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Exact three-dimensional Casimir force amplitude,C function, and Binder's cumulant ratio:
Spherical model results
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The three-dimensional mean spherical model on a hypercubic lattice with a film gedmetr§ under
periodic boundary conditions is considered in the presence of an external magnetid.fi€lte universal
Casimir amplitudeA and the Binder's cumulant rati® are calculated exactly and found to ke=
—2¢(3)/(57)~—0.153051 anB=27/{ J5In3[(1+ \/5)/2]}. A discussion on the relations between the finite
temperatureC function, usually defined for quantum systems, and the excess free ddamgto the finite-size
contributions to the free energy of the sysjesealing function is presented. It is demonstrated thatGhe
function of the model equals 4/5 at the bulk critical temperalyrelt is analytically shown that the excess free
energy is a monotonically increasing function of the temperafuaed of the magnetic fieltH| in the vicinity
of T.. This property is supposed to hold for any classidadimensionalO(n),n>2, model with a film
geometry under periodic boundary conditions widern3. An analytical evidence is also presented to confirm
that the Casimir force in the system is negative both below and in the vicinity of the bulk critical temperature
T.. [S1063-651X98)04508-5

PACS numbegps): 05.50+q, 05.20-y, 75.10.Hk

- INTRODUCTION Fan(Te, L) =L foud Te) +Fo.a(To) +Fap(To) +L @ HA,

The Casimir effect is a phenomenon common to all sys- T 3
tems characterized by fluctuating quantities satisfying some ) ) _ _ )
conditions on the boundaries of the systéfor a general whered is the dimensionality of the considered system and
review on the Casimir effect see, e fd.,2)). In the statistical 2a, S the so-called Casimir amplitude. Thedependence
mechanical systems the Casimir force is usually characteff the Casimir ternithe last one in Eq(3)] follows from the

ized by the excess free energy scale invariance of the free energy and has been derived by
Fisher and de Genngd]. The amplitude, ,, is universal
fap(T.L)="fap(T,L)—Lfpud(T), (1)  depending on the bulk universality claamsd the universality

classes of the boundary conditiof33]. In the present ar-
due to the finite size contributions to the free energy of finiteticle we will only consider the case of periodic boundary
systems with a film _geometrtyXocz, where boundary con-  conditions(which implies thatfs .= fs,=Y=0). Then, ac-
ditions a andb are imposed on the surfaces bounding thecording to the standard finite-size scaling thetsge, e.g.,
system across the directidn Heref, p(T,L) is the full free  [3] for a general reviejy near the critical temperatufig and
energy per unit are@nd perkgT) of such a system anih,x  in the presence of a small external magnetic fitethe be-
is the corresponding bulk free energy density. The Casimihavior of f® is given by
force
£(t,h,L)=L" @ DXHatL¥ a,hLA"), 4
HE(TL) X (3 h
JL 2) where t=(T—T.)/T. is the reduced temperatureh
=H/(kgT), a; anda,, are nonuniversal scaling factobs>* is
then arises naturally in the thermodynamics of these confinedniversal (usually geometry dependgnscaling function,

fé’;]simil(T! L)=-

systems. X#(0,0)=A,e, andv andA are the correspondin@niver-
For O(n)-symmetric model systemsi& 1), depending sa) scaling exponents.
on the boundary conditiore(b) and onn, f54,(T,L) may or An interesting point of view on the properties of the ex-

may not contain contributions independent lof For the cess free energy comes from the finite-temperature generali-
Ising-like systems, i.en=1, these can be the surface free zations of the Zamolodchikov'€ theorem[6] for quantum
energiesf, o(T) and f5,(T), and the interface free energy systems with arbitrary dimensionality due to Netto and Frad-
fi(T) (for brevity we consider the dependence on the temkin [7] (see also Zabzifi8]; for a general review on phase
peratureT only). For theO(n),n=2, models these will be transitions in quantum system see, €[6,10]). They define
only the contributions stemming from the surface free enerfrom the free energy a functio@ of the coupling constants
gies because the analog of the interface free energy is thend the temperature that is a positive and, in the regimes
helicity modulusY (T) and the corresponding contribution is where the quantum fluctuations dominate, a monotonically
of the orderY (T)/L. In generaht the critical temperatur€.  increasing function of the temperature. T@dunction is, in

