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Self-similar exponential approximants
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An approach is suggested for defining effective sums of divergent series in the form of self-similar expo-
nential approximants. The procedure of constructing these approximants from divergent series with arbitrary
noninteger powers is developed. The basis of this construction is the self-similar approximation theory. Control
functions governing the convergence of exponentially renormalized series are defined from stability and fixed-
point conditions and from additional asymptotic conditions when the latter are available. The stability of the
calculational procedure is checked by analyzing cascade multipliers. A number of physical examples for
different statistical systems illustrate the generality and high accuracy of the approach.
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[. INTRODUCTION the results when the considered problem contains several pa-
rameters to be varied, since for each given set of parameters
Summation of divergent series is a problem of great im-one has to repeat the whole procedure of constructing a table
portance in theoretical physics, applied mathematics, and ef Padeapproximants and selecting from them one corre-
gineering. This is because realistic problems are usuallgponding to a visible saturation of numerical values. Since it
solved by means of some calculational algorithm often reis a numerical technique, Pagemmation shares the diffi-
sulting in divergent sequences of approximations. Assigningulties of other numerical methods, like nonlinear sequence
a finite value to the limit of a divergent sequence is called aransformations, and sometimes is less effective than the lat-
renormalization or a summation technique. The most widelyer [5,6].
used such technique is Padammation[1]. However, the The aim of the present paper is to developaaalytical
latter has several shortcomings. First of all, to reach a reamethod, free of the Padgpproximation difficulties, for sum-
sonable accuracy of Padgproximants, one needs to know ming divergent series containing any number of tefjust a
at least in the magnitude of ten to 20 terms of a perturbatiofiew or many with arbitrary nonintegermpowers. The method
series. Unfortunately, so many terms are often not availablés based on the ideas of the self-similar approximation theory
because of the complexity of a considered problem. Secondl7—14] in its algebraically invariant formulatiofiL2—14.
Padeapproximants are defined for the series of integer pow- The gist of this paper is described as follows. The
ers. But in many cases asymptotic series arise having nonigpproach is generalized by constructing self-similar expo-
teger powers. Third, there are quite simple exam#i¢shat  nential approximants from the series wikbitrary powers
cannot be used in a Pagemmation even for a sufficiently integer as well as nonintegeli) It is shown how such ex-
small variable. Moreover, the standard Pagproximants do  ponential approximants can be made compatible with addi-
not converge at infinity, since infinity is an essential singu-tional asymptoticandboundary conditiong(iii ) Stability and
larity [1]. The latter deficiency can sometimes be treatedixed-point conditions are discussed and concrete prescrip-
with the help of two-point Padapproximantg3]. But these tions, for defining control functions and for checking the
can only be constructed when there are two perturbation exstability of the calculational procedure, are formulatéd) It
pansions in the vicinity of two points, so that such expan-is demonstrated that the approach is applicable in all cases,
sions have compatible variables, which often is not the caseyhen either just a few terms of a series are known or when
especially when one or both of these expansions contain nomrany termsare available(v) We emphasize that in all the
integer power$4]. For instance, only rational powers can be cases, even when a large number of terms of a series are
described at infinity3]. This is because a Pad@proximant involved, we obtainanalytical formulasthat are convenient
is a ratio of two polynomials, say, ofi andn order. There- for considering with respect to a change of physical param-
fore, when the variable tends to infinity, the asymptotic be-eters. The possibility of deriving analytical expressions is a
havior of this Padeapproximant is of power law with the characteristic feature of our approach differentiating it from
powerm/n, which is a rational number. Fifth, in many physi- numerical methods.
cal problems the quantities of interest exhibit at infinity ex-  Also, we illustrated the generality of the approach by ap-
ponential behavior, which in principle cannot be describedplying it to several interesting physical problems of quite
by Padeapproximants. One more well known difficulty different nature. Some of these problems could be treated by
when dealing with Padapproximants is the appearance of Padesummation or by the standard renormalization-group
spurious poleg1]. Last, but not least, Padeummation is technique. When such treatments have been done, we com-
rather a numerical technique providing answers in the fornpare their results with ours. In those cases for which numeri-
of numbers. Therefore it is difficult, if possible, to analyze cal data are available, we estimate the accuracy and show
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that this accuracy is either comparable to or higher than that0,1,2 ...} is bijective to the sequencgP,(x,s)|k
of other more complicated resummation techniques. We con=0,1,2 . ..} of approximationg2). A cascade is a dynami-
struct as well self-similar exponential approximants for sev-cal system in discrete timk=0,1,2 ..., whose trajectory
eral physical problems for which other summation methodsgoints  satisfy the semigroup propertyyy. p(¢,s)
have not been applied because of technical difficulties. =Yi(Yp(®,5),5). The latter equation is a particular type of
functional equation$15] and in dynamical theory it is re-
Il. NONINTEGER POWERS lated to autonomous dynamical systef@§]. The physical
. . . meaning of the above semigroup relation can be understood
_ The main ided7] of the self-similar approximation theory 5 the property of functional self-similarifit7] with respect
is to put into correspondence to a sequence of perturbativg he varying approximation numbdi7—11. The self-

terms a dynamical system for which the approximation nUmx;mijarity relation is a necessary condition for the fastest

ber would play the role of discrete time. Then the transfor-convergence criteriof8,d].

mation from one approximation to another can be repre- .. the approximation cascaélg,!, defined by transform

sented as the evolution of this dynamical systfi The (5) the cascade velocity can be written as a finite difference
corresponding evolution equation may be formulated as the

property of functional self-similarity, which is a necessary

condition of fast convergend@]. A dynamical system with vk(¢,8)=Yi(@,8) ~Yk-1(@.8) =a| -
discrete time is called a cascade. A fixed point of a cascade, 0 (6)
representing a sequence of approximations, corresponds to

an effective limit of this sequend&,8]. To guarantee con- This is to be substituted into the evolution integral
vergence, the fixed point must be stable and the sufficient

conditions of stability can be formulated in terms of multi- fP’k* de _
pliers[9—11]. Additional possibilities open if we require that P Uk(®,S) -
the procedure of finding an effective limit of a sequence is

invariant with respect to algebraic transformati¢tg—14, in which P,=P,(x,s) and r is the minimal time needed for
which permits us to deal not with the initial sequence ofreaching a fixed poinP} = Py (x,s, 7). Integral(7) with ve-
approximations but with a sequence of its transforms. Genlocity (6) yields

eral ideas and the mathematical foundation of the self-similar

) (st ay)/(s+ ag)

@)

approximation theory have been described in detail in our . -, vayT -
previous paper§7—14]. Not repeating them here, we begin k (X.8,7)=| Prly(X,8)— altv ' ®
at once with considering the case when for a sought function 0
f(x) one derives an approximate perturbative expression \yhere
k
k™ Qg
X)= a,xomn, 1 = =
P00 =2, a D) v=nds)=" 0 ©)

in which «, are arbitrary real numbers, integer or noninteger,Taking the algebraic transform, inverse to E#), we find
positive or negative, but with the sole requirement that they

form an ordered sequende,}, that is, either strictly in- . s
creasing or strictly decreasing sequence of terms. Following Pk (X,8,7)=X""P} (X,s,7)
the method of the algebraic self-similar renormalizafib2—

14], we define the algebraic transform

-1y

—v vayT sv
pk* l(X) - aé+ v X
(10)

Exponential renormalizatiofil3,14] corresponds to the limit

k
P(X,9) =XPi(X) = D apxSton, (2) S atwhich
n=0
limy(s)=0, limsy(S)=ax— aq.
wheres is real. Then, by means of the equation S—o0 S0
Po(X,8)=agx5"*0=¢, (3)  Then Eq.(10) gives

we obtain the expansion function . a
P lim py (X,s,7)= pkl(x)exr(a—er“kao). (11
0

1U(s+ ag) S
X(¢,8)=| 4 - . o
2h) Accomplishing exponential renormalization of all sums ap-
I . pearing in expressions of tygé1l), we follow the bootstrap
Substituting the latter into Ed2), we have procedurd 14] according to the scheme
k @ | (sTani(stag) N
Yi(@.5)=P(x(¢.5),9)= 2, an| (5) POO=Pi (X8 7) = Fil(X, 11,72, om0y (12)
n=0 0
with k=1.

The family {y,} of transforms(5) is called[10,11 the ap- Let us illustrate explicitly how this exponential bootstrap

proximation cascade, since its trajectorfy,(¢,s)|k  works. The initial approximation from Ed1) is
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Po(X) = apx“. (13
If we limit ourselves by the first-order term
P1(X)=po(X) +a;x*,

then, following the renormalization scher), we get

F1(X,71)=po(x)exp(byxP1), (14
where
a;
blEa_Tl, BlEal—ao. (15)
Involving the second-order term
P2(X)=p1(X) +ax*2,
we find
FZ(X,Tl,TZ)ZpO(X)eXF[blxﬁleXF(bZX'B?)], (16)
with the notation
a
bzza_Tz, Ba=az—ay. 17
1

Continuing the same procedure, for tkth-order expression
(1) we obtain

Fr(X, 71,72, .., Ty)
=po(x)exp{b xPrexd boxPz. - -exp(bxPK)]-- -}, (18
where
ay
b= Tk Bk=ay—ay— 1. (19
k—1
The quantitiesr,,, with n=1,2, ...k, in the renormal-

ized form (18) play the role of control functiong7—14]. In

the following section we shall show the ways of defining
these control functions. Assume, for a while, that the latte

have already been defined giving,= 7,,(x). Substituting
these functions into Eq(18), we come to the self-similar
exponential approximant

f:(x):Fk(X!Tl(X)iTZ(X)! v 1Tk(X))'

Note that the constructed approximan®0) are different
from the iterated exponentials introduced by EUtE8]; the

(20

properties of such iterated exponentials are reviewed, e.g.,

Refs.[19,20.
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Therefore the corresponding control functianéx) become
complex. However, before passing to the general case of
complex powers and, respectively, of complex control func-
tions, we need first to develop the approach for arbitrary real
powers and real control functions.

[lI. CONTROL FUNCTIONS

The role of control functions, by their definitig26], is to
provide convergence for initially divergent sequences. There
are several ways of incorporating control functions into an
iterative algorithm and of defining them. One way of intro-
ducing these functions is by including them into an initial
approximation. The most often used definitions of control
functions are through the minimal-differen¢@6—28 or
minimal-sensitivity] 29—36 conditions. In some very simple
cases, like zero-dimensional and one-dimensional oscillators,
when high-order terms of perturbation theory are available
explicitly, control functions can be found from the direct
observation of convergence of this the¢87—44. All these
variants are particular types of quasifixed-point conditions
[7-17.

Another way of introducing control functions is through
an algebraic transformatiori2—14. In addition, the mini-
mal time appearing in the evolution integi@) under each
renormalization step plays also the role of a control function.
After k steps of the renormalization procedure, the self-
similar approximation(20) containsk timelike control func-
tionsr,, n=1.2,... k.

