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Generalized entropy-based criterion for consistent testing
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Through the use of a recently introduced, nonextensive, entropy, we generalize that of Kullback and Leibler
[Ann. Math. Stat.22, 79 (1961)] and study its properties. This in turn enables the proposal of a consistent
criterion for testing relevant hypotheses such as the independence of random variables. Straightforward appli-
cations are shown to be possible fphysical, geophysical, economic, and biologidahe series.
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PACS numbegps): 05.20-y, 05.40+j, 02.50.Wp

The problem of consistent testing, i.discrimination be-  whereA andB are twoindependensystems in the sense that
tween two hypothesess a central one in as varied areas asthe probability distribution oA+ B factorizesinto those of
physics (e.g., in high-energy elementary particles experi-ao and ofB.
ments, geophysics(e.g., rainfall times series and El Tin This generalization retains much of the formal structure of
climatological phenomenaeconomics(e.g., degree of cor- e standard theory such as the Legendre thermodynamic
relation in time series of quantities of financial inteyeahd  gyryctureH theorem, Onsager reciprocity theorem, Kramers
biology (e.g., correlations in nucleotides of DNA chains and 3ng wannier relations, Bogolyubov inequality, and thermo-
cardlploglcal and electroence_phalographlc rhythmsst to dynamic stability, among othef$,7], and has been applied
mention a few. Nonparametric testing is of course a Vert, many anomalous physical systems. Within a long list we
well justified one and, on an entropy basis, has been proyay mention Ley and correlated anomalous diffusiofsee
posgd and used by several authkj_rs3]. Several years ago, [g] and references therginstellar polytropeg9,10], pure-
Roblnsor’{4]_ used the Kullback-Leibler measure of informa- gjectron plasma two-dimensional turbuleriaé)], solar neu-
tion [5] [which is based on the Boltzmann-Gibbs-Shannonyings [11], anomalous phonon-electron thermalization in
(BGS) entropy to make an elegant discussion iaflepen-  jon_hombarded solid§12], peculiar velocities of galaxies
dence versus dependenitetime series pf(dally, weekly, _ [13], inverse bremsstrahlung in plasiiia], cosmology[15],
and_monthly exchange rates of se\(eral Important currencieés,gnjinear dynamical low-dimensionédt the edge of chags
against the U.S. doIIar.. More preqsely, he used data of thF16] as well as high-dimensionét self-organized criticality
Bank of England covering the period 2 January 1978 througli1 7)) [18] dissipative systems, long-range-interacting fluids,
28 June 1985. Itis probably unnecessary to say that physical,,q magnet§19].
geophysical, biological, and other time series could usefully The aim of the present work is to show how these ideas

be processed in the same manner. can be used to propose, along Robinson’s lines, a generalized
On a quite different vein, we proposed several years ag@onsistent testing, which could be useful for handling a great
[6] a generalization of the usual Boltzmann-Gibbs statistica|ariety of problems. Let us first recall the Kullback-Leibler

mechanics, hence of thermodynamics itself. This generalizgneasure of informatiotor cross entropyor relative entropy
tion addressesonextensiveystemglong-range interactions, o mytual informatio

long-range microscopic memory, fractal or multifractal rel-

evant space-time, ejcand is based on the entropic form p(X) Po(X)
[written here for a continuous random variable characterized |1(p,po)EJ dx p(x)In X —f dx p(x)In )
by the probability distributiorp(x)]: Po "
[p(x)]%1-1 wherepg(x) is the so-calledeference(or defaul) distribu-
Sq(p)s—f dx p(x)f1 tion (uniform, Gaussian, Lorentzian, and Poisson distribu-
q tions are common choiceand the meaning of the subindex
[p(x)]*9-1 1 will become transparent in a little while. By using that
=—J dx[p(x)]qT Inr=1—(1/) [r=p(X)/po(x)>0], it is easily seen that

this quantity satisfies
X(de px)=1geR/, @ 11(p,po)=0  V(p,po)- (€)