(of the corresponding bulk, i.el,=<, system the full free  fact, ananalog of the excess free energf/the system that
energyf, ,(T,L) has the asymptotic form they consider.
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Before passing to a discussion of some details it seemsionotonicity. Within the classical systems no long-range or-
necessary to comment on the well known point that for temder exists above their bulk critical point. So, we expect the
perature driven phase transitions with>0 the quantum statement formulated fox®* to be generally valid abovE,
fluctuations are unimportant near the temperature criticajor any classical system. Supposing that this is true and re-
point. Therefore, it seems that the properties of the systemalling that in the vicinity of T, X® is a function of the
around one guantum critical poilfivith respect to a given  scaling variables; = a;tLY” and x,=anhL2’”, which both
quantum parameter, sag) at T=0 cannot tell us anything 4re monotonically increasing functions of we come to the
about the properties of this system around its temperaturgynciysion thatin the vicinity of its critical temperature
critical point TC>0: In fact the dimensional crossover ruIe' T=T,) the excess free energy of a given system is a mono-
helps_ to make a br!o_lge between_t_hese_ phenomena. ACCorOI"ggnically increasing function of any of its scaling parameters
to this rule the critical singularitie$with respect tog, T when the other one is kept fixeBincex, andx, are mono-

:0). of a d-dimensional quant.um syste_m alfermally tonically increasing functions of the temperature and the
equivalent to those of d+z classical oneg s the dynami- magnetic field, respectively, the last implies ti&t, in the

cal critical exponentand critical temperaturé.>0. On that e . . . . .
ponen b c vicinity of T., is a monotonically increasing function of t

idea are actually based the investigations of the low ) )
temperature effects in quantum systefsee, e.g.[11-14), (t>0) and htoo. It is possible to present some arguments to
support thathe above statement can be extended to the re-