The simplest way of defining these control functions
would be to remember that the effective time in intedi@l
corresponds to the minimal number of steps needed for
reaching a fixed point. When no other restrictions are im-
posed, the minimal number of steps is, clearly, equal to one.
Settingr,=1 for alln=1,2, ... k in Eq. (20) gives

fr(x)=F«(x,1,1...,D. (21
A more elaborate definition of the timelike control functions
can be formulated by involving one of the variants of fixed-
point conditions. To this end, let us set=1 for all n
=1,2,...k—1, except the last step for which,= 7 is yet
undefined. Consider the sequenflk} consisting of the
terms

fk(X,T)EFk(X,l,l, e ,7'). (22)
Following the standard proceduf&0—14, it is possible to
iconstruct an approximation cascade with a trajectory bijec-
tive to the sequencgf,}. For the cascade velocity we may

Although in this paper we shall deal with physical prob- write the finite difference

lems related to series with powers being real numbers, noth-
ing prevents us from generalizing the whole approach to se-
ries with complex powers. Such complex exponents appear
in the problems with discrete scale invariafh2é,22, which  When approaching a fixed point, the cascade velocity tends
has recently been documented in the models of rupturao zero. Therefore the condition to be as close to the fixed
earthquake processes, financial crashes, in the fractal geompeint as possible is the minimum of velocit®3). This con-

etry of growth processes, and in several random systemdition
[21-24. Our approach can be straightforwardly applied to
series with complex powers. Then, the variablan the al-

gebraic transforn{2) has also to be considered as complex.

Vk(X,T)zfk(X,T)_fk_l(X,T). (23)

min|Vi(X, 7)| = [Vi(X, (X)) (24
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provides us the definition of the time-control functieg(x).  parameter. The series for integ(8pR) are frequently used as
Equation(24) is the general form of the minimal-velocity a model for strongly divergent perturbation expansions in
condition[12,41]. In particular, taking into account defini- quantum field theory25).

tion (23), we may have the equation The weak-coupling expansion of E2) gives

fi(x,7)—fr_1(x,7)=0, (25) J(g)=a+bg+--- (g—0), (33

whose solutionr= 7(x) is the sought control function. For with a=1, b=—2. In the strong-coupling limit one has
the exponential approximan(&8), Eq. (25) yields the equa-

tion J(g)=Ag "+Bg ¥+ Cg ¥ +Dg™ M+ (g—),
(34)
ay
T=exX x| (26) where
k-1

The solution to Eq(26), that is, 7= 7(x), being substituted A 1.813 B 0.612 c 0.227
into Eq. (22), leads us to the self-similar approximation N N N

f (%) = fi(X, 7(X)). (27 The strong-coupling expansidB4) is of the form of series

The described scheme of defining control functions is ap-(l) with the coefficients

plicable when no additional restrictions are imposed on the a,=A, a;=B, a,=C, az=D
behavior of the sought functiof(x). It may happen that, in
addition to expansiofil), an asymptotic behavior d{x), as  and with noninteger powers

X—Xgq, is known. Then the asymptotic condition
1 3 5 7

() =fo(X), X—Xo (28) @="g. @=Tg @@= ag=— g

plays_th_e role of an_imp_osed restriction. And the Con_structequ shall renormalize expansid84) subject to the limiting
self-similar approximations are assumed to satisfy thegngition

asymptotic condition(28). In such circumstances, some of
control functions are to be chosen so that condili28) is limJ(g)=a, (35)
valid. This can be done in the following way. g—0
Let us renormalize a serigg,_,(Xx) to a self-similar ap- )
proximationf?_;(x) with timelike control functions defined Which follows from Eq.(33).
according to a scheme described above. Limiting ourselves Starting from

?ilo)SUCh a k—1)-step renormalization, we obtain from Eg. Jo(g)=Ag ¥4 (36)
~1h we get
* — f* -V VakT Sv
Fk(X,S,T)— [ k*l(x)] - FX ’ (29) B C
° Jé(g)=Jo(g)exr{zg‘1’2exp(§g‘l’2 (37

with the same notation as E(). Now we require that the
obtained expressio(29) would satisfy the asymptotic con- At the next step, according to E€R9), we have

dition
F3(9,57)={[33(9)] "+ g™}, (38
FE(,S,7)=fo(X), X=X (30 ’ :
. i ) with
in accordance with Eq28). The control functions=s,(x)
and 7= 7(x) are to be chosen so that conditi(80) is valid. 6 v Dr
With the so defined control functions, we come to the self- y= , oY== .
.. . . 1—14s A1+V
similar approximation
X (X)=F (X,5¢(X), 7e(X)) (3D In the weak-coupling limit, Eq(37) yields
possessing the desired asymptotic propézs). J5(g)=Ag " (g—0)
To clearly illustrate the latter variant of defining control _
functions, consider the integral and Eq.(38) gives
1 (= F3(g.5,7)=(A""g" "+ yg™) 1"
Jg)=—=| exp—x?>—gx*dx, (32
\/; - The latter expression satisfies the limiting condition
which has the meaning of the partition function for the zero- limF%(g,s,7)=a, (39

dimensional anharmonic model, wheyés called a coupling g—0
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corresponding to Eq35), if and only if s=0 andy=a or, IP(X,s)/ X
respectively, My(%,8) = pi(Po(x.5).8) = dPo(X,S)/ dx
A7 K (s+apa,
=6, 7=-— . = ————xlen—@0), 42
’ 6a°D n§=:0 (stag)ag “2

Substituting thes and = found into Eq.(38), we get The trajectonfy,(e,s)} of an approximation cascadg,} is

locally stable[11] at thek step if| w(¢,S)|<1. Note that the
case of|u|=1 is called neutrally stable and that pf,|
=0 can be termed superstable| if,| <1 for somes and all
¢ from a given domain, thepm,(x,s)|<1 for the sames
and allx from a domain defined by relatiof@). When the
trajectory of a cascaddy,} is locally stable for allk
=0,1,2 ..., that is, when/my(x,s)|<1 for all k, then the
sequencg P, (x,s)} converges uniformly with respect ta
The local stability for allk=0,1,2 ... can becalled the
corresponding to Eq(31). global stability. The global stability of a trajectory issaffi-

The exponential approximar40) represents integréB2) cientcondition for_ the convergence of the co_rresponding se-
with a very good accuracy. The maximal percentage error iguence[11]. But it is not a necessary condition. Thus the
2.7% occurring ag=0.1. And the error for the physically S€duencéP(x,s)} may be convergent, but the cascade tra-
most interesting region of intermediage~1 is only 0.7%. jectory not everywhere locally sta_ble, so that t_he stability

Consider another simple example evidently illustratingcondition|m(x,s)| <1 becomes valid for ak starting from
the generality of our method that works when other method§0meXKo, but for k<k, this condition may be broken for
do not. Assume that we need to find an approximation for £OmMeKk.

J5(9)={[J5(9)] C+a &1

Using here form(37) and remembering that=1, we finally
obtain the self-similar approximation
-1/6

g3/2
J§(g)={1+ﬁexp{ p(

—6B

—eX
A\g

C

B\g

bounded functiorf (x), with —oo<<x<e0, having the follow-
ing asymptotic properties:

1+x+0(x?) (x—0),
e (X— —),
f(x)= 1
—, a>0  (X—+x),
XD[

where « is an irrational power. To our understanding, the
Padetechnique is principally inappropriate in this case, while

in our method, accomplishing the same procedure as is ex-

plained above, we easily obtain

p( 2
exp — —X
a

IV. STABILITY CONDITIONS

—al2

f*(x)= +x2

In order to check the stability of calculational procedure,
one has to analyze mapping multiplief9—11. Several
kinds of multipliers occur in the process of construction of
self-similar approximations, each kind being related to th
corresponding approximation cascade.

The first approximation cascade appearing in our investi
gation is the cascadg,} composed of transform&). The
local multipliers for this cascade are defined as

k

P
Mk(‘PaS)E%yk(QD:S):zO

(S+ an)an (apn—ag)/(s+ag)

157 En/nf €
(S+ ao)ao

Ao

(41)

The image of multiplief4) in the x space can be obtained
with the use of relatior§3), which yields

The concept of stability suggests a recipe of defining the
control functions=s,(x). The latter can be defined so as to
minimize the absolute value of multipli¢42), which can be
named the principle of maximal stabilift2—14. Substitut-
ing the foundsy(x) into Py (x,s), we obtainP(x,s,(X)).
The renormalized sequen¢®(x,s(x))} can become con-
vergent even if the initial sequeng®,(x,s)} was not. De-
fining local multipliers for the new sequence, it is necessary
to take into account tha,(x,s,(x)) depends ox explicitly
as well as througts,(x). The corresponding multipliers are

AP 1 IX~+ (P 1dsy)(ds /dX)
Pl X+ (dPylds)(ds /dx)’

my(x)= (43

where P =Py (X, s), sx=sk(X), and the partial deriva-
tives mean that another variable is kept fixed. In general,
m,(x) differs from Eq.(42). But if si(x) is a slowly varying
function ofx, such that the derivativds,/dx in m,(x) can
be neglected, themm,(x) approximately coincides with
m,(x,S¢(x)). The stability condition|m,(x)|<1 for all k
=0,1,2... implies the convergence of the sequence
P, (x,sk(X))}. Let us stress again that stability is a sufficient
condition for convergence, but not necessary. The sequence
{Pk(x,s¢(x))} may converge even if the stability condition is
not valid for a finite value ok. Moreover, the convergence
of the sequencéP,(x, si(x))} is not compulsory for us.
This sequence is not yet the final product of the procedure
but is to undergo the dynamical renormalization involving
the evolution integra(7).

