshold, a single mode is critical. It rep
sents an ideal pattern. Slightly above threshold adjac
modes become unstable, also giving rise to slow spatial
temporal modulations

A~t1 , . . . ,j1 , . . . !ei ~kcn1vt !uc1c.c. ~34!

l
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uc is the critical eigenvector@cf. Eq. ~C14!, Appendix C#.
The dynamics of these structures is described by amplit
equations. A systematic general derivation for amplitu
equations of oscillator chains is established in Appendix C
reduces the dynamical behavior of the dissipative spin s
tem to the Ginzburg-Landau equation

Ȧ5mA1D]x
2A1rA2A* . ~35!

The real part of the diffusion coefficientD52 1
2 ]2l/]x2 is

positive. For a negative real part ofr , the equation saturates
Rescaling amplitude, phase, space, and time coordinate
propriately, one obtains

Ȧ5mA1~11 ic1!]x
2A2~12 ic3!A2A* ~36!

with c15Im (D)/Re (D) andc352Im (r )/Re (r ).
The amplitude equation contains two decisive pieces

information of the pattern formation beyond the instabili
Firstly, it settles the stability of the short scale patterns link
to the critical eigenvector’s wave number. Secondly, depe
ing on its coefficients it categorizes the long scale patte
under the solutions of the complex Ginzburg-Landau eq
tion @21#. Traveling waves as its most simple solutio
should be observable as stripe patterns under magn
optical observation.

Although neighboring spins have opposite phases at
instability ~11!, their amplitude is a smooth function of th
space coordinate near threshold. The amplitude equa
saturates; the coefficients arec1521/G,c351/G. Because
of 12c1c35111/G2.0, there is no Benjamin-Feir instabi
ity.

Any attempt to derive amplitude equation for the nonc
linear case starting directly from Eq.~19! would be hope-
lessly complicated because of the algebraic structure of
four-dimensional field. In addition, spins on neighboring l
tice sites, i.e., spins belonging to different sublattices,
influenced by different effective fields. Consequently, tw
different sorts of oscillators are arranged alternately on
chain. A general derivation for the cofficients of the amp
tude equation is given in Appendix C. This formalism
transferred to chains of two different sorts of oscillators
Appendix D.

As a consequence of the inversion symmetry,l850 holds
for bifurcations in the center and at the boundary of the B
louin zone; for soft-mode bifurcations this is true anywa
Hence the drift velocity~C19! is zero. The diffusion coeffi-
cient follows by differentiating Eq.~22! twice

l952
K091lK191l2K291l3K39

K112lK213l2K314l3
~37!

and insertingl5 iv5A2 K1/K3.
The third order coefficient, which is responsible for sa

ration, is influenced by the quadratic and cubic terms of
original equation of motion. They are contained in the te
sorsCi , j

a,b ,Di , j ,k
a,b,g of Appendix C, which are needed in orde

to compute the coefficientc3.
e
e
It
s-

ap-

f

d
d-
s
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to-

e
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-

e
-
e

e

-
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-
e
-

In particular considering instability~24!, which occurs at
the margin of the Brillouin zone and concerns a system
two sublattices, its excitations may be written as@using Eq.
~25!#

A~e2n!
1

A2
S 1

i D ei ~p/2!~2n!1c.c., ~38!

A„e~2n11!…S 0

0D ei ~p/2!~2n11!1c.c. ~39!

As a consequence, only the even numbered sublattice is
volved. This splits into two new sublattices. Neighborin
spins on this sublattice acquire opposite phases. The for
tion of more then two sublattices is a well-known experien
in magnetostatics, e.g., in hidden antiferromagnetism. In
estingly, such a phenomenon is encountered here as a
namical response to a homogeneously driving field.

The simplicity of the critical eigenvector~38!, ~38! makes
the computation of the third order coefficient much easierG̃
~C33! simplifies andD ~C34! vanishes altogether. The re
maining terms have been computed numerically.

The real and imaginary parts of the third order coefficie
of W3 are plotted in Fig. 6 forJ520.49. The sign of the rea
part of the third order coefficient changes atBz'v (dw in
Fig. 6; this codimension-2 bifurcation is plotted as a li
with the parameterJ in Fig. 4!. In addition c3 vanishes at
dw. For Bz,v the bifurcationW3 is supercritical (Rer
[r 8,0); the third order guarantees saturation so that
perturbation theory is valid. ForBz.v it is subcritical and
the dynamics leaves the vicinity of the stationary state.