i.e., one considers aeffective systerwith d infinite space X _ : _
andz finite “temperature” (“imaginary-time”) dimensions ~ 9ion t<0 for O(n),n=2, systemsn contrast with the Ising-
Li~[#%/(ksT)]¥ with periodic boundary conditions, and like systems. The reasoning for the difference in the expected
applies the methods of the finite-size scaling the@gmywhat ~ Pehavior of the excess free energy@(n) and Ising-type
follows we will setz=kg=1). An exact lattice realization Mmodels is closely related to the well known differences in the
of these ideas is presented|[itb]. behavior of the correlation lengtf,(T) in these models: in
Since the generalizations of the Zamolodchiko® sheo-  the Ising modelé..(T) <o both below and above the bulk
rem are formulated for quantum systems with 1, in the  critical temperature, whereas @(n), n=2, models below
remainder we will focus our attention on such class of sysT. and in the absence of an external fildtd=<0), due to the
tems only. For these systems Netto and Fradkin ddfiiie existence of soft modes in the systéspin wave &,.(T) is
the dimensionless function identically infinite. On that basis one expects that, away from
T., X* will tend to zero exponentially fast i (see, e.g.,
de1~ ) . [3]) for the Ising-type models, and, therefore, being of the
C(B.9,2)=—p"""n(d) imV=IFv(B,9,a)~Eo(g,a)], order of L™(4"1) around T, X® cannot be a monotonic
Ve (5) function of its scaling parameters in the vicinity ®f. In
O(n), n=2, models the finite size corrections should be es-
sential not only in the vicinity but also beloW, [5]. In other
whereE, is the zero-temperature energy, i.e., the energy ofvords, we expect the monotonicity in the behavior of the
the “infinite” system,V is the volume ¥—«, butN/V is  correlation length inO(n), n=2, models around’; to be
fixed, whereN is the number of particle}sﬁ(d) is a positive  mirrored by a corresponding monotonic behavior of the ex-
real quantity,3=1/T , Fy is the full free energy of the “fi- cess free energy. If an external field is appliéd#0) then
nite” system (where the only “finite” dimension is the £.(T,h)<« and, of course, we expect thé#*—0 exponen-
“temperature” one, i.e., the “geometry” of the system is tially fast with L again, similarly to the Ising-like systems
%X L1) anda is the characteristic length scale of the lattice. behavior. But, sincex®*<0, for any fixedt<0 the last im-
The real positive quantitpi(d) is supposed to be of the form plies thatX®* will be a monotonically increasing function of
v9/n(d), wheren(d) is a positive real numbefwhich de- the magnetic field in the under critical vicinity df, too.
pends only on the dimensionality of the sysjeandv is the The statements presented above should be considered, of
characteristic velocitye.g., the velocity of the quasiparti- course, only as aglausible hypothesjswhich has to be
cles in the system. Obviously, the exact choicen¢fl) does  checked in order to probe the region of its validity. For ex-
not effect the monotonicity properties of i function. In  ample, it is under question if the monotonicity property of
[7] the definitionsn(d)=TT[(d+1)/2]¢(d+1)/7@" D2 for X will still hold if the finite system undergoes a phase
bosons anch(d)=T[(d+1)/2]¢(d+1)(2—21"9)/#(d*D/2  transitions of its own. It is reasonable to believe that the
for fermions have been proposed. hypothesis holds for anyD(n), n=2, system withd<3
In accordance with the dimensional crossover rule thdthen in the finite system with short range interaction there
statement that is a positive and a monotonically increasing will be no “real” phase transition
function of the temperature can be “translated” in a state- In the present article we will show, within the three-
ment that the function- X®* of the corresponding classical dimensional mean spherical model, tiathe vicinity of T
system is positive and a monotonically increasing function othe excess free energy scaling functiof* Xs, indeed,a
L~ 1: see Eqgs(1) and(4) (of course, the last is equivalent to monotonically increasing function of any of its scaling pa-
a statement thaX®* is a negative and a monotonically in- rameters(x; andx,) when the other one is kept fixethe
creasing function of.). In [7,8] it is shown that the mono- last implies thaX® is a monotonically increasing function of
tonicity of the C function is related to the absence of long t, h, andL aboveT., and a monotonically increasing, with
range order in the systems under consideration. The exigespect tot and h, but a monotonically decreasing, with
tence of long range order destroys the general validity of theéespect toL, function belowT..
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Let us turn now to the behavior 6f,smir- From Eqs(2) and  lytically on the example of the three-dimensional mean

(4) it immediately follows tha{5] spherical model. We will present also simple analytical re-
sults for the universal values of the Casimir amplitude and
fcasimi(t.1,L) =L~ Xcagimi( X1, X2), (6)  the Binder's cumulant ratio. If one takes the normalization
o ] o factor of the analog of th€ function in the form for bosons
where the Casimir force scaling function is (this will keep theC function of the critical Gaussian model
to beC=1 for anyd), it will be shown that the'C function
X casimil X1 ,X2) = (d— 1) XXy, X,) — Em%xe"(xl Xo) of the three dimensional spherical model”4é5 at the criti-
1 cal point As is well known, the infinite translational invari-
9 ant spherical model is equivalent to the»oo limit of the
- ;xza—xzxex(xl \X2). (7)  correspondingi-component systerf27].

The results we are going to present are an extension and

. . ) . continuation of those published [®]. In the notations and
Note thatXcasimiriS again auniversalfunction ofx; andx,. the definitions in the remainder we will closely follolg].