After the multiple dynamical renormalization, in the ex-
ponential variant we consider here, we come to the sequence
{F«(x,7)} of terms given by expressiqii8), with the short-
hand notationr={r,, 75, . . .,7¢}. The stability of the corre-
sponding trajectory is characterized by the multipliers
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IF (X, 7)] Ix demand that the trajectory would become completely stable
m- (44) at some intermediate step of the multistep procedure. The
’ main point is that the finally resulting sequer{d§ (x)} be

The stability condition|M(x,7)|<1 for all k=1,2,...  convergent, for which it is sufficient to require the validity of
guarantees the convergence of the sequéRgex,)}. This  condition (50).

tells us that the time-control functiong(x) could be chosen

S0 as to minimizéM (x, 7)|. In particular, the minimal value V. GROUND-STATE PROPERTIES

of Eq. (44) can be zero. Then the equali#,(x,7)=0, un-
der the assumption thaf (X, 7)/9x# 0, yields the equation

M k(X, T)E

Now we pass to the consideration of physical examples
illustrating explicitly how the method works.

d
—F(x,7)=0, (45)

IX A. One-dimensional Bose system

The ground-state energy of the one-dimensional Bose sys-
tem with the §-functional repulsive interaction potential is
. . . known in a numerical form from the Lieb-Liniger exact so-
d|scus§ed above, we obtain, as a;fmal re§ult, the exponenti tion [42]. We derive below a compact analytical expression
approximant(20). The sequen_cefk (X)}_” with k=1,2, - for the ground-state energy(g) as a function of the inter-
of these exponential approximants is what we UIt'matelyaction strengtty, valid for arbitraryg. In the weak-coupling

heed to analyze with respect to s convergence. For thafq strong-coupling limits the following expansions are
purpose we can formulate sufficient conditions for CONVeryown (see e.g., Ref7], and references thergin

gence studying the stability of the corresponding cascade. To

restricting the choice of time-control functions.
Defining all time-control functions in one of the ways

this end, following the standard proced{ive-11], we define e(g)=ag+bg¥*+cg?+dg”*+..- (g—0),
a functionx(¢) by the equation 4 (51)
. a=1, b=--—, ¢=0.0654, d=-0.0018,
fI(X)=¢, x=x(¢). (46) 3m
Then we introduce the transformation while in the strong-coupling limit an exact result is available
[43]:
Yi (@) =T (x(e)). (47) ,
T
The family {yy} of the transformations introduced in Eq. e(g)=A=— (g—=). (52

(47) forms a cascade. The local multipliers are given by

The expression satisfying both known limits can be derived

J imilarly to th le studied in Sec. Il t that |

i (@)= —Yi (®). (48  similarly to the example studied in Sec. Ill, except that in
e this case we start from the weak-coupling limit. The result-

The image of Eq(48) in the x representation is g approximant 1s

b c -3/2
FfF (x)1ox e¥(g)=a ([ex;{— l’Zexp(— 1/2)”
M (0= (1 (00)= = (49 H(0)mad| [ a0 TeR B
¥ (x)/ox
It A\ 32 -2/3
. . + =] ¢ (53
The cascade trajectory is locally stable &t atep when a '
[mg ()] <1. (50 This expression works reasonably well in the regiongof

If thi dition | lid for allk. then th 4 €[0,10], where the exact numerical solution of the Bethe
is condition is valid for allk, then the sequencéy (X)}  ansatz equations is available. The maximal error here is

converges. about 5%.
The validity of the stability conditiori50) is what finally

justifies the whole renormalization procedure guaranteeing
the convergence of the renormalized sequdrigéx)}. This
holds true irrespectively of whether other multipliers, such as The single-orbital Anderson Hamiltonian describes the
EQs.(42), (43), or (44), satisfy the same conditiq®0) as the  System consisting of localized electrons interacting with
multiplier (49). The auxiliary multipliers42)—(44) have ap- conductings electrons via a quantum-mechanical exchange
peared at intermediate stages of our multistep renormalizanechanism, whose strength is measuredvbyvhich is the
tion procedure. The minimization of these multipliers pro-transfer integral between tteeandd states. The energy
vides a recipe for defining control functions. This describing the Coulomb interactions between tiwlectrons
minimization is equivalent to the stabilization of local partsis another relevant physical parameter. The localized
of a cascade trajectory. Remember that we start with seried-electron numbeny is expressed through the self-eneiyy
(1) which, in general, is strongly divergent. Accomplishing of d electrons at the Fermi level:
several stages of renormalization we step by step improve
convergence properties, by making the related trajectory _1_ 1 1(2> _ 2

- o ng=5——tanh *| —|, A=mpV (59
more and more stabilized. However, it is not necessary to A

B. Asymmetric Anderson Hamiltonian

2
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S\ *

5.

3\ *
il

wherep stands for the density of states at the Fermi level for

conducting electrons. In the case when dhlevel is fixed to (Na)z =57 ;tanh‘l
the Fermi level, the following expansion far, in powers of

the small parameter=U/wA,|u|<1, was obtained in Ref.

1 1
[44]: *_— _ 4okl
(ng)s 5 tanh

2 o 2 3 4 5
—=—u(l+a,utau“+azu”+asu“+asu>) (u—0),

A 2 are considered. A posteriorianalysis of multipliers sug-
gests that the third-order approximant corresponds to the
a,=—1, a,=0.5326, a;=0.6269, (55) most stable trajectory. This could be expected beforehand,
since the coefficienta, andas are larger than one.
a,=—1.8071, a;=1.027. The density of states af electrons as well as the resis-

tivity R at zero temperature could also be reconstructed for
A direct application of expansiofb5) gives physically arbitraryu, e.g.,
(2)* 2) -1
+| | — .
A 3} }

meaningful results in the region of 0.5<u<0.5, as is
shown in Fig. 2 of Ref[44]. However, the exactly known (R(U)>* _[1
The shape of the curvgng(u)]3 is very much like the
smeared Fermi distribution, whileR(u)/R(0)]* has an

limits R(0)
of the impurity level occupancs4). To our knowledge, the asymmetric bell shape. All artifacts, which appear at the
’ curves, when the perturbative expansions are naively ex-

Padeapproximants were not applied for resumming expan )
sion (55), and it is not clear whether they can be applied attended beyond the region of smalj are smeared out, and

large values of the parametar(see[2,45]). We use below the renormalized curves appear to be rather smooth.
the technique of exponential approximants and observe that

ng—0 (U—®), ng—1l (U——x)

are violated when expansiabb) is used for the calculation

they spontaneously recover the known limits. The following C. t expansion
sequence of self-similar renormalized expressions can be The so-called expansion is a tool for a systematic im-
written: provement of variational calculations for Hamiltonian sys-
. tems [46]. Using at-dependent variational wave function
2 iy ; ; : ;
i and, after performing calculations, finally, taking the o
ulexp(azu)], (56) = , . T
A . 2 limit, one can hope to increase the quality of the variational

estimate for the ground-state enerBy This idea is most

frequently used in conjunction with heavy numerical calcu-
], (57)  lations and the Padepproximant technique. In the case of

the one-dimensional Heisenberg antiferromagnet, the expan-

S\ ow a,

(K)z =Eu[exr{a1uexp(a—lu
S\ ( a a, ) FLIL%? in powers of the parametérwas obtained explicitly
(Z)SZEU exp[aluexp{a—lueX[<52u ] , (58 '

1 2. % 1na
E=— - —t+2t>+ -t3-16* (1—0), (62
ex;{alu

4 3
a, as ay
X exp —u exg—uexpg —u
a az as

and the task of getting an estimate for the ground-state en-
ergy from the asymptotic expression validtat0 can be

])} (59 approached by the methods of Secs. lI-IV. Since the number
of terms available is finite, it is not necessary to take the limit

% t—oo explicitly, but instead we can try to minimize the error
(E) :zu[exr{aluem{%u caused by this inevitable truncation by demanding the mini-

Al 2 a; mal sensitivity of the renormalized expressiBii with re-

spect to the “time”t determining the “duration” of motion
Xexp[%uexp{%uexp(ﬁu ]) } (60) o the ground-state energy,

ao as ay
JE*
We observe that already the third-order approximanit)} at =0. (63

leads to the result

* 1 1 —1 2\
(ng)3 :E_ ;tanh K
3

Applying the self-similar bootstrap in its superexponential
, (61) form, one can see that the solution to this equation does exist
for any number of terms from the initial expansi©62).
From thea posteriori analysis of the multipliers, we con-
which possesses the correct limits. The same is true when tl@ude that the most reliable value, corresponding to that ob-
higher-order approximants tained along the most stable trajectory, is
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E% = — oxpl 4t 2texd ot 64 =
——Zex exp —zZiex § s ( ) Sl—Z, Tl——T E =0.0, S,=<45,

ith t=0.33 andE* = — 0.446. From the viewpoint of 4b) "
with t=0.33 andE* = —0.446. From the viewpoint of aa G=—52F(—) — _15.051. 67)
priori analysis, it is admissible also to construct another se-

guence of exponentials, not including the constant, mean- ] S
field result. In this case, the answer for the ground-state enln€ shape of the resulting function is similar to those ob-

different, but stable, trajectories, we can determineeli- ~ fémember that the quality of the strong-coupling expansions
ably, asE= —0.44+0.006. The known Hulthef47] exact IS jeopardized by the interfering roughening transitjés].
result — 0.4431 is located within these boundaries. We believe that the method discussed above allows us to

bypass this difficulty in a natural way.

VI. EFFECTIVE COUPLING
B. Kondo effect

A. B function of SU(2) lattice gauge model We consider below an application of the exponential ap-

The Callan-Symanzik 8 function of the (3+1)-  proximants to such an interesting problem as the Kondo ef-
dimensional S() lattice gauge model in its weak-coupling fect [51], comparing our results with those of the field-
asymptotically free regime may be presented in the form otheoretical renormalization groyp2-54.
an expansion in powers of the parameajemwhereg stands The behavior of the system, consisting of a local-impurity
for the coupling[48]: spin and conduction electrons, interacting by means of an

antiferromagnetic exchange of strengthchanges from as-

_ @261 2 bgtt---  (g—0) ymptotically free at high temperatures to that when the im-
g 9 g 9 ’ purity is screened by electronic lump at low temperatures,
11 17 (89 Via the crossover region whose onset is characterized by the
=" p= _ Kondo temperature estimated as
2472 647" .
In its strong-coupling limit,3 can be presented as follows Tk—Dexp< B ﬁ) (68)
48|:
148 whereD stands for the Fermi energy of electrons. We con-
B(9) 4 sider below only the case of a single-channel Kondo model.
— ——=A+BX+Cx*+Dx°+Fx?, x=— (g—), Most of our knowledge about the problem came from the
9 9 exact Bethe ansatz soluti¢h5,56], from the field-theoretical

renormalization groug52-54, and from the Wilson nu-
B 16 _ 88 merical renormalization groufRG) [57].
A=1, B=- 75’ C= 625’ (66) Within the framework of the field-theoretical RG in its
application to the Kondo crossover, the central role is played
131 203 551 378 by the so-called invariant charge or effective electron-
electron couplingJ;,, [52-54, measuring the intensity of
electron-electron interactions via the impurity spin:

=T 120625 390625

We will add to the expansior{66) one more trial term
=Gx!0, and determings from the boundary condition fol- Jin=1J
lowing from the weak-coupling limit(65). Two starting

terms from Eq.(66) will be renormalized to the form of an

1+2JIn

|l |o]

. ) o X . Herew stands for the typical external parameter of the prob-
exponential approximant, mimicking an instanton contnbu-lem’ such as temperature, or magnetic field. If only the start-

tion l_3r|dg|ng thes_e two I|m_|t$49], that IS, & honperturbative ing two terms from Eq(69) are taken into account, the field-
physical mechanism coming into play in the crossover re;

. . - X theoretical approach, through calculations based on the Gell-
gion, from strong-to-weak-coupling limif50]. This term Mann-Low 3 function
should disappear completely in the weak-coupling limit, '
guaranteeing rather sharp crossover. The last four terms will B=-23% (J<1), (70)
be renormalized to the form satisfying the boundary condi-
tion (65), in a way leading to a smooth matching of two |eads to the formally divergent, &= T,, expression for the
limiting kinds of behavior. We obtain the following analyti- invariant chargé52—54,
cal form for the renormalize@ function:

+.o..