Furthermore a Benjamin-Feir instability takes place
c1c351 (b f has codimension 2 and is again plotted as a l
in Fig. 4!. Consequently stable plane wave solutions nearW3
are only possible between the linesb f and dw. Figure 4
shows that the Benjamin-Feir stable bifurcationW3 is also
obtained for small driving fields. In this domain, ideal an
periodically modulated 3-sublattice solutions are stab
while in the Benjamin-Feir-unstable domain one expe
phase turbulence as long scale pattern.

FIG. 6. The real and imaginary parts of the third order coe
cient of W3 for J520.49, r 8, r 9, andc352r 9/r 8 vanish simul-
taneously.
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For Bz.v the dynamics is not saturated by third ord
terms (r 8.0) and leaves the vicinity of the stationary sol
tion.

Analogously, the amplitude equations arising in the co
text of the hard-mode instabilities HM1a , HM1b , HM3, and
the soft-mode instability SM1 can be calculated. While th
hard-mode instability HM3 turns out to be supercritica
which admits a description by a complex Ginzburg-Land
equation, the instabilities HM1a and HM1b are subcritical.
The soft-mode instability SM1 corresponds to a rea
Ginzburg-Landau equation. As the sign of the third ord
coefficient is positive for SM1, the bifurcation is subcritica
and no pattern formation near the stationary state takes p

To conclude, only instabilities atkc50 andkc5p/2 can
lead to stable patterns. The magnetization of the station
state is perpendicular to the external magnetic field. Va
tions arising from the instability contribute linearly toMz .

VI. AMPLITUDE TURBULENCE
NEAR A CODIMENSION-3 BIFURCATION

The Benjamin-Feir line and the degenerate-wave l
meet tangentially at the codimension-3 bifurcationgc. At
this point, the diffusion coefficientD is purely imaginary
while the Hopf coefficient vanishes; one findsc1→2` and
c3→0. The real part of the critical eigenvalues is identica
zero for allk, while the imaginary part is nonzero. Therefo
all k modes become critical simultaneously and one exp
that waves of all length scales contribute to the spatiotem
ral dynamics. Such disorder phenomena cannot be studie
amplitude equations, which require separate critical w
numbers. Atgc a transition ofW3 from supercritical to sub-
critical is involved; for parameter values where the real p
of an eigenvalue isk independent and positive, the dynami
leaves the vicinity of the stationary state.

The energy distribution over thek modes can be studie
numerically in the supercritical regionB0<B0gc , Bz<Bzgc
where the system is saturated by third order terms. In
region the real part of the eigenvalue spectrum is very fla
has its positive maximum atk50 and its negative minimum
at k5p/2. The nonlinear terms depend on the wave num
and provide a coupling mechanism of the modes. Co
spondingly, the spatial power spectrum~Fig. 7! is maximal at
k50 and exhibits broadband contributions foruku,p/5. The
excitation of thek modes in this area indicates turbule
spatiotemporal dynamics even in the short length scale of
lattice constant. A histogram of the magnetization show
Gaussian distribution. The eigenvalue spectrum and
power spectrum suggest an interpretation similar to chem
turbulence of Kuramoto-Shivashinsky equation@24#: the en-
ergy is transported by nonlinear mode coupling from
long scales related to the homogeneous driving field to sm
scales where it is dissipated. But unlike this description
spatially slow phase variations, at the instabilitygc all length
scales are involved. Such a globally critical bifurcation
known in two dimensions where a simultaneous instabi
on the circleuku5kc produce spatially turbulent structures
the modes are coupled appropriately@25#.

As a result of the simplek dependance of the next neigh
bor coupling containing only terms;1,cos 2k,cos 4k, Eq.
~23!, only three conditions are required for this bifurcatio
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The parameter values of this bifurcation can be easily co
puted: atgc HM3, W3 and Bz2v50 intersect. The corre-
sponding value ofJ can be computed by equating~27! and
~28!. One finds

Bz
224J25GBz

2 ~40!

and thusJ52Bz(12G/2)/2520.4975, which agrees with
the numerical value~Fig. 4!. This shows that the externa
field must offset the exchange interaction, requiring the la
to be relatively weak.

VII. CONCLUSIONS

We have studied nonequilibrium pattern formation of
driven dissipative one dimensional antiferromagnet that
hibits instabilities with wavelengths of the order of the latti
constant. Classical continuum models of antiferromagn
are based on the assumption that both sublattices are sm
over such distances. But in the case of short wavelen
instabilities this supposition breaks down. This necessitat
fully discrete description of the system.