We recall that for finite-size systems this means Xgisimir . : . ,
will be the same for all systems of the same universalityThat is why here we only briefly recall, in Sec. Il, the defi-

classand geometry and boundary conditions. It is believednition of the model and give the final expressions, obtained
that if a=b the Casimir force will be negativésee, e.g. there, for the excess free energy and the Casimir force, which

[16,17; strictly speaking, for an Ising-like system this is Wi|! be our starting express_ions for the aims of the current

supposed to be true above the wetting transition temperatu@ticle. In Sec. Il we verify the hypotheses, formulated

T, [16-19). In the case of a fluid confined between identi- above, for the excess free energy and the Casimir force. In

Ca| Wa”s th|s |mp||es that then the net force between théec. IV we derive the exact Universal ValueS for the Casimir

plates will be attractive for large separations. One of thedmplitude and the Binder's cumulant ratio. The paper closes

goals of the present article is to prove analytically this genwith concluding remarks given in Sec. V.

eral expectation, i.e., thatXcismi(X1,X2)<0 for any

(X1,X5) € R?, on the example of one exactly solvable model.

We will also show that ifT<T, andH =0 the Casimir force Il. THE MODEL

is a monotonically increasing function of the temperature. . . )

We believe that these properties are valid for @n),n We consider the ferromagnetlc. mean-spherlcgl 'model

=2 model. (see, e.9.[28,29 for a general revieyvon a fully finite
The full temperature dependence of the Casimir force had-dimensional hypercubic latticd 4 of |A| sites and with

been investigated exactly in two-dimensional Ising strips byblock geometryL,XLyX--- XLy, wherel;,i=1,...d

Evans and StecKil6], whereas the upper critical tempera- are measured in units of the lattice spacing. The Hamiltonian

ture dependence of the force @(n) systems has been con- has the form

sidered by Krech and Dietrici20] by means of the field-

theoretical renormalization group theory ir-4 dimensions.

(For the Ising-like case they have derived also some results bic. bc. )

for T<T..) The only example where an exact expression for BH (oitica)=— EKi J.EEA Jij 0] +SiEEA i

the Casimir force as a function of both the temperature and '

the magnetic field is available is that of the three-

dimensional mean spherical modeél. By numerical evalu- _h.z Oi -

ation of the expressions derived there it has been shown that

the force is negative, i.e., it is consistent with an attraction of

the plates confining the system. The most results available at

g;;g:g?;ﬁgf asrfstfg:ntsheai(_:j?rl?Itr);r?jzliﬁgdi%%%;g;mgld the spir.l on lattice sit.é (ag [:i)-' sis the.sph.ericgl field§ isa

theory methods the amplitudes are exactly known for a largdimensionless COUp"ngtlJiJ' is @ matrix with dimensionless

class of two-dimensional modd2,24,29. In addition to the  €lements, so that{/8) 3i7“ is the exchange energy between

“flat geometries” recently some results about the Casimirthe nearest neighbotsnder boundary conditions blspins

amplitudes between spherical particles in a critical fluid haveat sitesi andj (of course,Jibj'C: Jﬁ""), andh is the external

been derived to$26]. For d=3 the results for the Casimir magnetic field. The dependence on the boundary conditions

amplitudes available in the Ising-like case have been obis denoted by a superscript b.c.

tained by Migdal-Kadanoff renormalization-group calcula- The scaling function of the free energy density of the

tions [21], by some interpolation of the exact values fbr spherical model has been discussed in detail in the literature

=2 andd=4 [20], and, relatively recently, by Monte Carlo for different boundary conditions, dimensionalities, and ge-

methodg22,23. For n=2 the only existing results are ob- ometries of the system, for both the cases of short as well as

tained by thee-expansion technique, where the calculationsfor long range interactions in the Hamiltonig8,29—33. By

are performed up to the first order &[20]. any of the approaches used there one can, of course, derive
In the present article the hypotheses for the monotonicityn expression for the excess free energy scaling function.

of the excess free energy and that the Casimir force is negddere, ford=3 and under periodic boundary conditions we

tive under periodic boundary conditions will be verified ana-will take it in the form given in[5]:

®

ieA

Hereo;eIR,ie A4 [o;=0(r;)] is a variable, describing
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k=0

(-1 )k(yk+l yk+1
(k+1)I(k—1/2)

