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Self-similar exponential approximants
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An approach is suggested for defining effective sums of divergent series in the form of self-similar expo-
nential approximants. The procedure of constructing these approximants from divergent series with arbitrary
noninteger powers is developed. The basis of this construction is the self-similar approximation theory. Control
functions governing the convergence of exponentially renormalized series are defined from stability and fixed-
point conditions and from additional asymptotic conditions when the latter are available. The stability of the
calculational procedure is checked by analyzing cascade multipliers. A number of physical examples for
different statistical systems illustrate the generality and high accuracy of the approach.
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I. INTRODUCTION

Summation of divergent series is a problem of great
portance in theoretical physics, applied mathematics, and
gineering. This is because realistic problems are usu
solved by means of some calculational algorithm often
sulting in divergent sequences of approximations. Assign
a finite value to the limit of a divergent sequence is calle
renormalization or a summation technique. The most wid
used such technique is Pade´ summation@1#. However, the
latter has several shortcomings. First of all, to reach a
sonable accuracy of Pade´ approximants, one needs to kno
at least in the magnitude of ten to 20 terms of a perturba
series. Unfortunately, so many terms are often not availa
because of the complexity of a considered problem. Sec
Padéapproximants are defined for the series of integer po
ers. But in many cases asymptotic series arise having no
teger powers. Third, there are quite simple examples@2# that
cannot be used in a Pade´ summation even for a sufficientl
small variable. Moreover, the standard Pade´ approximants do
not converge at infinity, since infinity is an essential sing
larity @1#. The latter deficiency can sometimes be trea
with the help of two-point Pade´ approximants@3#. But these
can only be constructed when there are two perturbation
pansions in the vicinity of two points, so that such expa
sions have compatible variables, which often is not the c
especially when one or both of these expansions contain
integer powers@4#. For instance, only rational powers can
described at infinity@3#. This is because a Pade´ approximant
is a ratio of two polynomials, say, ofm andn order. There-
fore, when the variable tends to infinity, the asymptotic b
havior of this Pade´ approximant is of power law with the
powerm/n, which is a rational number. Fifth, in many phys
cal problems the quantities of interest exhibit at infinity e
ponential behavior, which in principle cannot be describ
by Pade´ approximants. One more well known difficult
when dealing with Pade´ approximants is the appearance
spurious poles@1#. Last, but not least, Pade´ summation is
rather a numerical technique providing answers in the fo
of numbers. Therefore it is difficult, if possible, to analy
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the results when the considered problem contains severa
rameters to be varied, since for each given set of parame
one has to repeat the whole procedure of constructing a t
of Padéapproximants and selecting from them one cor
sponding to a visible saturation of numerical values. Sinc
is a numerical technique, Pade´ summation shares the diffi
culties of other numerical methods, like nonlinear seque
transformations, and sometimes is less effective than the
ter @5,6#.

The aim of the present paper is to develop ananalytical
method, free of the Pade´ approximation difficulties, for sum-
ming divergent series containing any number of terms~just a
few or many! with arbitrarynonintegerpowers. The method
is based on the ideas of the self-similar approximation the
@7–14# in its algebraically invariant formulation@12–14#.

The gist of this paper is described as follows.~i! The
approach is generalized by constructing self-similar ex
nential approximants from the series witharbitrary powers,
integer as well as noninteger.~ii ! It is shown how such ex-
ponential approximants can be made compatible with ad
tional asymptoticandboundary conditions. ~iii ! Stability and
fixed-point conditions are discussed and concrete presc
tions, for defining control functions and for checking th
stability of the calculational procedure, are formulated.~iv! It
is demonstrated that the approach is applicable in all ca
when either just a few terms of a series are known or wh
many termsare available.~v! We emphasize that in all the
cases, even when a large number of terms of a series
involved, we obtainanalytical formulasthat are convenien
for considering with respect to a change of physical para
eters. The possibility of deriving analytical expressions i
characteristic feature of our approach differentiating it fro
numerical methods.