The noncollinear orientation of the sublattice magneti
tions in the stationary state showing these instabilities i
common phenomenon in magnetism. In our system it
caused by the driving field balanced by a Landau-Lifsh
damping. The resulting magnetization of the stationary sta
is perpendicular to the static magnetic field, whereas in
bilities of this state lead to a magnetization parallel to thez
axis, effecting a Faraday rotation of light. Similar effects a
likely in weak ferromagnets, where canting of equilibriu
states is induced by anisotropic superexchange or a si
ion anisotropy with alternating preferred axes.

We have detected a variety of instabilities by investig
ing the possible local codimension-one and -two bifurcatio

FIG. 7. Eigenvalue spectrum and power spectrum atB0

50.19798,Bz50.99945 near pointgc. While at gc the critical ei-
genvalue has a zero real part for all wave numbers, for sligh
smaller values ofB0 and Bz the eigenvalue spectrum has a fl
maximum atk50 and is negative fork5p/2. The power spectrum
reveals broadband contributions in the center of the Brillouin zo
~roughly for uku,p/5) while to its boundaryk5p/2 it slopes down.
It has been computed by numerical integration of a set of 512 s
with periodic boundary conditions.
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systematically. Short wavelength instabilities are enco
tered for relatively weak driving fieldsB0;J1/2G1/2 near
resonance. It is a generic result that there are instabilitie
the center and at the boundary of the Brillouin zone. T
latter bifurcations describe a coupling of the spatially hom
geneous driving field to short wavelength excitations~optical
spin waves!. They occur when the static external field offse
the exchange field.

To determine the physical status of spatial patterns ab
these instability thresholds, a weakly nonlinear analysis
been performed. A general scheme allowing the treatmen
one- and two-oscillator chains has been derived. Avoid
any unsystematic assumptions, a continuous amplitude e
tion for the bifurcating solutions emerges. It provides expli
formulas for a complex Ginzburg-Landau equation that g
erns slow variations of an ideal solution. Its application
our system shows that stable long scale patterns are for
on short scale structures related to lattice splitting. Satura
is also verified at a hard mode instability. The instabilities
from resonance are subcritical; therefore, they do not lea
stable nonequilibrium patterns.

An abrupt order/disorder transition results from
codimension-3 bifurcation in which a Benjamin-Feir line a
a degenerated wave instability line meet. All wave numb
are critical at this instability; numerical findings indicate
direct transition to turbulentlike dynamics. The relative
low codimension of this bifurcation is again a generic res
in the case of nearest neighbor coupling.

While the bifurcation scenario itself shows no qualitati
changes for weak damping and weak driving fields, the
creasing diffusion constant restricts the validity of amplitu
equations to long time and length scales. For that, films w
relatively high linewidths seem to be good candidates for
observation of patterns. Anisotropic, quasi-one-dimensio
materials might serve as the most simple prototypes for m
netooptic observations of stripe structures.
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APPENDIX A

Stereographic projection

The class of solutions of Eq.~1! pertaining to two homo-
geneous sublattices can be described in terms of two in
acting spin oscillatorsSA[S2n ,SB[S2n11. To determine
their stationary states~13! and their stability properties we
make use of the conservation of modulus ofuSA/Bu51 by
projecting the equation of motion

2ṠA5SA3~B2v12JSB!1GSA3@SA3~B12JSB!#
~A1!

along some arbitrary directionez5ej3eh into the ej-eh
plane whereej andeh are identified with the real and imag
nary axes of the complex number plane, respectively~Fig.
8!. This yields
-
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żA5~ i 2G!Bj

zA
221

2
2 i ~ i 2G!Bh

11zA
2

2
1~ i 2G!BzzA

2 ivj

zA
221

2
2vh

11zA
2

2
2 ivzzA12J~ i 2G!

3~zA2zB!
11zAzB*

11zBzB*
, ~A2!

wherez5(Sj1 iSh)/(11Sz); Bj ,Bh ,Bz andvj ,vh ,vz are
defined as the components ofB5B0ex1Bzez andv5vez in
the directionsej ,eh , andez , respectively. A corresponding
equation holds forzB . Projecting in the direction of the tota
magnetizationez;SA1SB , one recognizes that the corre
sponding complex variables become located symmetric
with respect to the origin of the complexej-eh-plane, i.e.,
zA52zB . Finally ej ,eh can be determined so thatzA
5x,zB52x are real numbers on theej axis. This reduces
the form of the fixed-point equations (ṠA5ṠB50) to

05Qx26Rx1S64xJ~ i 2G!
12x2

11x2
. ~A3!

By comparison with Eq.~A2!, the complex quantitiesQ,R,S
are given as

Q5
~ i 2G!Bj

2
2

i ~ i 2G!Bh

2
2

ivj

2
2

vh

2
, ~A4!