X*(X1,%z) = %(477)3’2[
— \/Ejmdx X 2[1+2R(47*x)]exd —y. X]
1

1
- ZJ dx x~5R(1/4x)exd —y, X]
0

+fxdxx*5’2exp( VoX) |+ =%5 i—i)
1 ” 272y
1
+§X1(yoo_YL)a 9
where
R(x)= >, exd —xq?], (10)
&
X1=(K—Kg)L,x,=K_ ¥2h| 572 (12)

are the scaling variable@ote the difference in the defini-
tions of x; here and in the Introduction; now; decreases
whenT increaseg

DANCHEV
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K= Jmdx[exr(—Zx)IO(Zx)]3=0.252 73 (12
0

is the critical coupling, angt, andy., are the solutions of the
spherical field equations that follow from E() by requir-
ing the first partial derivatives of the right-hand side of Eq.
(9) with respect toy, andy., to be zero.

For the finite-size scaling function of the Casimir force
one immediately obtains from Eg&), (7), (9) and the defi-
nitions of the scaling variables, andx, [5]

. 5 (1 1
Xcasimil X1, X2) = 2X¥(X1,X2) — 2X2 y__z

1
- Exl(yw_yL)- (13
Equationg9)—(13) provide the basis of our further analy-
sis.

lll. VERIFICATION OF THE HYPOTHESES

We will prove analytically that the finite-size scaling
function of the excess free energy, given by K9), is a
monotonically increasing function of any of its scaling pa-
rameters<; andx, when the other one is kept fixed. First, by
using the identity

. ( l) yk+l 4\/— 3/2_ ” —3/2 2
2 - 3 §yfl X~ ¥exp( —x)dx— Z[1-exp—y)], (14
the Jacobi identity for th& function[see Eq.(10)]
R(472x) o 1+2R| —||—1 (15)
TX) = = ,
2| 4| 4X
and taking into account that
dx 1
R 2| XY= )=4\m{\yLiLexp(—y)]+Ligdexp(— )1}, (16)
after some elementary manipulations we obtain from (&Y.
ex 3/2_ 3/2 1 1 1
X%y Xp) = = <y I+ Lidlexp(— VYO T+ Lidexp = Vy))] |+ Xz vy ey, @)
|
where Li,(z) are the polylogarithm functions. The main ad- Xg 1 1
vantage of the above representatiorX6f is the existence of X1=— = 5—In| 2 sml‘( ZM) } (18)
some nontrivial identitief33,34] for the polylogarithm func- Yi
tions (see next sectignthat allow the universal constant and
=X®%{0,0) to be expressed in a simple closed form.
The spherical field equations fgy andy.. can be now 2 1
rewritten in the well known and very simple forrfsee, e.g., X1 —5 — 4—\/y—x (19
for h=0, Eq.(86) in [30]] Yo T
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where the first equation is for the finite and the second one
for the infinite system, respectively. In order to obtain Eq.
(18) use has been made of the facts thetiy(x)/dx
=Li,_1(x)/x and Li(x)=—In(1—x). Let us denote by

gL (X2,y,) the right-hand side of Eq18) and byg..(X5,Y)

the right-hand side of Eq19). Then, it is easy to see that

1
9L(Xz Y)=0=(x2,Y) ~ 5—In[1—exg—¥)]. (20

From the above equation and having in mind that in Egs.
(18) and(19) y, >0, y=0 we conclude that

9L(X2,Y)>0x(X2,Y). (21)

. . FIG. 1. The universal finite-size scaling function of the excess
Itis also elementary to verify thaf (x,,y,) andg.(X2.Y-)  free energyx®* as a function of the scaling variableg=L(K
are monotonically decreasing functions yf andy.., re-  —K /K, and x,=K_¥*hL%2 For a better visualization of the
spectively. Let now..(X;,X,) be the solution of Eq19) for  properties ofX®* we have allowed to change its sign. Of course,
givenx; andx,. Then, from Eq(21), the fact thag, (x5,y) X®is a symmetric function ok,.
is @ monotonically decreasing function pf and that for the
solutiony, (x4,X,) of Eq. (18) one should have, (Xx5,y,)