I1(p,po) =0 if and only if p=p, almost everywhere. Prop-
which (using [p(x)]9 *~1+(q—1)Inp(x)) recovers the erty (3) must be emphasized since it constitutes the very
usual BGS entropy,(p)=—fdx p(x)Inp(x) in the limit  basis forconsistencyof the present nonparametric testing.
g— 1. The entropic index| characterizes the degree of non- Indeed,| ;(p,p,) can be used asdistanceof p with regard
extensivity reflected in théeasily verified pseudoadditivity to po [notice that, unlessp=py, generically 1,(p,po)
property  Sy(A+B)=Sy(A) + Sy(B) +(1—q)Sy(A)Sy(B)., #14(po,p), @ property to which we shall return later Jon
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Another important property of,(p,pp) is that it is form
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For q#0, the equalities hold if and only ib=p, almost

invariant under variable transformation. Indeed, if we per-everywhere. Equatioi(3), as well as the above-mentioned

form the variable transformatiox= f(y), the measure pres-

ervation implies thatp(x)dx=p(y)dy, wherep(y) is the
new distribution law[and analogously fompg(x)]. Since

form invariance, is thus generalized for arbitraryBy per-
forming the transformatioq— 3 < 3 —q in the definition(5)
we can prove that

p/pofE/Eo' 11(p.po) = [ dy POX(Y)IN[P(X(Y)) Po(X(¥))] | |
=141(p,po), which proves the above-mentioned form invari- a(P:Po) — 1-q(Po.P) _ (10)
ance. As a last important property let us mention that, if we q 1-q

choose apy(x) auniformdistribution on a compact support
of lengthW, then it is straightforward to verify that
l1(p, 1) =

INW—S;(p), (4)

which presents the Kullback-Leibler entropy as the departure

of the BGS entropy from its value at equiprobability.

The definition ofl4(p,pg) and the generalized entropic
form Sy(p) [Eq. (1)] naturally lead to the generalization
[P(X)/po(x)]9~*—

q-1
x)/p(x)]*9-1
fd X piX )[po( )p( )]

lq(pva)Ef dx p(x)

N )

where we can immediately verify that the lintjt-1 recov-
ers the standard Kullback-Leibler entrog®). Let us now
generalize(by following along the lines 0f22]) the very
important property(3). With r>0, we have that

Ml g0
=1-—- if q
q—1 r
1
=1—F if q=0
1
<1—F if q<0 (6)

(for g#0, the equality holds if and only if=1). Conse-
quently, for, sayg>0, we have that

Consequently, as a family of entropy-based testings, it is
enough to considen= 3, for which
l4(P.Po)= 11

the equality holding if and only ip=pg almost everywhere.

The criterion indicated in Eq9) implies, for the particular
caseq=j;

(12

f dxvp(x)po(x)=1.

This expression can be interpreted as the continuous version

of the scalar product between two unitary vectors, namely,
Vp(x) and \po(x), and is directly related to the so-called
Fisher genetic distancg0].

For the particular casg=2, the criterion(9) becomes

f dX{p(x)]?/po(x)<1. (13

Also, except forl 1, (and the trivial case,), we easily see
that Iq(po,p)il_q(p,po) unlessp=pg almost_ everywhere.
Consequently, if for some reason we wameaiprocal “dis-
tance” betweerp andp,, it might be convenient to define a
symmetrized quantity such as

1
15(P.Po)=5[14(P.Po) +I4(Po.P)]: (14)

p(x) ]9t hencel §(p,po) =15(Po.P)  V(P.Po.0)-
Po(X) Po(X) As a last property, let us generalize E4). By choosing,
— - ; once again, apg(x) the uniform distribution on a compact
q—1 p(X) (7 i (x) th if distributi
support of lengthVV, we easily establish that
hence
wi-d—1
p(x) ]a-t |q(p,1/W)=?—Wq_13q(p)- (15
-1
Po(X ) Po(X)
dx p(x) q- dx p(x)| 1— p(x) Let us now adapt the main results of this paper to the
problem of independence of random variables. Let us con-
=1-1=0. (8)  sider the two-dimensional random varialze (x,y) and its

corresponding  distribution  function p(x,y)  with
However, the left-hand side member of this inequality is pre-fdx dy p(x,y)=1. The marginal distribution functions are
cisely I4(p,po). Consequently, Eqs6) imply then given byh,(x)=fdy p(x,y) and h,(y)=fdx p(x,y).