R5~ i 2G!Bz2 ivz , ~A5!

S52
~ i 2G!Bj

2
2

i ~ i 2G!Bh

2
1

ivj

2
2

vh

2
. ~A6!

Adding and subtracting the two equations~A3! and dropping
the trivial solutionx50 leads to

05Qx21S, ~A7!

05R14J~ i 2G!
12x2

11x2
. ~A8!

FIG. 8. A coordinate systemej ,eh ,ez can be chosen in a way
that a stereographic projection ofSA/B into the complexej-eh plane
(ej is the real axis,eh is the imaginary axis! yields real numbers6x
for the stationary state. In this caseSA/B are symmetrical to theez

axis.
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Obviously~A5! and~A8! forcevz to be zero, i.e.,ez must be
perpendicular tov5vez . Introducing the Eulerian angle
F,Q, andC which connect the two coordinate systems,
haveQ5p/2 and consequently

Bj5B0cosC cosF1Bzsin C,

Bh52B0sin C cosF1BzcosC,

Bz5B0sin F. ~A9!

The quantitiesQ5Q81 iQ9, S5S81 iS9 and R may be
written as

Q85
1

2
~Bh2vh2GBj!52

G

11x2
Bj

52
G

11x2
~B0cosC cosF1Bzsin C!,

Q95
1

2
~Bj2vj1GBh!5

1

11x2
~Bj2vj!

5
1

11x2
@B0cosC cosF1~Bz2v!sin C#,
-

-
e
n-
-

te
S85
1

2
~Bh2vh1GBj!,

S952
1

2
~Bj2vj2GBh!,

R5~ i 2G!Bz . ~A10!

Equations~A7! and ~A8! lead to three real equations

Bh2vh52GBj

12x2

11x2
, ~A11!

~Bj2vj!
12x2

11x2
5GBh , ~A12!

Bz524J
12x2

11x2
. ~A13!

Then inserting the definitions~A9! in Eqs. ~A11!, ~A12!,
~A13!, we find for the three unknownsF,C, andx,
S 2B0cosF1GBz

12x2

11x2D sin C1S ~Bz2v!1GB0cosF
12x2

11x2D cosC50, ~A14!

S 2GB0cosF2~Bz2v!
12x2

11x2D sin C1S GBz2B0cosF
12x2

11x2D cosC50 ~A15!

cos2F512
16J2m

B0
2

. ~A16!
n-
m-

e

Eliminating C andF, we end up with the third order poly
nomial ~13! of the square magnetizationm5@(12x2)/(1
1x2)#25 1

4 (SA1SB)2; it depends only on the physical pa
rametersB0 ,Bz ,v,J,G. It is often more convenient to us
the quantitiesQ8,Q9,x,J,G as independent parameters i
stead ofB0 ,Bz ,v,J,G. This allows us to compute bifurca
tions without solving Eq.~13!. The physical quantities
B0 ,Bz ,v can be expressed through these new parame
using ~A7! to expressS in terms ofQ, one may solve the
four equations~A10! for Bj ,Bh ,vj ,vh in terms ofQ8,Q9
and x as well. Noting that Eq.~A8! implies Eq.~A13! and
vz50 we get

Bj52
Q8

G
~11x2!vj52S Q8

G
1Q9D ~11x2!,

Bh5
Q9

G
~12x2!vh5S Q9

G
2Q8D ~12x2!,
rs:

Bz524J
12x2

11x2
vz50. ~A17!

Since v5Avj
21vh

21vz
2,Bzv5Bjvj1Bhvh , and B0

5A(B01Bz)
22Bz

2, we have three relations that can be i
terpreted as effecting a transition from the original para
etersB0 ,Bz ,v to a new set of parametersQ8,Q9,x leavingJ
andG fixed, and vice versa.

APPENDIX B

Analytical calculation of bifurcations for weak damping

All local bifurcations are determined by the roots of th
characteristic polynomial~22! l41K3l31K2l21K1l1K0
50 with
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K0516$~12cos2k!J4~11G2!~12q2cos2k!

1x2J2cos2k@Q92~11q2!22Q8Q9G~12q!2

12Q92G2q1Q82~G212q1G2q2!#

1x2J2@2~Q81Q9G!222~Q92Q8G!2#

1x4~Q821Q92!2%, ~B1!

K158$~11G2!GJ32@~11q2!cos2k22#

14Jx2@~Q822Q92!G22Q8Q9#%, ~B2!

K254$J2@216G22cos2k~G212q1G2q2!#

22x2~Q822Q92!%, ~B3!

K3528GJ. ~B4!