—23n

(69

J
_B*(g) :AeXF<EX2 +CX4<1_EEX2) S1 Jinv_l_ZJln(D/|w|)- (71)
A s; C _ _ o
e We apply below the technique of algebraic self-similar
TEx8 1 ixz 2 renormalizationdirectly to the serieg69) for J;,,, continu-
s,F ' ing them from the region o<1 to the region ofJ~1.
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When only two starting terms from E@69) are taken into D \1? ) D \1?
account, the optimal, from the viewpoint of stability condi- I'=Jj1+coJ|In Tol +c¢1J9In W) +o
tions, solution is the following exponential approximant:
5 o2 co>0 (J<1), (76)
Ji’fwv:JeXF{ 2‘””(@ =J To] (72 with ¢c;<0. The following exponential approximant is opti-

If we perform the self-similar renormalization with the con-
trol function s=0, along the nonoptimal trajectory, we will I'=Jexp caJ
recover the expressiofTl). So, the fictitious pole is absent 0

mal from the viewpoint of stability:
D \? |c4
Inl —1| exp ———J| . (77)
|l Co
in our solution to the problem, although the typical energy N
scale determined from the condition From the condition
D
2J|n< _> -~ l CoJ

D \|? |cq]
Inf — || expg ——3J|~1,
o] || Co

coincides with the Kondo temperatui@8). Expression72) ~ We obtain the Kondo temperature:
. . . . . . . 78
A more complicated situation arises ifmuasi) two- (78

is formally divergent aso—0, in agreement with the con- 1 1]cy]
C1
Tk: DEX[{ - —Célz‘]l/zexi{i C_o J)
dimensional metal, when the Van Hove logarithmic singular-

clusion of the numerical renormalization grop§7,58.
ity in the electron density of states can influence the Konddrhis estimate suggests a decreasé pflue to higher-order

effect. In this case, as was shown in RE9], the full  corrections.
electron-impurity scattering amplitudé can be estimated as
follows: VII. EQUATION OF STATE
D \12 A. Classical hard spheres
= + |+ > < . .
['=J) 1+cod|In || » G0 (J=1), The exponential approximants can be used for construct-

(73 ing equations of state for simple liquids. For the model sys-
. ) tem of hard spheres with the diametgrwidely used as a
i.e., the usual Kondo logarithm should be replaced by theeference system, an empirical equation of state, suggested

squared logarithm, originating from the Van Hove singular-py carnagan and Starlingee[60]), is
ity. The self-similarly renormalized expression in this case

again corresponds to the exponential approximant: p  1+p+p?—p°
—_—=— (79
D \12 nkT (1-p)3
I'=Jexp cod| In| — , (74
| connecting pressung, temperaturd’, the number density,

and the reduced density= 7nd?/6. It agrees very well with

e molecular dynamics and virial expansif$0,61. The

theoretical virial formula, according to Percus and Yevick
D\ 12 [60,61], is given as follows:

'”(W” .

and the characteristic energy scale, Kondo temperature, ¢
be found from the condition

CoJ

p  1lt+p+p?—3p° (80
leading to the estimate nkT (1-p)*

These two expressions almost coincide at low densities, e.g.,
cons 1
Tk=Dexp< - —‘) const- \/: (75) at p=0.1 the percentage error of E0), as compared to
VJ

Eqg. (79), equals—0.18%; while for the intermediate and
high densities the agreement becomes very poor, e.g., at
Such a dependence f on J was the main result of Ref. —( 5 the percentage error is15.385%, and ap=0.7 it
[59], obtained as an outcome of a cumbersome first-ordegquals—37.141%.
parquet summation. To our knowledge, the field-theoretical "consider the regular part of E¢0), defined as:
RG approach was not applied to the Kondo effect with the
Van Hove singularity. On the other hand, the Bethe ansatz r=1+p+p?>-3p% (p—0), (81)
fails for this problem59].

The higher-order corrections were not considered in Refas an asymptotic, low-density expansion for the regular part
[59], because of the technical difficulties arising in more so-(p), and try to continue the expressi@i) from the region
phisticated parquet approximations. Our approach may be aff p<<1, to the region op=<1. In order to extend the validity
interest in this context, allowing us to find the corrections toof Eq. (81), let us add to it one more trial term p?. It is

Kondo temperature due to higher-order terms. Taking intoeasonable to use for renormalization the last four terms from
account the higher-order perturbative terms, one has the thus extended expansion fior since the constant term
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describes the ideal gas behavior and we are interested in the We conclude that the multiexponential formul@&4)
region of high densities. Following the standard prescriptionsagrees well with the empirical formul@9), being superior
of Secs. Il and lll, we write down the two exponential ap- to all other formulas in the region of high densities.
proximants, justified from the viewpoint of stability for the

sequence o& posteriorimultipliers: B. Quantum hard spheres

(82) At low density p, the energyE for a boson system dfl

rx(p,7)=1+pexd pexp—3 , ; . ;
3(p7) PEXH pexp — 3p7)] hard spheres with the diameteand massn is known[65]:

T
rZ(p,T)=1+peXpl’peX[{—3peX[{—§p7) ] (83) E 27TpC[1+C1(pC3)1/2+"'], C,= 128 (p_}o)

N m 157
We retained in expressiori82) and(83) the effective timer, (88)
introduced at the last step of the bootstrap procedure. It willy ¢ asp— po, wherepo= 2/ is the maximal density for

work now as a control function= 7(p) determined from the 5 gystem of hard spheres, the following expression is avail-
minimal-velocity condition migrj(p.7)—r3(p.7)|. For the  gpje[es):

sake of simplicity we choose a single control parameter

instead of the control function, from the minimal-difference E 1 2

condition imposed at a single point, chosen from the region NzAﬁ(p_lm— po Y72, A= — (p—po),

of intermediate densities, say fer=0.6. Then,7=0.845. 2

Recalculating (89)

. . corresponding to a second-order pole in the ground-state en-
p ra(p,7) (84) ergy. Let us, in analogy with the previous example, extract

nkT (1_p)3’ the singularity, ap— pg, rewriting Eq.(88) as follows:
and comparing it with empirical formuléf9), we obtain that E 2mc p"1+Cy(pc®) o+ - -]
at p=0.1 the percentage error equat®.112%; atp=0.5 N m (pflls_pfl/3 2
the percentage error is 3.215%, and ap=0.7 it equals 0
—2.92%. Formula(84) is more accurate at high densities p \ 32
than our previous resulfl4], corresponding to X|1- % (p—0), (90)
p* r3(p,1) @5 and, keeping only a few starting terms
kT (1—p)%’ 13
E 2wc p
which works with the percentage error 6f4.567% atp N m (p18_ ), 132
=0.7. What is even more important here is the possibility of 13
a self-consistent improy_ement o_f_the quality of the equation x|1- Z(ﬂ +Cy(pc) M2 ... |, (91)
of state, based on stability conditions. We should recall here Po

that phenomenological exponential-type expressions are well o o ) )
known in the theory of equations of state, beginning, probAfter the standard self-similar renormalization, involving
ably, from the Hudleston equatidsee[61], and references two terms from Eq(91), we obtain

therein and ending with its modern modification§2—64.

For example, Shinomoto’s equation for the system of hard E* 2mcC p? ex;{ 5 ( p )1/3 92)
= - —27 = |,
spheres reads N m (p71/3_ s 132
Lzex;{ 4p| 1+ Ep (86) where the control parametershould be determined from the
nkT 27 ) known asymptotic formul#89), asp— p,. Finally,
and gives ap=0.1 the percentage error 0.046%;cat 0.5 E* 2mc p3 r{ A sl P 13
the error is —6.289%, and atp=0.7 it becomes ~ = — — ex In(—p& ) —) '
~35.948%. Noom (o g 2 ame Po
A single-exponential approximation can also be obtained
from Eq. (81) by our method: _ EI A s
TT T2 n 4mcPo | (93
p*  pexplp—3p*)+1
= , (87 or, equivalently,
nkT (1=p)°
E* 2mc  p® [ A (plpo)™
giving at p=0.1 the error—0.158%, atp=0.5 the error is N 18- 182\ 4 pgm) (99
—14.498%, and ap=0.7 it becomes-28.31%. M (p™ " =pg )"\ *mC
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Equationg93) and(94) should be compared with the empiri- In the region Gsz<12, our equation(97) yields a curve
cal London equation of stafé6]. Both equations give re- lying between those of Eq$98) and (99).

sults very close to each other. So, our derivation can serve as

a justification for empirical formulas used for the system of D. Ising model

Bose hard spheres. .
The low-temperature expansion for the order parameter

C. Polymer coil (magnetizationM of the three-dimensional Ising model on a
: fcc lattice read$71]
The expansion factax of a polymer coil is represented as

a function a®=a?(z) of the excluded volume variable
=B/N(3/271%)%?, whereN is the number of bonds of the

length| each andB is an effective binary cluster integral

4
M(T)=1+bu+cu", u=e><p< - T) (T—0),
(100

[67—70. The case of a polymer coil correspondste0. In b=-2, c=-24.
the region ofz<1, the perturbation theory in powersotan
be developed, giving the expansif8] Low-temperature expansions are nonuniversal in the sense
. ) 5 that they depend on the type of a lattice, spin, etc. At the
a”=a*(z)=1+k z+kz°+ksz critical point T, order parameter demonstrates a universal

behavior, independent of the type of a lattice, spin, etc.:
+ k42t + ks +kez®  (z—0),
M~(T.—T)? (T—T.), (101

4

ki=3, ko=—2.075385396, k;=6.296 879 676, where8~0.325 is the critical index72]. For the fcc lattice,

(95) T.~9.8 [72]. We continue the low-temperature expansion
(100 self-similarly to the whole region of § T<T., im-
posing relation101) as a boundary condition. Following the
standard prescriptions of Sec. Ill, we obtain

k,=—25.057 250 72, k5=116.134 785,

ke=—594.716 63.