= 0..(X,.y..), We obtain andx,, as is usually the case of first order phase transitions
T Y 21Y0)s

[35]). For T way aboveT,. the Casimir force, as shown in
YL(X1,X2)>Ye(X1,X2). (22)  [5], tends to zero exponentially fast within full accordance
with the general expectations about its behavior above the
We are now ready to deal with the monotonicity propertiescritica| point. We will not be interested in the explicit form
of the excess free energy scaling function. From @&a) and of these exponentially small corrections. Having in mind all
having in mind the spherical filed equatiofis) and(19) we these comments, for the behavior of the Casimir force for

derive any T andH one obtains explicitly
S 23
== 5YL7Ys 3 1 1 1
el 2 fCasimiv(trh:L):L_a[Exg I_y_x _Exl(yL_yoo)
and i1
e 11 - ;[gwﬁ’z— Y29+ VyLLidexp—y)]
=—x2<———). (24
X2 YL Y
From these expressions and E2pR), taking into account the FLidexp— \/I)] ] (25

definitions of the scaling variablgd1), we obtain that the
excess free energy scaling function is a monotonically in-
creasing function of both the temperatdrand the magnetic  Since the inequality22) is still valid, from the above expres-
field |H|. As a function of the finite sizé of the system the sion it immediately follows thaf c,gmi(t,h) <0. Numerical
scaling function is monotonically increasing above and de€valuation of the behavior of the finite-size scaling function
creasing belowl .. These properties of the scaling function of the Casimir force has been given[#l. It is in full agree-
as a function of the scaling variables andx, are illustrated ~ment with our analytical result. Finally we show that for
in Fig. 1. One clearly sees that for any fixeg the scaling <T.andh=0, i.e.,x;>0 andx,=0, the Casimir force is a
function is a monotonically decreasing functionxaf, and,  monotonically increasing function of the temperature, i.e., a
for any fixedx,; a monotonically increasing function pf,|. ~ monotonically decreasing function &f. From Eq.(25 and
Finally, it is worth mentioning that, fox,=0 from Eqs.(17)  taking into account thay..=0 whenT<T. we obtain
and (22), it immediately follows thatX®*<0. From Fig. 1
one observes that this is true also fgr~ 0.

We turn now to properties of the Casimir force. Our aim ix 0)=— 1 " } % 26
is to show that the force is negative under periodic boundary dx, CasimiX1,0) =~ 5yL+ 5% dx,’ (26)
conditions for any values of andH. The finite-size behav-
ior of the Casimir force in the vicinity of the critical point is
given by Eq.(6) where the scaling function is given by Eq. From Eq.(18) it is easy to see thaty, /dx;<0, and, there-
(13). ForT<T, the same expressions are actually valid withfore d X¢,simiX1,0)/dx; <0, i.e., the Casimir force is an in-
the only difference that the definition of the varialbdenow  creasing function off for T<T. andh=0.
should bex,=K~Yh %2 andx,>1. Here we are not going In this way we have completely verified the hypotheses
to discuss if then the above expressions can be simplifietbrmulated in the introductory part of the article for the be-
further, e.g., being a function of a given combinationxgf  havior of the excess free energy and the Casimir force.
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IV. CASIMIR AMPLITUDE, C FUNCTION, AND 1 (94X(X X )/&X4
BINDER'S CUMULANT RATIO B (X))=—= 1727 772 (32)
S 3] [02X(xq %) 9X2T ’
Here we will be interested in the properties of the system 172 2 ) xp=0
at its bulk critical point. This impliesx;= x,=0 with a . . . .
solution of the spthicaI field eantioﬁ;ee éqs(19) and whereX(x,X,) is the finite-size scaling function of the free
(18] y..=0 andy, =y, .=A4In{(1+5)/2] (this value of energy density. The exact form of this function follows from
o= L=Y.c= : e . S
YL c is well known and seems to have been derived for theEq'(17)JLISt by omitting the terms depending gnin i, i.e.,