If K05K150, two eigenvalues vanish simultaneously, wh
for K05K1(K12K2K3)1K0K3

250,K1K3.0 one has one
zero and two imaginary eigenvalues. From these formu
one can obtain analytical expressions for local codimens
two bifurcations atkc50 in the limit of small damping. We
assume scaling laws for the driving fieldB0;Gb, the detun-
ing Bz2v;Gr, and the magnetizationm;Gm. b, r, m are
positive real numbers to be determined in the course of
subsequent calculations. As the left-hand side of Eq.~22!
must be positive, one has to requirem>2b. By equating the
left- and right-hand sides of Eq.~22!, one gets 212b
5min(4b,4r,4,2m)1m or equivalently 1>min(2b,2r).
We restrict ourselves to vanishing wave numberskc50. The
leading terms of the conditionK050 are always contained in

Q92~Q9224J2m!14J2Q8250 ~B5!

while K150 yields

2Q8Q912J2Gm1Q92G50. ~B6!

For b5 1
2 ,r51, all terms of Eq.~B6! are of order 2, while

Eq. ~B5! is reduced toQ9224J2m50. The polynomial~13!
is simplyG2v25(B0

2216J2m)m. From Eqs.~B5! and~A16!
it follows that B0

2532J2m,cos2F5 1
2 ,cosC51. We get

sin C5(Bz2v)/(B0cosF)5A2(Bz2v)/B0 and finally
equations~31!, ~32!, that is, pointd12 in Fig. 2.

Analogously, the conditionK1(K12K2K3)1K0K3
250

for two imaginary eigenvalues is reduced to

Q82Q9222J2G2Q92m2J4G2m250. ~B7!

Again Eqs. ~B5! and ~B7! can be fulfilled simultaneously
only for b5 1

2 ,r51 and together withK050 this leads to
Eqs.~32! and ~33!, which define pointx12 in Fig. 2.

We now compute the intersection point of the bifurcati
W3 and the resonance lineBz5v. From Eqs.~A14! and
~A15! we find for Bz2v50

GBz

12x2

11x2
5B0cosF ~B8!

and
s
n-

e

2G
12x2

11x2
sin C1F12S 12x2

11x2D 2GcosC50 ~B9!

and consequently sinC'1. As condition~13! that the solu-
tion be stationary reduces toB0

2216J2m50 for
Bz5v, we obtain Eq. ~27! by using
Q852(GBj)/(11x2)52(GBz)/2 and the bifurcation con-
dition ~24!.

Similarly one can evaluate the resonance pointBz5v of
bifurcation HM3. The leading terms of the conditionK1(K1

2K2K3)1K0K3
250 for two imaginary eigenvalues are

Q822J2m250. ~B10!

Again insertingQ852GBz/2 andm5B0
2/(16J2) we get Eq.

~28!.

APPENDIX C

Amplitude equations for general oscillator chains

Multiple scale techniques for deriving amplitude equ
tions have proved to be a powerful tool for the study
pattern formation@20# in hydrodynamics, liquid crystals
reaction-diffusion systems and magnetism@6,7# in the
weakly nonlinear regime beyond an instability threshold.

In this section we adapt the theoretical framework
continuous systems@6,26–28# to general spatially discrete
systems. Our derivation is performed in analogy to a rec
discussion of partial differential equations@28#. In our con-
cept, each member of an oscillator chain is described by
product of the eigenvector of a critical mode, a phase fac
depending on the lattice site and an amplitude that va
slowly in space and time. The phase factor allows for sh
wavelength excitations where neighboring oscillators mo
out of phase. The slow variations of this ideal solution w
be governed by a partial differential equation for the amp
tude, which becomes smooth in the large aspect ratio.
coefficients of this equation determine the dynamics ab
threshold. We derive general expressions for these co
cients.

We treat a chain

F5@f~1!•••f~n!,f~n11!,•••,f~N!#

of N oscillatorsf(n)5F (n) each of which hasM degrees of
freedom. The dynamics of thisNM-dimensional system is
described by

Ḟ5LF1N~F!, ~C1!

where

L5L~0!1e2L~2!1••• ~C2!

is a matrix.L(0) controls the instability, i.e., it leads to
marginally stable mode ande2 measures the distance t
threshold.N comprises all nonlinearities. We splitL(0) in
M3M block matrices Li and its eigenvectorsF (n)(k)
in M -dimensional subvectors F (n)

(n)(k)5f (n)(n,k)
5eiknu(n)(k):
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L~0!F~n!~k!5S . . . 0 0 0

0 . . . L22 L21 L0 L1 L2 . . . 0 0

0 0 . . . L22 L21 L0 L1 L2 . . . 0

0 0 0 . . . L22 L21 L0 L1 L2 . . .