—s/11
On the other hand, in the limit &> 1, « is related taz by a M*(T)= [exp(bue)]—n/s_ﬁ sutt
S

simple power law

’

(102

a’=Kz°, b=2(2v—1) (z—=), (96) B b
s=-118, r=—————exp >u’T,)|=0.718.
. L ” cul{(T,) B
where v is the critical index, anK stands for the critical c

amplitude. One of the popular problems in the physics of . . .
polymer coils consists in the continuation of the expansiodn the region of intermediate temperatures, B} agrees

; ; : ; h better with the experimental data for the magnetization
(95) to the region of arbitrarg. We derive below, using the muc , o 9
self-similar renormalization, a simple equation of state foro.f Ee aﬂd Ni{73] than the Bragg-Wllhgms approxmatlon'. In
the polymer coil, valid for arbitrarg, and satisfying by de- d_|st|nct|0n from the Burley extrapolat|_({r74], our formula is _
sign both known limits, Eq995) and(96). The coefficients simple and has a wransparent physical background, taking

in expansion(95), starting fromks, grow rapidly; so do the into account both short- and middle-range correlations,

local multipliers. Because of this, we use only three startingﬁ ?:;21ggg{ébtugfn”ggig:‘etsheag);f:glrllzgtllilnfu_?gtr"og ?:tolr?g;[ir:)dns
terms from Eq(95), stabilizing the renormalized expression P ’ g-fang

by imposing the asymptotic conditid®6). Finally, after the dominating at the critical point.
standard transformations analogous to those of Sec. I, we

obtain VIIl. MAGNETIC PROPERTIES
k2 b/3
2 _ 3,3
[e*(2)]* = [ex;{ klzexF{EZ +K*Z°] . (97 Heisenberg antiferromagnet can be considered by means of
an expansion around its Ising limit in powers of the anisot-

It is known, from different approachd42,69,7Q, that 1/2  ropy parametex, equal to zero for the Ising model and equal
<p=0.6 and 1.58K=<1.75. We take the values=0.599 to one for the Heisenberg limi75,76. Such expansions can
andK =1.62, which we calculated in RefL2], and compare De generated separately for the most interesting cases of spin
the equation of staté97) with the empirical equations of 1/2 and spin 1, allowing us thus to treat them independently,

state[69,70 of Barrett and Domb, not relying on the expansion in inverse powers of spin
around a very distant case of classical spins.

s The expression for susceptibilityy of the two-
: (98 dimensional Heisenberg antiferromagnet was obtained in the
following form [75,76:

3 The ground-state properties of the two-dimensional

20
1+ §z+ 472

a’=

and of Yamakawa and Tanaka, 1 1
a2=0.572+0.428 1+ 6.2%)2 (99) FX=g taxtax’tagitan’ (x-0),
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a;=— =, a,=0.177083, az=—0.189 8148,

a,=0.191 761, as

0.196 579,

a;=0.197 934, a,

1
0.201 447 (S= E)’ (103

a,=—0.142 857, a,=0.144 643, az=—0.149 916,
a,=0.150 672, as=—0.153 095,

as=0.153 437, a;=—0.154932 (S=1).

According to general prescriptions of Sec. IV, we should
first, analyze the values of local multiplieng(s), ass— .
Consider the case @&=1. Since the values of the coef-
ficients in the expansiofl03 are slowly growing and oscil-
late with increasing number, the local multipliers will oscil-

late too. We conclude that in some cases we can continue tl?Fo
trajectory moving along the stable regions, while in other
cases we have to move along unstable regions. In this situa-

tion we must rely on the posteriori analysis. In order to
choose the starting term in E@L03), let us compare the
values of my(s), as s—«. Then my(x)=1+a,/a;

=—0.143 andm,(«)=1+az/a,= —0.013. Since the latter

number is smaller, we should start the renormalization pro
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1 1 a az ay ag
= X5 (1) = 5 +axexp —xexpg—Xexp —xexp, —X
2 8 al a2 a3 a.4

3 ay

X expg —Xexp — X7 =0.083
as dg
(mg =0.394. (109

We observe two subsequences, with odd and even numbers,
probably embracing the correct result from below and above,
respectively. We can suspect that they both define a stable
quasifixed point corresponding to a focus. In order to locate
it with maximal possible precision, we can impose a
minimal-difference condition on the points, one belonging to
'the “odd” and another to “even” subsequences, with the
smallest absolute values of multipliers. On the other hand, it
is interesting to compare the values that can be obtained
from the minimal-difference condition imposed on two start-
ing terms of the renormalized sequence with those obtained
m two last terms. E.g., from the condition iy (7)

X5 ()|, we obtain the value of the control parameter
0.56. Correspondinglyx3 (7,S=1)=0.088. We obtain
thus 0.08% x* (7,S=1)=<0.088, with the lower bound fol-
lowing from the analysis of two last terms and of two ap-
proximants with minimal multipliers. Our estimate should be
compared to the result of R€f76], 0.095+0.002, obtained

cedure from the linear term, keeping the constant term unfY Padesummation.

touched. The following sequence of exponential approxi

The case 08=31 may be treated by analogy with the case

mants can be readily written down, with the corresponding®’ S=1. Following literally the same steps as above, we

multipliers shown in brackets, calculatedat 1 andx=1:

L s(n=11 o r|=0.146 (mi=1
2)(2(7-)—8 aijxex aIXT =0. (m7j=1),

(104
=2+ 22 vexd x| |=0.05
§X3(T)—§ a|xex a—lxex a—ZXT =0.

(m3=-0.025, (105
1, _1+ a, as as
5)(4(7')—5 a;xex a—lxex a—zxex a—BXT
=0.107 (m}=0.949, (100

1, _1+ ;{az
2)(5(7)—8 a;xex alx

as ay as
X exp{—xexp{—xex;{—xr) } )= 0.075
a az ay
(mj=0.225, (107)
1 1 ay az ay
p— * p— — — —
5 Xe (7) gt alxexp{al xex%az xexp[ a X
as dg
X ex;{—xexp(—m-) } ) =0.094
a, as
(mz =0.754, (109

obtain 0.06Z y* (7,S=3)=<0.064, which is close to the re-
sult of Padesummation, 0.06%0.003[75].

The ground-state energf of the two-dimensional
Heisenberg antiferromagnet may be presented in the form of
an expansion75,76:

2E

=—4+a,x°+ax*+agxb+agx® (x—0),

a,=——, a,=0.0064, ag=—2x0.006 326 28,

§1
_ 1)
s=5/, (110

a,=—0.571428, a,=—0.0504597,

ag=—2Xx0.003 008 5 (

ag=—0.014476 2, ag=—0.006562 38 (S=1).

In the case of spin 1, the values of the local multipliers
m,(s) are increasing with increasing indéx In order to
choose the starting term in E(L10), we compared the val-
ues of my(»)=1-a,/4=1.143 with m,y(«)=1+a,/a,
=1.088. l.e., an approximation cascade will have a more
stable beginning if it starts from the second term in Eq.
(110. Thus we come to the exponential approximants

a,
2EX——4+ azxzexp(a—:xzr) , (111)

2EX=—4+ azxzexp{ —xzr) . (112

A4 200d 26
ex
a, a

4
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From the minimal-difference condition m|&}(7)—E; (7|
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1371

a az
we find 7=1.568 andE%(7,S=1)=—2.328, close to the 2M’3‘=1+a15exp{a—16ex;<a—5”=0.621 (m3=0.802,

result of PadesummationE= —2.327+0.001[76].

2

In the case of spin 1/2, the same approach is applicable,

and we obtainr=0.457 and &% (7,S=3)=—2.665. Pade
summation gives in this casee4- —2.6785-0.001[75].
Pass now to considering magnetizatidn In the case of
spin % it is more convenient to preseM in the form of a
series in the parametd; related tox by the equation

1-6=(1-x»)12 (113
Then[75],
2M=1+a,;6+a,6°+az8°+a,6*+ass° (5—0),
4
a=—3. a=008, a;=-0009319, (114

a,=—0.4642, a5=0.08257.

(121
. a, as ay
2M; =1+a,dexp — dexg — dexp — o |} =0.556
a; as as
(m} =5.149< 10" %), (122

. ap az ay as
2Mg =1+ a,oexp— dexp, — dexg — dexp — o
a; a, ag ay,

=0.613

(mj; =0.722. (123
The last value agrees well with the result of Rgf5], 2M
=0.605:0.015.

In the case of spin 1, the following expansion in powers
of & can be obtaine{i76]:

M=1+a,56°+az6°+a,6*+ags® (6—0),

The local multipliersm, behave quite irregularly, reflecting
the behavior of the coefficients. In this situation we resort to

- ; ; a,=—0.326 528, a;=0.326 528,
an a posteriorianalysis of the sequences of exponential ap-

(124

proximants and corresponding posteriori multipliers,

whose values will be given in brackets. For the sequence
including the constant term we observe a recurrent behavio

signaling an emergence of a limiting cycle:

2M* =exp(a;8)=0.641 (mi=1), (115
a
2M§=exp{a15ex;{a—5”=0.69 (m3=0.737,
1
(116)
ap as
2M3 =exp} a;5ex a—éex a—5 =0.685
1 2
(m3=0.78), (117
a a
2Mz:exp(aléexp[a—zéexp[faexp(a—“é H)
1 2 3
=0.641 (mi=1), (118

2ME :exp{alﬁ

a a a a
X ex;{—2 6exp{ hacs o exp{—4 6ex;{ hac 5) } ] )}
a, a, as a,

=0.679 (mf=0.808. (119

a,=—0.73216, as=1.300 105 6.

TThe values of local multipliersn,, in this case, suggest that
inclusion into consideration of the last term destabilizes the
trajectory. In this situation we again resort to #hposteriori
analysis. The following sequence of exponential approxi-
mants can be readily written down, with the corresponding
multipliers, calculated at=1, shown in brackets:

M3 =exp(@,8%7)=0.721 (m}=1), (129

* 2 a3
M3 =expg a,é°exp — ot
a

—0.887 (m%=0.208,

(126
a a
M} = exp{ a, 52ex;{—3 5ex;{ = 57-) ]
ay as
—0.746 (m%=0.931, (127)
a a a
ME= ex;{azézexp{ = 5exp{—4 5ex;{ 257 ] )
a, as a,
—0.848 (m:=0.33. (129

We observe two subsequences, with odd and even numbers,
probably embracing the correct result from below and above,
respectively. We can suspect that they both define a stable
quasifixed point, corresponding to a focus. In order to locate

We construct also a different sequence of exponential apt with the maximal possible precision, we impose the mini-
proximants, not including into the renormalization procedureyg| difference condition on two points, belonging to two

the constant term:

a
2M% =1+a15exp(a—25) =0.629 (mi=1), (120
1

different subsequences with the smallest values of multipli-
ers, i.e., minM; (7)—M3(7)|. From this condition we deter-
mine 7=0.404 andM}, (7,S=1)=0.804, in agreement with
the estimateVl =0.81+0.01[76].
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The expansions for the frequency momeptsandp,, of The following expansion for the critical index of the
the intensity of light scattering on the spin-pair excitations,lsing model is availabl¢77] for the square lattice:
are available folS=1 [76],
v l=wyt+wietw,e?  (e—0), 13
2p12a0+ a2X2+ a3X3+ a4X4+ a5X5 (X*)O), ( 4)
W0: 0687, W1: 114, W2: —-1.21.
ap=14, a,=0.530612, az=-0.141138, (129
Directly for the indexv, one can find

a,=0.033837, a5=0.017 167 8,
Vzao+a1€+a262 (EHO), (135)
4p2:a0+ a2X2+ a3X3+ a.4x4+ a5X5 (X—)O),
a,=1.456, a;=-—2.415, a,=6.572.
ay=196, a,=17.469, a;=-5.33453, (130 ) _
When only two starting terms from E¢L35) are considered,
a,=3.329 92, a;=0.626 767. the result is definitely wrongy=—0.96, and with three
’ terms we getv=5.61. This shows how expansigh35) is
Consider the case gf,. Comparing the local multipliers, bad. The renormalization procedure, not including into con-
as s—», my(®)=1+a,/a,=1.038 and my(x)=1 sideration the constant term, gives the exponential approxi-
+agz/a,=0.734, we conclude that the constant term shouldnant
not be included into the renormalization procedure. Then, at
=1 andx=1, the following values of the exponential ap- v§(e)=a0+aleexp<a