first time in[36]). The problem of determination of the Ca- 101
simir amplitude reduces now to exact evaluation of the ex-  X(Xy,Xp)=— pye 6yf’2+ JyLis[exp(—vyp)]
pression ™
1x3 1
171 , +Li3[exﬂ_\/ﬁ)]} _____ X1YL -
X®{0,0=— E[gyglzc‘F VYL cLid exp(— vy o] 2y, 2
(33
+Lig[exp — \/yL,C)]}. (27 From the above expression at the critical point it immedi-
ately follows that
Denoting by~ the “golden mean,” i.e.7=(1++/5)/2, it is ay\2 52
. _1[ 9YL YL
easy to show that B=B,(x;,=0)=— 2y,_’c(ﬁ7) e
2/ x;=x,=0 2 X, =Xp=0
(34

exp—\y o)=71 2=2-7, (28)

By subsequent differentiation of the spherical field equation

. for the finite systeni18) it is easy to show that at the critical
which reduces the above problem %f{(0,0) to the prob-  point gy, /9x,=0, whereas

lem for evaluation of the expression
3%y 167
( ) Y (39
X =X,=0

(9X§ yL,cCOtr( \/yL,c/Z) .

a=Lig2— 1) —In(2—7)Liy(2— 1) —%In%(2— 7). (29

Combining these results and having in mind that.

Fortunately, this is exactly the problem solved by Sachdev:4|nsze obtain for the Binder’'s cumulant ratio at the criti-

[34] studying his example of a conformal field theory in

three dimensions. By the help of some polylogarithm identi-Cal point
ties he has shown that=4{(3)/5. Therefore, we obtain for 20
the Casimir amplitude of the three dimensional spherical B= ~25.216 57. (36)
model under periodic boundary conditions V5 In®z
20(3) Having the exact solution for the spherical field equation and
A=— —"~—-0.153 051. (30) such a simple form for the free energy density, one can easily
S determine in an exact manner the behavior of other physi-

] . ) cally interesting quantities &=T_.. For example, it is easy
The numerical value of this amplitude has already been regy show that the specific heat is of the form

ported in[5]. Recalling now that- X®{(0,0) corresponds to
the analog of theC function for our model and taking the 1 161
normalization factor in the form that will keep ti&function cu(Te)= 5~ LflTKﬁln T, 37
of the critical Gaussian model to &= 1 for anyd (i.e., by >
tﬁkinghthecn?rma_lizati(;n Ln the rf]orfn flor bodsc)lrvs;(;gn(clu_(li_e and that the critical finite-size correlation length is
that the“C function of the spherical model” i at _
=T, for d=3 under periodic boundary conditions (6=L/Vy, [3237)
Let us turn now to a determination of the Binder’'s cumu-
lant ratio for the considered model. We will use for it the ST =57L (39)
definition of the form[3] (up to a prefactor 1/3)
(for explicit results of the behavior &, under other geom-
g x(t,h=0L) etries, boundary conditions and long ranges of the spin-spin

L 3y 2(t,h=0,L) interactions se§32,37-39).

wherex(™ means thenth derivative with respect di of the
free energy density dt=0 (of course,x(?=— y, wherey
is the susceptibility of the systemin the vicinity of the In the present paper we present a hypothesis that in the
critical point this expression can be rewritten in the form  vicinity of the bulk critical temperaturd,. of O(n),n=2,