0 0 0 0 . . .

D S ..

eik~n21!u~n!~k!

eiknu~n!~k!

eik~n11!u~n!~k!

..

D , ~C3!
s-

o

am

th

y
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ua-
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s

s

whereLa ,aÞ0 is the linear part of the coupling to theath
neighbor whileL0 describes the linear dynamics of the o
cillators f. Introducing L(k)5(aLaeika the eigenvalue
equation

L~0!F~n!~k!5l~n!~k!F~n!~k! ~C4!

can be written as

L~k!u~n!~k!5l~n!~k!u~n!~k!, ~C5!

where (n) numerates the eigenvalues and vectors. The n
linearity is given as a series of itsmth powers:

N@F#5(
m
Nm@F#. ~C6!

Of course the nonlinearities depend on the system par
eters too and may therefore be expanded asNm5Nm

(0)

1e2Nm
(2)1•••. As the second term contributes to the four

order only, in the following only the first term will play a
role. The most general quadratic term (m52) may be writ-
ten as

~N2@F#!~n!5(
a,b

Cab
„f~n1a!,f~n1b!…, ~C7!

where the j component of the real vectorCab is defined
explicitly as

C~ j !
ab
„f~n1a!,f~n1b!…5(

l ,m
cjlm

ab f l~n1a!fm~n1b!.

~C8!

These components satisfy the symmetry relation

Cab~u,v !5Cba~v,u!. ~C9!

Similarly, cubic terms may be decomposed as

N3@F#~n!5 (
a,b,g

Dabg
„f~n1a!,f~n1b!,f~n1g!…,

~C10!

D ~ j !
abg

„f~n1a!,f~n1b!f~n1g!…

5 (
h,l ,m

djhlm
abg fh~n1a!f l~n1b!,fm~n1g!. ~C11!

A scalar product may be defined via
n-

-

^CuF&5
1

N(
n

@c~n!uf~n!# ~C12!

Near an instability with the critical eigenvaluesl (nc)(k
5kc)52l (nc)(2kc)5 ivc and eigenvectorsuc :5u(nc)(kc)
and uc* :5u(nc)(2kc), a perturbation scheme is set up b
expanding the solutionF or f of Eq. ~C1! in terms ofe:

f~n!5ef~n!~1!1e2f~n!~2!1e3f~n!~3!1••• .
~C13!

We require that the equations of motion that result by ins
ing this ansatz are fulfilled in each order ofe separately. In
order to avoid secular terms, the right-hand sides of the eq
tions arising in consecutive orders must be orthogonal to
critical left eigenvector. The resulting solvability condition
govern the dynamics of the amplitudeA of the modulated
state. It is introduced explicitly by

f~n!~1!5uce
i ~kcn1vct !A~t1 ,t2 , . . . ,j1 ,j2 , . . . !1c.c.

~C14!

and depends on the scaled coordinates

tm5emt,jm5emn ~C15!

with m50,1,2, . . . . In first order the equation of motion i
the eigenvalue equation of the critical mode.

In second order the dynamics is governed by

S ]

]t
2L~0!DF~2!52F S ]

]t1
2L~0!DF~1!G ~1!

1~N2@F#!~2!.

~C16!

Considering the fact thatf (1)(n) depends one via the argu-
ments of the amplitudeA, application ofL0—compare Eq.
~C3!—leads in first order to

~L0F~1!!~n!
~1!

5(
a

Lauce
ikcaS A1ea

]A

]j1
1••• D ~1!

ei ~kcn1vct !1c.c.

52 iL 8~kc!uce
i ~kcn1vct !

]A

]j1
1c.c. ~C17!

Multiplying Eq. ~C16! with the critical left eigenvector
( . . . ,vce

i (kcn1vct), . . . ), thefollowing solvability condition
emerges:

2 i @vcuL8~kc!uuc#
]A

]j1
2~vcuuc!

]A

]t1
50. ~C18!
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Note thatN2@F# is orthogonal to the left eigenvector. As th
real part of the critical eigenvalue has a maximum atkc ,
with the drift velocity

V5
dv~k!

dk U
kc

~C19!

it follows that

]A

]t1
5V

]A

]j1
. ~C20!

With the abbreviation

Ga5
1

L~0!(a,b
eikc~a2b!C~ab!$uc ,uc* %, ~C21!