—26
proximants can be calculated: 1

—1.297. (136)

. ) as B . This result, is, probably, too large and it does change much,
2(p1)2=ap+axx ex a_ZXT =7.203 (m;=1), to the value 0.568, when the condition on zero derivative is
(131 imposed. Then, in order to extend the validity of the expan-

sion(135), let us add to it a negative trial term|as|e3. The

as a, following renormalized expression can be written:
2(p¥)sz=ap+a x’exg —xexpg —xr
az as a,
: =ap+ —e——.
—7.215 (m%=0.833, (132 v3(€as)=a9 alfeXp( a, 1t (agiage 137
ag a, as From the condition equivalent to E¢5),
2(p¥)a=ap+ arx’exp —xexpg —xexp — X7
a2 a3 a4 *
191/3(6,8.3)
—7.222 (m}=0.585. (133 e O

We observe a smoothly behaving sequence of multipliersat e=1, we findaz=4.268 andv} (e=1)=0.992, in excel-
From the minimal-difference condition mi(p7)s—(p7)sl,  lent agreement with the exact resuit=1. Our estimate is
we find 7=1.593 25 and £7),=7.221, in agreement with much better than the result of Padammation»=0.945,
p1=7.22+0.02, quoted in Ref.76]. Identical analysis leads quoted in[77].

to the value p3),=52.804¢=1.27), again in agreement For the critical temperaturé. the following expansion
with p,=53.0+0.3 from Ref.[76]. The value of the param- was obtained77]:

eterR=(\/p2—p21)/p1 is equal to 0.113, close to 0.30.3

from [76]. Tglzbo-l— bie+ b262 (e—0), (139

X CRITICAL PHENOMENA bo=0.4359, b,=0.024, b,=—0.109.

A. Martinelli-Parisi € expansion This gives forT,

Martinelli f_;\_nd Parisi suggested an ?nteresting way to con- T.~ag+tajetaye? (e—0),
trol the position-space renormalization-group calculations (139
[77], connecting the approximate Migdal-Kadanoff transfor- _ _ _
mation with the exact theory by means of the control shift =2.294, a,=-0.126, a,=0.581.
parametete, equal to zero for Migdal-Kadanoff approxima- Two exponential approximants can be written
tion and equal to one for the exact renormalization transfor- '
mation. This approach generates the expansions in powers of a,
€, considered as a small parameter, around the Migdal- (T§)1=a0ex;{—er), (140
Kadanoff results. Finally, in order to reach the “exact” so- do
lution, one should se¢=1. The results can be further im-
proved by imposing the condition on zero derivative of (T§)2=a0exp{ieex;{ a2

— €T
physical quantities a¢=1 [77,78. 1

. (141
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From the minimal-difference condition, a=1, we find 7 aT*

=0.278 and T} ),=2.259. The result does not change much Je =0,

(to the value 2.2487=0.217) when the condition on zero

derivative of (T} ), is imposed. Let us add to the expansion and ate=1 we find 7= —a,/a;=5.177, and
(139 one more term-|as| €%, so that the following approx-

imant can be written: Tf=ap+ae 1=3.669,
o a a2 1 deviating from the exact value 3.642 with the percentage
(Tc)s=apex a, P a, ‘1 ([agllaye) |’ (142 error 0.741%, while the result 3.888, following from expan-

sion (146) and quoted i 78], gives the error 6.755%.
and determineas from the condition on zero derivative at For the first coefficient of the beta functiof, of the
e=1. Then,|as|=0.664 and T});=2.279. Padeapproxi- two-dimensional nonlineasr-model the following expansion
mants in this case give a close restilt=2.275[77]. Thisis  was obtained79]:
to be compared with the exatt=2.269.

On a triangular lattice, the following expression fowas 3
obtained[78]:g 9 ExP B1= |n(2)(ao+alf+azf ) (e—0),
(149
21’V:a0+ aje+ a262 (e—0), (143 o i _i ~ 6_9
BT 7oy BTy BT ge
a,=1.6786, a,=0.5344, a,=—0.3952.
In this case, the exponential approximant The exponential approximant
a; ao * \/§ 4132 )
Uvy* — = < ap+aeex =-0.081 150
(2V)* =g ex;{ao eex;{ 2 € (144 Bi= in(2)| 2ot & a (150

leads tov* =1.035, which is a much better value than 1.161is in good agreement with the exact result
obtained in Ref[78] directly from Eq.(143). It is possible to  81;= — 1/4w=—0.08[79]. The derivative of37 is small and
improve our estimate performing the last step of the selfequal to 0.006, so that we can safely stop at this point.
similar bootstrap along the most stable available trajectory,

with the stabilizers corresponding to zero value of the local B. Localization length

ipli =1+ + . This yi " - .
multiplier m=1-+2,(1+s)/a;s. This yields The critical exponent describing the divergence of the

a; s s localization length in the vicinity of the Anderson transition
(2¥)* =agex a—oe W) ) from the insulating to the conducting phase,
e I~(Ec—B)"",
J—— 2 —
s= a;tase 2.86. (149 as the energ¥g of an electron approaches the mobility edge

E., can be presented in the form of {Z) expansion, or

Then,v*=1.015 forr=1. The derivative ofv* is equal to  (d—2) expansion, where is the dimensionality of space
0.035. At the pointr=1.152, the derivative goes to zero, and [g()],

our estimate changes slightly id =1.036.
For the inverse critical temperature on a triangular lattice 1 ) 3
[78], we have p= ;+be +ce® (e—0),
T '=by+bie+bye? 0 9 27 (150
o “hotbierhet (20 g b=-4(3), o= 16l(4).
by=0.3047, b;=-0.0976, b,=0.0501.
» i The result given by the starting two terms is wrong,
For the critical temperature we obtain v=—1.705, while it is known thatv=2/3 in the three-
dimensional casee=1) [81]. The third term slightly im-
(147 proves the situation, but the result remains sma#,0.122.
Renormalizing the starting two terms yields the exponential
approximant

T.=agtaetae’® (e—0),
=3.282, a,=1.051, a,=—0.203.

The following exponential approximant is favored from the 1
viewpoint of local multipliers: v* (e,7)= —expbe37). (152)
€

* a
Te=apt+aeexp —er|.
a;

(148 Let us impose the condition

The derivative of Eq(148) is quite large atr=1, so we Jv*(e,7) _
resort to the condition de ’
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discussed above in Sec. IV. Then, the control functi¢e) ATIA™=2"[1+e—|ay€?] (e—0),
is found as follows:
(158
43 1 3
(€)= (153 =52 M {3

3bed
Two renormalized expressions can be constructed,

At e=1, we obtaint=—0.123 246, corresponding to the

necessity to move backwards, from the wrong point of the

approximation cascade. Our estimate for the critical index A_*

v* =exp()=1.395 61 better agrees with the numerical result 1

1.3[82] than the Pad@orel estimate 0.730 quoted in Ref.
[80].

+\ *

=2 2[exp(eT)], (159

1\ *

e =22 2fex{ eexp(—|ay|e7) ]}, (160

2

C. Amplitude ratios
both exponential approximants being justified from the view-

Consider the three-dimensional Ising model. D|fferentpoint of stability conditions. From the condition

amplitude ratios are available in the form of the Wilsen
expansion é=4—d) around the dimensionality foui83].
For the ratioC*/C~, related to the magnetic susceptibility in min
zero field, the following expression is available: T

* *

A+
A~

A+
A~

2 1

+

ith the typical value ofx=0.11, we find that-=0.669 and
Fzzy[1+ale+a262+a3e3] (e—0), w ypical vaiu we fi

(AT/A7)3 =0.527, agreeing well with the data of Table 5
(154  from Ref.[83].

alzi, azzé, For the amplitude ratioR; andR, (see[83]), the follow-
2 108 ing expansions are available:
2 3)+ =1.171 953 1
A= oMt 5( "t irees ML ' Ro=g2 * te[1+aje—|aje’] (e—0),
In order to improve the stability of the procedure, let us (162
invert C*/C™~ and study gl 989 4 (3)_E)\
1727 %7 %916 9t
4\ -1
= =2""1+be+bre?+bse’] (e—0), and
. 1 (1595 R ~3(5-3)2py+(1- )2
b,=—=, by,=—, by=—7.5519x10 2. X
2 54 1 1
X 1+(—+—>\ g(3))e3 (e—0).
From the viewpoint of stability conditions, the following two 72 36 18
approximants are well justified: (162
ct\ 7t b, The self-similar exponential approximants are
— =277 1+b168XF<—67') (156
c™ ) by 1
(R} =52 2 *e[explaser)], (163
Sl I R pteon] pter) |
- = lEeX eeXx 1 a
C 3 by b (Re)3 =—22Bler exp{ aleexp< - M67') J .
(157) 9 a;

(164

and from the minimal-difference condition . . .
From the minimal-difference condition mjtR.)3 —(R)7 |,

ct\ 7 * ct\ with the typical value=0.325, we obtainr=0.633 and
min|| | — == , (Rc)5 =0.053 agreeing well with the results quoted in Ref.
T c 3 c 2 [83].

The renormalized expression f&;, writes
with the typical value ofy=1.24, we obtainr=0.297. Cor-

respondingly, C*/C™)*=4.673. This value agrees well Ry =3(°~ 32+ (1=l
with the theoretical estimates and experimental fag.
The ratioA™/A™ is related to the two-point correlation 3
. exp szt 52N — 3
function at zero momentum, F(72 36 85( )) €

(165
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We take 6=4.825, corresponding, by virtue of the scaling From the minimal-difference condition mjmZ (e,n,7)

relation, to a reasonable value for the critical index — 74 (en,7)|, equivalent in this case to the equation
=0.03. ThenR* =1.675, close to various estimates pre-
sented in83]. ag(n)

Finally, we consider the quantityz,|, the universal res- ™ ex;{ a,(n) ET)’

caled spontaneous magnetization,
we can find the control function= 7(n) ate=1. From for-

|zo| = /32P[ 1+ a e+ a,e®—|ag|e’]  (e—0), mula (171, we can estimate the critical index

7s (L,n,7(n))=n*(n). The results of calculations are pre-

1 73 1 7 5581(166) sented in Table I. They agree well with the majority of dif-
alzz, 32:8_64’ a3=24 5(3) 93312 ferent kinds of estimates available for the critical indgx

For the critical indexv, up to the fifth order ire (see the

The self-similar exponential approximants, justified from theAppendm), one hag8s]

viewpoint of ana posterioristability analysis, are »~L=bo(N)+by(n)e+by(n)e
a +ba(n)e+bu(n)e*+be(n)e® e—0),
|Zd;:¢§2{ex%aﬁﬁx45367 ] 167 A(ME+bME+bME (-0, (o
1 bo(m =2, by(n)=— e
n)=2, n
. [Rop a, |ag| 0 T hts’
205 = V32°|exp ajeexpg — eexpg — ——er| [{ ],
a a (n+2)(13n+44)
(168 by(n)=— 3
2(n+8)

and from the minimal-difference condition mjizy|3
—|z0l3| we find 7=0.633 and|zy|5 =2.913 agreeing well
with the result of Padsummation 2.8% 0.06[83].