Also, we illustrated the generality of the approach by a
plying it to several interesting physical problems of qu
different nature. Some of these problems could be treated
Padésummation or by the standard renormalization-gro
technique. When such treatments have been done, we c
pare their results with ours. In those cases for which num
cal data are available, we estimate the accuracy and s
1359 © 1998 The American Physical Society
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1360 PRE 58V. I. YUKALOV AND S. GLUZMAN
that this accuracy is either comparable to or higher than
of other more complicated resummation techniques. We c
struct as well self-similar exponential approximants for s
eral physical problems for which other summation metho
have not been applied because of technical difficulties.

II. NONINTEGER POWERS

The main idea@7# of the self-similar approximation theor
is to put into correspondence to a sequence of perturba
terms a dynamical system for which the approximation nu
ber would play the role of discrete time. Then the transf
mation from one approximation to another can be rep
sented as the evolution of this dynamical system@7#. The
corresponding evolution equation may be formulated as
property of functional self-similarity, which is a necessa
condition of fast convergence@8#. A dynamical system with
discrete time is called a cascade. A fixed point of a casc
representing a sequence of approximations, correspond
an effective limit of this sequence@7,8#. To guarantee con
vergence, the fixed point must be stable and the suffic
conditions of stability can be formulated in terms of mul
pliers @9–11#. Additional possibilities open if we require tha
the procedure of finding an effective limit of a sequence
invariant with respect to algebraic transformations@12–14#,
which permits us to deal not with the initial sequence
approximations but with a sequence of its transforms. G
eral ideas and the mathematical foundation of the self-sim
approximation theory have been described in detail in
previous papers@7–14#. Not repeating them here, we beg
at once with considering the case when for a sought func
f (x) one derives an approximate perturbative expression

pk~x!5 (
n50

k

anxan, ~1!

in which an are arbitrary real numbers, integer or noninteg
positive or negative, but with the sole requirement that th
form an ordered sequence$an%, that is, either strictly in-
creasing or strictly decreasing sequence of terms. Follow
the method of the algebraic self-similar renormalization@12–
14#, we define the algebraic transform

Pk~x,s![xspk~x!5 (
n50

k

anxs1an, ~2!

wheres is real. Then, by means of the equation

P0~x,s!5a0xs1a05w, ~3!

we obtain the expansion function

x~w,s!5S w

a0
D 1/~s1a0!

. ~4!

Substituting the latter into Eq.~2!, we have

yk~w,s![Pk„x~w,s!,s…5 (
n50

k

anS w

a0
D ~s1an!/~s1a0!

. ~5!

The family $yk% of transforms~5! is called @10,11# the ap-
proximation cascade, since its trajectory$yk(w,s)uk
at
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50,1,2, . . . % is bijective to the sequence$Pk(x,s)uk
50,1,2, . . . % of approximations~2!. A cascade is a dynami
cal system in discrete timek50,1,2, . . . , whose trajectory
points satisfy the semigroup propertyyk1p(w,s)
5yk„yp(w,s),s…. The latter equation is a particular type o
functional equations@15# and in dynamical theory it is re
lated to autonomous dynamical systems@16#. The physical
meaning of the above semigroup relation can be unders
as the property of functional self-similarity@17# with respect
to the varying approximation number@7–11#. The self-
similarity relation is a necessary condition for the fast
convergence criterion@8,9#.

For the approximation cascade$yk%, defined by transform
~5!, the cascade velocity can be written as a finite differen

vk~w,s![yk~w,s!2yk21~w,s!5akS w

a0
D ~s1ak!/~s1a0!

.

~6!

This is to be substituted into the evolution integral

E
Pk21

Pk* dw

vk~w,s!
5t, ~7!

in which Pk5Pk(x,s) andt is the minimal time needed fo
reaching a fixed pointPk* 5Pk* (x,s,t). Integral~7! with ve-
locity ~6! yields

Pk* ~x,s,t!5F Pk21
2n ~x,s!2

nakt

a0
11nG21/n

, ~8!

where

n5nk~s![
ak2a0

s1a0
. ~9!

Taking the algebraic transform, inverse to Eq.~2!, we find

pk* ~x,s,t![x2sPk* ~x,s,t!5F pk21
2n ~x!2

nakt

a0
11n

xsnG21/n

.

~10!

Exponential renormalization@13,14# corresponds to the limit
s→`, at which

lim
s→`

nk~s!50, lim
s→`

snk~s!5ak2a0 .

Then Eq.~10! gives

lim
s→`

pk* ~x,s,t!5pk21~x!expS ak

a0
txak2a0D . ~11!