Gb5
1

L~2kc!22ivc1
(
a,b

eikc~a1b!C~ab!$uc ,uc%

~C22!

and the inversion formula

S 1

L~k! D
^nc&

:5 (
mÞnc

1

l~m!~k!

uuk
m)~vk

mu

~uk
muvk

m!
, ~C23!

the second order equation can be formally integrated:
dk c
F~n!
~2!522GauAu22Gbe2i ~kcn1vct !A22Gb* e22i ~kcn1vct !

3~A* !21S 1

L~kc!2 ivc1
D

^nc&

~ iL 8~kc!

1V1!uce
i ~kcn1vct !

]A

]j1
1S 1

L~2kc!1 ivc1
D

^nc&

3~ iL 8~2kc!1V1!uc* e2 i ~kcn1vct !
]A*

]j1
1••• ,

~C24!

where we have omitted transient terms and terms of the f
of the first order solution~C14!.

In the third order the equation of motion is

S ]

]t
2L~0!DF~3!52F S ]

]t
2L~0!DF~2!G ~1!

2F S ]

]t
2L~0!DF~1!G ~2!

1L~2!F~1!

1~N2@F#!~3!1~N3@F#!~3! ~C25!

with the linear inhomogeneities
s

litude
F S ]

]t
2L~0!F~2!D G

~n!

~1!

5 i @ iL 8~kc!1V1#S 1

L8~kc!2 ivc1
D

^nc&

~ iL 8~kc!1V1!uce
i ~kcn1vct !

]2A

]j1
2

1c.c.1••• , ~C26!

F S ]

]t
2L~0!DF~1!G

~n!

~2!

5uce
i ~kcn1vct !

]A

]t2
2 iL 8~kc!uce

i ~kcn1vct !
]A

]j2
1

~2 i !2

2
L9~kc!uce

i ~kcn1vct !
]2A

]j2
2

1c.c., ~C27!

where we have skipped nonresonant waves which are not proportional toei (kcn1vct). The contribution from quadratic terms i

~N2@F#!~n!
~3!5(

ab
C~ab!$f~1!~n1a!,f~2!~n1b!%1(

ab
C~ab!$f~2!~n1a!,f~1!~n1b!% ~C28!

while the contribution from cubic terms is given by Eq.~C10!. Multiplying Eq. ~C25! with the critical left eigenvector
eliminates nonresonant terms on the right-hand side; we get the well-known Ginzburg-Landau equation for the amp

S ]

]t2
2V

]

]j2
DA5mA1D

]2A

]j1
2

1r uAu2A. ~C29!

The bifurcation parameter is

m5
~vcuL ~2!uc!

~vcuuc!
. ~C30!

The linear terms~C26! and ~C27! are combined in the diffusion coefficient

D52
1

2

d2l
2

5S vcU@L8~kc!2 iV1#S 1

L8~k !2 iv 1D @L8~kc!2 iV1#ucD 2
1

2
„vcuL9~kc!uc… ~C31!
c ^nc&
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and the drift velocity~C19!. The Hopf coefficient

r 5
~vcuG̃1D!

~vcuuc!
~C32!

has contributions from quadratic,

G̃52(
a,b

eikcaC~ab!$uc ,22Ga%12(
a,b

eikc~2b2a!C~ab!

3$uc* ,2Gb%, ~C33!

as well as from cubic terms

D:53 (
a,b,g

D ~a,b,g!$uc ,uc ,uc* %eikc~a1b2g!. ~C34!

Using all symmetries of the system, the general express
for the coefficients of the amplitude equation can be co
puted explicitly. If the system is inversion symmetrical, t
drift velocity vanishes atkc50 and kc5p. If the critical
eigenvalue has a vanishing imaginary part~soft-mode!, we
obtain the real Ginzburg-Landau equation.

APPENDIX D

Parity breaking and parity preserving
descriptions of 2-sublattice systems

For application to antiferromagnets, the perturbat
theory of Appendix C has to be generalized to chains wh
the coupling induces alternating resting positions of the
cillators. The most simple approach describes two neighb
ing oscillators as one oscillator with twice as many degr
of freedom. This formal combination of pairs of oscillato
however produces parity breaking terms that can lead to
stantial complications and misinterpretations. In recent
pers this basic symmetry problem led to differing long wav
length approximation of one and the same classical disc
spin chain described by the undamped Landau-Lifshitz eq
tion

2Ṡi5JSi3~Si 211Si 11!, ~D1!

whereJ,0 is a real coupling parameter. In the ground st
of model ~D1! with J,0, neighboring spins are aligned a
tiparallel. The spins belong alternately to two collinear su
lattices. Skipping additional anisotropy and external fie
terms and scaling away differing signs and constants,
summarize the different continuum models of~D1! given in
the literature. This limit is based on the hypothesis that,
excitations of the ground state, each sublattice can be
scribed by slowly varying smooth functions.