The following exponential approximants, preserving the cor-
rect limitsy=1% atn=—2 [86—89 andv=1, asn— o [89)],
can be written, giving at=1 ande=1 the following re-

sults:
D. Critical indices from the Wilson e expansion
Critical indices are usually obtained from the Wilsen N bo(n)
expansior{ 84,85 using some kind of a resummation proce- ()2 bo(n)+b1(n)eex;{ b,(n) €7
dure. As a rule, for different values of, standing for the 173
number of the order parameter components, one obtains v5(n=0)=0.607, v3(n=1)=0.655,
some values not related to each other analytically. We obtain . .
below analytical renormalized expressions for the critical in- v;(N=2)=0.698, »;(n=3)=0.736.
dicesv and 7, valid for arbitraryn.
For the critical index, the expansion is available up to (v H3=bg(n)+by(n)e
the fifth-order term ire [85]. For convenience, we reproduce b b
the higher-order coefficients in the Appendix, xex;{ 2") €ex () €T
ba(n) ba(n)
n=ay(n)e>+az(n)e3+ay(n)e*+as(n)e®  (e—0), (174
(169 v3(n=0)=0.579, v3(n=1)=0.616,
n+2 . .
az(n)=m, v¥(n=2)=0.651, »%(n=3)=0.683.
bs(n
n+2 (vl)Z=bo(n)+b1(n)eexp[b2( e
aq(n)= o — 5 (272+560—n?), 1(n)
o) 4mm> %mm>>]
X X T ’
The following exponential approximants are justified from bo(n) bs(n) (175
the viewpoint of the stability conditions for local multipliers:
v;(n=0)=0.603, v} (n=1)=0.649,
* _ 2 3 ay(n)
75 (€,n,7)=2ay(n)e“+ag(n)e’ex a(n) v (n=2)=0.692, v} (n=3)=0.729.
(7o b,(n) bs(n)
n n
“HE=bg(n)+by(n ex;{z— exp‘ &
7E (€N, 7)=ay(n)e?+ag(n) €3 (v7)5 =bo(N)+by(m)eexil oy eexp iy €
a,(n) ag(n) [{b4(n) ;{bs(n) ) })
X ex ex .
xexr{ag(n) eexr{ 2a(n) er||. (A7) ba(n) € ba(n) €T

(176
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TABLE I. Critical indices, for the models with different numbers of componemtsalculated by using
self-similar exponential approximants obtained from &expansion, and compared to the results listed in
literature. The indices,, #, and 6 are calculated directly, and other indices are found from the known

scaling relations.

n v n y B e 6 1%
-2 1/2 0 1 1/4 1/2 5 0.4
-1 0.545 0.019 1.08 0.278 0.365 4.888 0.431
0.589 0.03 1.16 0.303 0.233 4.825 0.464
0 0.587-0.592 0.026-0.034 1.157-1.162 0.302-0.305 0.231-0.236 +D4Bb
[90] [92] [90] [92] [92] [91]
0.632 0.035 1.242 0.327 0.104 4.797 0.498
1 0.629-0.634 0.031-0.038 1.237-1.244 0.324-0.327 0.107-0.110 +003
[90] [92] [90] [92] [92] [91]
0.671 0.036 1.318 0.348 -0.013 4.792 0.531
2 0.662-0.677 0.032-0.039 1.308-1.327 0.346-0.3480.007—0.1 0.52£0.02
[90] [92] [90] [92] [92] [91]
0.708 0.037 1.39 0.367 —-0.124 4.786 0.562
3 0.704-0.72 0.031-0.038 1.385-1.406 0.362-0.368).115—0.117 0.55:0.015
[90] [92] [90] [92] [92] [91]
0.741 0.036 1.455 0.384 -0.223 4.792 0.592
4 0.738-0.755 0.036 1.449-1.483 0.382 -0.213
[90] [92] [90] [92] [92]
0.797 0.033 1.568 0.412 -0.391 4.808 0.645
6 0.79-0.818 0.031 1.556-1.608 0.407 -0.37
[90] [92] [90] [92] [92]
0.84 0.029 1.656 0.432 -0.52 4.831 0.688
8 0.83-0.856 0.027 1.637-1.687 0.426 —0.489
[90] [92] [90] [92] [92]
0.872 0.026 1.721 0.447 -0.616 4.848 0.723
10 0.85-0.884 0.024 1.697-1.744 0.440 -0.576
[90] [92] [90] [92] [92]
0.896 0.023 1.771 0.458 —0.688 4.865 0.751
12 0.881-0.902 0.021 1.741-1.783 0.450 —0.643
[90] [92] [90] [92] [92]
0 1 0 2 1/2 -1 5 1

’

v (n=0)=0.58, »&(n=1)=0.618, For the critical exponent(e)=2B,, calculated in the

renormalized infrared-stable fixed point, the following ex-

pansion is availablg85]:

vt (n=2)=0.654, v¥(n=3)=0.688.

Two sequences, with odd and even numbers, are clearly w(€)=e+cy(n)e?+cy(n)ed  (e—0),
seen. The last two approximants give the closest values.
From the minimal-difference condition mjw %)
—(v Y|, which simply reduces to the equation cy(n)=— 9n+42
(n+8)?’
bs(n
T:exp( o )) ar
ba(n) 1 3 )
c3(n)= ————[33n3+ 5382+ 428
4(n+8)*

one can easily find the control functier= 7(n), and, finally,

calculate the critical indexy* (n)=[(v" 1)1 +9658+ £(3)(n+8)96(5n+22)].
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We limit here the discussion by the third-order terms, since 6.074 074 08+ 28.148 148 15
the higher-order terms grow impetuously, jeopardizing the  as(n)=— 5 ,
fulfillment of the stability conditions. The following expo- (n+8)

nential approximants are available being well justified from

the viewpoint of stability: For the velocity field we have

as(1 3
w3 (€,n,7)=eexgcy(n)er], (178 v3(f)=—§3<§(1+\/1+4f) ,
wg(e,n,r)=eexp{ cz(n)eex;{ ?E:z ET) , (179  Which s to be substituted into the evolution integral
2
B’l* df
and from the minimal-difference condition J' NN (181
-g+g°U3
e exp( c3(n) cr The rootgy =g7 (n,7) of the equatiorBY (g,n,7=1)=0 is
Cp(n) )’ obtained numerically, as a functigf = g7 (n). The follow-

ing values were obtained in the physically important cases:
one can find the control function= 7(n) ate=1. We obtain
the following values of the index in the physically interesting g7 (n=0)=1.59, g7(n=1)=1.559,
region:
g7 (n=2)=1.524, gj(n=3)=1.491.
w*(n=0)=0.788, w*(n=1)=0.788,
Such a decreasing, with, dependence is characteristic to
w*(N=2)=0.791, w*(n=3)=0.794. the majority of related studies. We observed also, that at
n=-2, g7 =1.599 and ah—~, gj=1. The dependence
The limiting values, w*(n=-2)~0.8, w*(n—®»)~1, of g*(n) in the intervalne (—2,0) is nonmonotonous, a
sound reasonable. The dynamical critical indexwv can  maximum is reached ai=—1, whereg; =1.61. We also
be estimated using EqéL76) and (179. The results for the constructed a different beta functi@y(g),
critical indicesn andv, presented in Table |, agree well with
other theoretical estimates and available experimental data  B,(9,7)= —gexd —as(n)g?]+ g?exy as(n)g?]
[90-92. Let us stress again, that at= —2 andn—o, we

obtain the exact results. +a5(n)g5ex;{ agfn; g7'> (182
as(n '

E. Critical indices from the field-theory expansion leading to the following increasing with values of the fixed

Field-theory approach in the theory of critical phenomengpoint g5 (n,7) at 7=1:
is, usually, very accuratf92,93. In Ref.[13] we analyzed

the expansions in powers of the interaction constar{g g5(n=0)=1.163, g5(n=1)=1.208,
expansion for some critical indices from the viewpoint of
the limiting casesr=—2, n—o, and found by a direct in- g5(n=2)=1.249, g5(n=3)=1.285,

spection of the expressions far and y from [92] that the
n—oo limit, corresponding to the spherical moddé9], is  possessing a maximum at=7. Such an increasing depen-
obeyed rigorously ifg=1, i.e.,, =0, y=2, and the dence better corresponds to the known decrease of the criti-

n=—2 limit, corresponding to the Gaussian polyni86—  cal temperaturelT., from the Ising i=1) to Heisenberg
88], is obeyed with a very high accuracy for arbitrayyi.e., (n=3) model[72], sinceT.~g ! [94]. We attempt now to
n=~0, y=1. minimize uncertainty, connected to the way of determining

The standard approa¢83] uses, for computing the renor- the fixed point. Imposing the minimal-difference condition
malized infrared-stable fixed poim* of the beta function
B.(g), a complicated Borel summation technique. Then min|g3 (n,7)—g7(n,7)|,
critical indices are calculated agg*) and (g*). The re- T
sults, thus, depend on the way in which the position of the , . .
fixed point is determined, although different approaches givd/® obtain the control functior=7(n), and the following
the results very close to each otfig]. We suggest below a values for the optimized zero of the function
simple way to minimize an uncertainty related to the position
of the fixed point. Let us use below two different approaches
to the determination af* . The first approach was suggested
in Ref.[13]. It is based on three starting terms from the
expansion from Ref92] (see the Appendix

g*(n=0)=1.311, g*(n=1)=1.334,
g*(n=2)=1.352, g*(n=3)=1.365.