In this situation, the discrimination criterion for indepen-

lq(p,po)=0 if g>0 dence of course concerns the comparisonpff,y) with
—0 if =0 po(X,y)=hi(X)h,(y). The one-dimensional random vari-
ables x and y are independent if and only ip(x,y)
<0 if g<0. (9) =po(X,¥)[V(X,y)]. The criterion(11) becomes
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[ p(x.y) r‘l with
— -1
h,(x)h 1
f dx dy [x.y) 1(X)hy(y) ~olq=1]. Po(X1, X2, « . . Xg)
q-1 2
(16) = f dXodXg- - - dXgp(X1,X5, - - . Xq)
The evaluation of this quantity gives a satisfactory measure
of the degree of dependence betwaeandy; when and only X f dX,dX3- - - AXgP(Xq,Xa, - - - Xg)
when it vanishesx andy can be considered independent. In
theq—1 limit, this criterion becomes the usual ofsze, for
instance[4]) XX fdxldxz- codXgo1P(X1, X2, ... Xg) |- (23)
The equality in Eq(22) holds if and only if &q,X5, . . . Xq)

f dxdy ;Xx,y)lnp(x,y)—fdx h;(X)Inhy(x)

- [ dy =0, a7
For g=1/2 we have
| axaypeeynoamm=1. a8
The particular casg=2 becomes
[p(x n? _
| axovitony = 19

This can be considered as a satisfactory “quadratic” crite

rion, as opposed to the quantity basically introducefit
(for the particular casb;=h,=h),

2
f 0|X0|)r{|0(x,y)]2—(JdX[h(X)]2 (20

can all be considered independent.

Let us finally make the bridge with @hysical, geophys-
ical, economical, and biologicakime series denotedé;}
with t=0,1,2.... Onecan, for instance, defing4] X,
=In(¢,/¢é,-1) and usez=(x,y)=(X;,X;-1), i.e., ad=2
problem. It is obvious that, according to the specific prob-
lem, it might be useful to work on larger spacés., d
>2).

Summarizing, by following along the lines of the recently
formulated nonextensive entropy and thermostati§6gsve
have established, on firm mathematical groundgereral-
ized criterion for consistent testing of independence between
random variableswhich we propose as a practical tool for
analyzing data such as DNA or peptide sequences and all
types of computational or experimental time series. The re-
sults depend upon the entropic indexlt is expected that,
for every specific use, better discrimination will be achieved
with appropriate ranges of values @f This was indeed the
case of a recent wavelet-entropy analy&8] of electroen-
cephalographic data of epileptic turtles and human patients;
the best values for clinical analysis turned out to be in the

Indeed(see als4)), this quantity has no definite sign and its neighborhood ofg=5. The value ofg in the vicinity of
zero value does not guarantee an independence betweernwhich the criterion will be more fruitful no doubt is related
andy. In other words, it cannot be considered as an optimato the (multi)fractal structure of the sign@ under study,
criterion and could, in principle, very well be replaced by thewhich in turn reflects the deep microscopic or mesoscopic

present criterion(19).

(generically nonlineardynamics in the phase space of the

If for a particular use we have reasons to prefer a symmesystem. The ubiquitous, so-calledmplex systemgossibly

trized criterion, we can replace E(.6) by

15(P(x,y),h1(x)ha(y))=0

The generalization for an arbitrary numberof variables
(with d=2) is straightforward:

(9=2). (21)

19(P(X1, X2, - . . Xq),Po(X1 ., Xz, - - -

(22)

are ideal candidates for a variety of applications. At the
present moment, the analysis along these lines of the & Nin
data is in progress. Several interesting effects emerge as a
function of q that will be presented elsewhere.
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