V. CONCLUDING REMARKS
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systems with a film geometry X <971 the excess free en- an exponential ir. way. For example, the finite-size scaling
ergy (due to the finite size of the syste¢rwill be, under functions of the excess free energy and Casimir force tend to
periodic boundary conditions, a monotonically increasinga constant below . [see Eq(31) in [5]]. The explanation of
function of the temperature and the magnetic field if the fi-this behavior, which, we believe, is common for all
nite system does not undergo a real phase transition of it®(n),n=2, models, is based on the fact that due to the
own (i.e., whend=3 for systems with short-range interac- existence of soft modes in the systéspin waves below T
tions). As a function of the finite siz& of the system the and in the absence of an external fiel=0) &, is identi-
finite size scaling function of the excess free energy is exeally infinite. If an external field is appliech@ 0) then¢,
pected to be monotonically increasing above and decreasing«, and, of coursef®— 0 again exponentially fast ih .
belowT,. This hypothesis, together with the hypothesis that  Finally, it is worth mentioning the close parallel that ex-
the Casimir force should be negative under periodic boundists between the properties of ti@ function defined by
ary conditions have been verifieghalytically on the ex- Netto and Fradkin[7], see also Zabzin[8], for a
ample of the three-dimensional mean spherical model. It hag-dimensional quantum system as a function of the tempera-
been shown that the force is negative in the whole region ofure T and the properties of the excess free energy scaling
the thermodynamic parameters. In addition the universajunction —X®* of the corresponding classical system as a
Casimir amplitudeA e, and the Binder's cumulant ratio function ofL~1. If in the finite system a real phase transition
have been determined exactly in a simple close form andoes not exist, and if the system is somehow equivalent to
found to be Aj,=—2¢(3)/(57)~—-0.153051 andB  the O(n),n>2, system we have proposed some arguments
=27/{\/5In%[(1+/5)/2]}~25.216 57. For comparison we that—X®*is a monotonically increasing as a functionlof!
give the corresponding result for the Ising universality classabove T, and decreasing beloW.. We would expect the
Ape=—0.1526+0.0010[23], andB= 0.615-0.003[40,41]  same to be true for th& function of the corresponding quan-
obtained by Monte Carlo calculations. As we see, the valugum system as a function & around its quantum critical
for the Casimir amplitude for the spherical modekigpris-  point. If the classical system is equivalent to some Ising-type
ingly close(within the error barto the value reported above model, the same type of arguments we have used for the
for the Ising model. The vast difference for the cumulantQ(n),n>2, models, taking into account the lack of monoto-
ratio indicates the lack of a real phase transition in the threicity of the correlation length in the vicinity of, lead to
dimensional spherical model film in comparison with thethe hypothesis that X®* will be a monotonic function of
Ising-like films. Actually, in three-dimensional Ising films | =1 both below and abovd.. For the corresponding@
the situation is more complicat¢d?]. If the thickness of the  function of a quantum system that has its mapping into a
film L is held constant and the other two linear dimensidns classical Ising systenfaccording to the dimensional cross-
tend to infinity, the cumulant ratio converges to the two-over rulg this means tha€ is a monotonically increasing
dimensional Ising valueB= 0.615). However, if the ratio function of the temperature both below and above its quan-
L/D is not too small, there exist crossover problems. In anytum critical point. This is indeed the case plotted in Fig. 2 in
case the value B is between that for the two-dimensional [7] for the quantum version of the two-dimensional Ising
system and that for the three-dimensional syst&w0.47  model. Finally we would like to stress that the relatively
[43]). The value ofB for the spherical model shows that the simple picture described here should probably change sig-
probability distribution afT; of the order parameter density nificantly, if the finite system undergoes a phase transition of
is too different from a single Gaussian, wh&e 0, or from its own. In that case the upper critical part of the excess free
a normalized sum of two Gaussians, where 2/3. This, of  energy scaling function for 4 & Ising model is knowrj20]
course, raises the question what then that distribution is, buup to a first order irs,£>0). It shows aminimumin X, as
this question is out of the scope of the current article. Thea function of T slightly above T. Unfortunately, no results
situation recalls the one of Ising strijxso real phase transi- are available foX®*whenT<T,  , whereT. is the shifted
tion in the systern with B=2.46044+0.00006[3,40,44. critical temperature of the finite system. It is possible to in-
The crossover problems in Binder's cumulant ratio can besestigate the above problems exactly within the spherical
studied within the spherical model, considering #3di-  model with 3+ ¢ infinite dimensions. We hope to return to
mensional film,e >0 (then in the finite system there will be this problem later.
a real phase transitignThis is also an interesting problem,
especially if one takes into account that there are almost no
exact results for the Binder's cumulant ratio, but it is again
out of the scope of the current article. ACKNOWLEDGMENTS
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