These values increase untiE5, wheng*(n=5)=1.372,

B.(g)=—g+g?+as(n)g+a,(n)g and then decrease ungf =1, asn—.
1(9) 99 Mg (Mg For the critical index»n, we keep all the terms available,
+as(n)g>+ag(n)g® (g—0), up to the sixth order in powers of[92] (see the Appendix

(180
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7(9)=by(n)g?+bs(n)g3+b,(n)g*+bs(n)g°+be(n)g® (g—0),

0.296 296 296 3n+2) by(n) 0.024 684 001 A%+ 0.246 840 014+ 0.394 944 022 4
’ n)=
(n+8)? 3 (n+8)°3

(183

by(n)=

From thea posterioristability analysis we select the fifth- ing formulas with respect to the variation of physical param-
order approximant corresponding to the smallest multiplier:eters. All examples we have analyzed are related to impor-
. 5 tant physical phenomena, such as critical and crossover
75(g,n)=ba(n)g phenomena. We demonstrate that the method of self-similar
exponential approximants provides an effective general tool
bs(n) b4(n) bs(n) f - : o ;
X ex gex gex g or treating many different problems of statistical physics.
b,(n) bs(n) bs(n) In conclusion, it is worth touching the following question.
(184  Assume that we are given a truncated sefl¢sThen, would
it be possible, looking at the given series, to get some heu-
so that ristic arguments, when the self-similar approximants in the
o o ox A form of nested exponentials should yield good results? The
75(9*,n=0)=0.027, 75(g*,n=1)=0.034, answer to this question is yes, we can make a preliminary
.o e o estimate of whether the nested exponentials would work
75(9%,n=2)=0.039, 75(g*,n=3)=0.04. well. Such a first-glance investigation can be done by ana-
lyzing the a priori multiplier (42). Since the case of the
nested exponentials correspondstec, then from Eq48),

These values agree well with those quoted in Ref§,92.
For the critical indexy we write down all the terms avail-

able, in powers ofy [92] (see the Appendjx we have
k
_1: 2 3 a
v oTiredmeTang g lim my(x,8)= >, a_nXan—ao, (187

+c4(n)gt+cs(n)gB+cg(n)g®  (g—0), (185 soo0 n=0 8o

n+2 n+2 From here, we immediately notice what would be the favor-

ci(n)=- , Cn)=——, ... able cases for the better stability of the procedure, which is

2(n+8) (n+8)? related to the condition of the minimal multiplier modulus,

|m,(x,)|. Such favorable cases include the followir(d.
When a,, decreases as increases, so thda,/ag|<1 and
lag—0, asn—o, If |x*n~%| increases witm, then, to
compensate this increage,,/ao| must decrease sufficiently
fast. (i) When with increasingn, |x“n~*0| decreases. This
»(n ca(n) kind of situation occurs, e.g., in the strong-coupling limit of
g ;{ g” many quantum problems, wheg,<0, andx“n~ “—0, as
) C2(n) 189 N If the decrease ofx“n~*0| is sufficiently fast, then
(189 la,/ag] may even grow withn. (iii) When Eq.(1) is an
so that alternating series, that is, the coefficiers change their
signs with changing. In this case, even if neithéa,/ay|
y*(g*,n=0)=1.164, y*(g*,n=1)=1.243, nor |x®~%| decrease, but nevertheless, because of alternat-
ing signs ofa,,, the valug/my(x,»)| may be small.
y*(g*,n=2)=1.319, y*(g*,n=3)=1.39, The worst case, as is seen from Et87), would be when
all coefficientsa,, are of the same sigm,, increases with,
so thata,/ap>1, and in addition, whex“n~“0>1. To ex-
plain why this case is really the worst, consider a simple
X. DISCUSSION illustration for serieg1) truncated at second order,

In this paper we have developed analytical approach
for summing divergent series with arbitrary noninteger as
well as integer powers. This approach is based on the notion
of the self-similar exponential approximanty a number of | "€ refateda priori multiplier (187) is
examples we show that the developed method is general and
accurate. In addition, the exponential appr_oximants have a my(x,00) =1+ —x+ 2. (189
simple analytical structure, even for the quite large number
of perturbative terms used, when one usually has to resort to
numerical techniques. Because of its analytical nature, oustarting withp,(x), let us construct the simplest nested ex-
method permits one to accomplish direct analysis of resultponentials, not invoking control functions,

The third-order exponential approximant is selected b)aan
posteriorianalysis, since it corresponds to the smallest valu%
of the multiplier, giving the following expression for the
critical index:

(y H% =1+ ca(n)gexy -
3 1 Cl(n

which again agrees well with the data of R¢f80—92.

Po(X)=ag+a;x+ a,x>.
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=5(x) and 7= 7,(x) so that the sequend@y (X,Sk,7)} IS
. convergent. Equations defining these control functions, as
(189 always in the framework of the self-similar approximation
theory [7—14], follow from the requirement for the corre-
The sequencéfy (x)} has to satisfy the stability condition sponding approximation cascade to have a stable fixed point,
(50), with the a posteriori multipliers (49). In our case, the stability of a fixed point being in one-to-one correspon-

a; a; a;
fl(x)=apexp —x|, f3(x)=agex xexp —x
ag a

0 a

mj (x)=1 and dence with the existence of a limit to which the sequence of
approximations convergg40,11,95. Developing this pro-
. a, a, \f3(x) cedure, we come to a convergent sequelf§gx)} of self-
m; (x)={ 1+ a—lx)ex;{a—lx T (190 similar approximants ¥ (x) = p} (x,s(X), 7«(x)) which can

give very accurate approximations for the sought function,
Assume now that a,.,;>a,>0 and x>0. Then but will not have such a nice structure as that of nested

f*..(X)>(x). In such a case, multiplief190) is more exponentials. _ _ _ 3
than unity. Hence, the procedure is locally unstable, and we 1he self-similar exponential approximants, in addition to
cannot trust to approximanid89. The first of them, i.e., having a nice and convenient mathematical structure, evi-

; ; ently illustrate by their form the idea of self-similarity of
f1(x), can yet give a reasonable estimate, but the secon%’, rg/ximationﬂ—yg] Thus if we ntroduce a function y
f3(x), is certainly untrustable. PP '

In this way, a quick glance at treepriori multiplier (187 G(X,y)=xe'
gives us a feeling of whether the self-similar exponentials
would produce good results. But the final conclusion ofand use the notation
whether we have managed to construct a convergent se-
guence of nested exponential approximants is to be based on xi=bxPi,  xg=agx®,
the stability analysis of the renormalized multipligi9).
The relation between the latter and taepriori multipliers ~ then the self-similar approximarit8) can be written as
(187 is not direct, as can be seen even from the simplest
case resulting in Eq$188 and(190). In general, it would be Fi()=G(x0,G(Xg, - - - ,G(X-1.X0)), - - -)-
more correct to say that there is no direct relation between

O . Finally, one more possibility of treating divergent series,
these two types of multipliers. Therefore there is no neces- X i )
. g 7 - when the direct construction of nested exponentials does not
sity of requiring that thea priori multipliers (187) be com-

work, could be either by resorting to a change of variables or

pulsory_less than un_ity in thei_r absolute ve_llues. Itis suff_icientby invoking a transformation of the given series, so that the
to require that the final multiplier&49) satisfy the stability following application of the self-similar appr,oximation

condition (50). theory would result in a convergent sequence of nested ex-
Another question that may arise is as follows. Suppose we ry 9 d

. r1oonentials. What kind of a transformation or a change of
have met with the worst case, when we are not able to con-_ . - . : .
variables is appropriate can again be decided by means of the

struct a convergent sequence of self-similar exponential a 2 priori multipliers (187)
proximants. How then should we proceed in order to define P P '
an effective limit of a divergent sequenf®(x)}? In such a

case, there are several possibilities. First of all, since it is ACKNOWLEDGMENTS

always mi (x)=1, as is clear from definitior(49), then We are grateful to E. P. Yukalova for discussions and

f1(x) may serve as an estimate for an effective limit of theadvice. We appreciate financial support from the National
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Second, recall that the nested exponentials are only one &fom the University of Western Ontario, Canada.

the admissible forms of self-similar approximants, corre-

sponding to a particular case, when the power in the alge- APPENDIX

braic transformatiori2) is assumed to tend to infinity. If the

latter assumption is waved aside, we return to the radical The higher-order coefficients in the expansion for the

form (10). Then, we have to define control functioss critical index n are[85]

1 n+2
as(n)=—=— [5n%+233— 11242 — 17 9200 — 46 144+ {(3)(n+8)3845n+22)],
32(n+8)°8
1
as(n)=—— [(13n%+94°+ 27 620*+ 121 473 — 262 52$°—2 912 76& — 5 655 552
128 (n+8)8

—¢(3)(n+8)16(n°+ 10n*+ 122M3— 11361°— 68 67— 171 264 + {(4)(n+8)311535n+ 22)
—¢(5)(n+8)?512Q2n%+ 55n+ 186)].
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For the critical indexr one has

(n+2) 3 )
ba(n)= ————[3n3—45M%— 267 —5312+ ¢(3)(n+8)96(5n+22)],
8(n+8)°
(n+2)
ba(n)= w[3n5+ 3981%—12 90°— 81 5512— 219 9681 — 357 120+ ¢(3)(n+8)16(3n*—194n3+ 14802+ 947N
n+

+19 489 + ¢(4)(n+8)32885n+22) — ¢(5)(n+8)?128Q 2n%+ 55n+ 186)],

(n+2)
128n+8)°

+8)16(13n%—31n°+ 19 004*+ 102 400> — 381 53612 — 2 792 5761 — 4 240 640 — ¢(3)(n+8)%1024 2n*
+18n%+981n%+699h + 11 688 + ¢(4)(n+8)348(3n*— 194n3+ 1482+ 947 + 19 488
+£(5)(n+8)2256 155+ 30263+ 981 — 66 0181— 130 608 — £(6)(n+ 8)*640Q 2n°+ 55n+ 186)
+£(7)(n+8)%56 448 14n*+ 18N+ 526)].

bs(n)= [3n7—11981°— 27 484°5— 1 055 3441%— 5 242 11235 256 70412+ 6 999 0401 — 626 688- £(3)(n

The higher-order coefficients of the field-theory expang®@®] for the 8 function are

au(n)= (1.348 942 76+ 54.940 376 98+ 199.640 417 P,

(n+8)3

as(n)=— (—0.155 645 88+ 35.820 203 782+ 602.521 230 B+ 1832.206 732,

(n+8)*

1
ag(n)= (n+8)° (0.051 236 18*+3.237 876 20°+ 668.554 336 B2+ 7819.564 764+ 20 770.176 9Y.
n

For the critical indexy,

b,(n)= ( +8)4(—0.OO4 298 562 6%+ 0.667 985 920 A%+ 4.609 221 05+ 6.512 109 933
n
1
bs(n)=— (n+8) (0.006 550 922 8*—0.132 451 061 A+ 1.891 139 28R%+ 15.188 093 40+ 21.647 206 43
n
be(n)= (n+8)° (—0.005 548 920°—0.020 399 448 B*+ 3.054 030 98>+ 64.077 446 562+ 300.720 893
n-+

+369.713073 9.

For the critical indexy,

(0.879 558 892 2+ 6.485 476 868+ 9.452 718 16§,

ST

Cq(n)= (—0.128 332 104 B3+ 7.966 740 7082+ 51.844 212 98+ 70.794 806 31,

(n+8)*

1
Cs(n)=— (n8)° (0.049 096 605 B*+4.288 152 4983+ 108.361 821 82+ 537.813 610 6+ 675.699 607 Y,
n+
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