The spin with the odd index 2n11 is described by the
continuous fieldSo(x)5S2n11 at the sitex5(2n11)a. The
lattice constanta is small and the functionSo(x) is taken to
be differentiable. The spinsS2n ,S2n12 correspond to the
continuous fieldSe at x2a52na andx1a5(2n12)a, re-
spectively. Introducing the vectors
ns
-

n
re
-
r-
s

b-
-

-
te
a-

e

-

e

r
e-

m̃5
So~x!1Se~x2a!

2
,

l5
So~x!2Se~x2a!

2
, ~D2!

and applying a second order Taylor expansion atx2a
52na for S2n125Se(x2a12a) and an expansion atx
5(2n11)a for S2n215So(x22a) one gets

2 l̇54Jl3m̃12Ja~m̃3m̃x2 l3 lx!

12Ja2~ l3m̃xx1 lxx3m̃!,

2ṁ̃52Ja~ l3m̃!x12Ja2~m̃3m̃xx1 lxx3 l!.

~D3!

Rescaling the time with22Ja and settingm5m̃/a one finds
in the leading order@15,16#

l̇52l3m2 l3
] l

]x
,

ṁ5
]

]x
~ l3m!2 l3

]2

]x2
l. ~D4!

Instead of combiningSo(x) at the site 2n11 with its left
neighbor Se(x2a) at 2n in definition ~D2!, one could
equally choose its right neighborSe(x1a) at site 2n12.
One would then get a set of equations equivalent to Eq.~D4!,
in which the first spatial derivatives have opposite sign. T
formal ambiguity leads to contradictory results@16#, if non-
zero values ofm are interpreted as an indication of a loc
magnetization @15#. Therefore no physical conclusion
should be drawn from the presence of the first spatial der
tives.

This ambiguity is avoided by the parity preserving defin
tion

M5
So~x!1Se~x!

2a
,

L5
So~x!2Se~x!

2
, ~D5!

using an expansion of the continuous fieldSe(x) at
x5(2n11)a to obtainS2n/2n12. One obtains@9#

L̇52L3M ,

Ṁ52
1

2
L3

]2

]x2
L . ~D6!

The sets~D6! and ~D4! are equivalent; they are linked t
each other by the transformation

m5M1
1

2
L x ,

l5L . ~D7!

Consequently, Eqs.~D6! have the symmetry of the origina
system while the symmetry breaking terms of the mac
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scopic equations~D4! are nothing but an avoidable compl
cation. Macroscopically, finite values ofM or m both corre-
spond to zero magnetizations.

For the continuum description@17,18#

l̇52 l3
] l

]x
, ~D8!

it is assumed thatm is small. However, there is no reason f
this assumption becausem is driven by the term l
3(]2/]x2) l. This approximation neglects all terms, retaini
only the one that may be eliminated exactly by transform
tion ~D7!. Consequently, Eq.~D8! is not equivalent to cor-
rect continuum limits~D6!,~D4!.

We will now transfer the formalism described in Appe
dix C to chains with two~or more! types of coupled oscilla-
tors on alternating lattice sites retaining the inversion sy
metry. To obtain a formulation analogous to Eq.~D5!, we
start with a general chain of identical oscillatorsfn with
next-neighbor coupling

ḟn5F~fn ,fn21 ,fn11!. ~D9!

Decomposing the vectorsf in upper and lower parts as

fn5S an

bn
D ~D10!
-

iz

n

p.

.

l.
-

-

and specializing the general coupling functionF so as to
yield

S ȧn

ḃn
D 5S G~an ,bn11 ,bn21!

H~bn ,an11 ,an21!
D ~D11!

for the equation of motion,~D10! dividesf in two kinds of
oscillatorsa andb. The specific choice ofF guarantees tha
a oscillators interact only withb oscillators on adjacent site
and vice versa. Consequently, the chain off oscillators is
decomposed in two mutually independent identical cha
with alternating oscillatorsa and b. These chains are gov
erned by the same amplitude equation as the orig
f-chain.

Conversely one can derive the amplitude equation
any chain of two alternating oscillator
( . . . ,bn21 ,an , bn11 ,an12 , . . . ) by combining the two
types of oscillatorsan andbn to a single ‘‘superoscillator’’
fn ~D10!. This chain has the form~D11! or ~D9!. The for-
malism of one-oscillator chains can now be applied.

The antiferromagnetic spin chain described in the tex
an example of a two-oscillator chain because the spin os
lators of the two sublattices are influenced by different eff
tive fields. It can be reduced to a one-oscillator chain bef
the amplitude equation is derived.
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