Accomplishing exponential renormalization of all sums a
pearing in expressions of type~11!, we follow the bootstrap
procedure@14# according to the scheme

pk~x!→pk* ~x,s,t!→Fk~x,t1 ,t2 , . . . ,tk!, ~12!

with k>1.
Let us illustrate explicitly how this exponential bootstra

works. The initial approximation from Eq.~1! is
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PRE 58 1361SELF-SIMILAR EXPONENTIAL APPROXIMANTS
p0~x!5a0xa0. ~13!

If we limit ourselves by the first-order term

p1~x!5p0~x!1a1xa1,

then, following the renormalization scheme~12!, we get

F1~x,t1!5p0~x!exp~b1xb1!, ~14!

where

b1[
a1

a0
t1 , b1[a12a0 . ~15!

Involving the second-order term

p2~x!5p1~x!1a2xa2,

we find

F2~x,t1 ,t2!5p0~x!exp@b1xb1exp~b2xb2!#, ~16!

with the notation

b2[
a2

a1
t2 , b2[a22a1 . ~17!

Continuing the same procedure, for thekth-order expression
~1! we obtain

Fk~x,t1 ,t2 , . . . ,tk!

5p0~x!exp$b1xb1exp@b2xb2
•••exp~bkx

bk!#•••%, ~18!

where

bk[
ak

ak21
tk , bk[ak2ak21 . ~19!

The quantitiestn , with n51,2, . . . ,k, in the renormal-
ized form ~18! play the role of control functions@7–14#. In
the following section we shall show the ways of defini
these control functions. Assume, for a while, that the la
have already been defined givingtn5tn(x). Substituting
these functions into Eq.~18!, we come to the self-simila
exponential approximant

f k* ~x!5Fk„x,t1~x!,t2~x!, . . . ,tk~x!…. ~20!

Note that the constructed approximants~20! are different
from the iterated exponentials introduced by Euler@18#; the
properties of such iterated exponentials are reviewed, e.g
Refs.@19,20#.

Although in this paper we shall deal with physical pro
lems related to series with powers being real numbers, n
ing prevents us from generalizing the whole approach to
ries with complex powers. Such complex exponents app
in the problems with discrete scale invariance@21,22#, which
has recently been documented in the models of rupt
earthquake processes, financial crashes, in the fractal g
etry of growth processes, and in several random syst
@21–24#. Our approach can be straightforwardly applied
series with complex powers. Then, the variables in the al-
gebraic transform~2! has also to be considered as comple
r

in

h-
e-
ar

e,
m-
s

.

Therefore the corresponding control functionssk(x) become
complex. However, before passing to the general case
complex powers and, respectively, of complex control fun
tions, we need first to develop the approach for arbitrary r
powers and real control functions.

III. CONTROL FUNCTIONS

The role of control functions, by their definition@26#, is to
provide convergence for initially divergent sequences. Th
are several ways of incorporating control functions into
iterative algorithm and of defining them. One way of intr
ducing these functions is by including them into an init
approximation. The most often used definitions of cont
functions are through the minimal-difference@26–28# or
minimal-sensitivity@29–36# conditions. In some very simple
cases, like zero-dimensional and one-dimensional oscillat
when high-order terms of perturbation theory are availa
explicitly, control functions can be found from the dire
observation of convergence of this theory@37–40#. All these
variants are particular types of quasifixed-point conditio
@7–11#.

Another way of introducing control functions is throug
an algebraic transformation@12–14#. In addition, the mini-
mal time appearing in the evolution integral~7! under each
renormalization step plays also the role of a control functi
After k steps of the renormalization procedure, the se
similar approximation~20! containsk timelike control func-
tions tn , n51,2, . . . ,k.

The simplest way of defining these control functio
would be to remember that the effective time in integral~7!
corresponds to the minimal number of steps needed
reaching a fixed point. When no other restrictions are i
posed, the minimal number of steps is, clearly, equal to o
Settingtn51 for all n51,2, . . . ,k in Eq. ~20! gives

f k* ~x!5Fk~x,1,1, . . . ,1!. ~21!

A more elaborate definition of the timelike control function
can be formulated by involving one of the variants of fixe
point conditions. To this end, let us settn51 for all n
51,2, . . . ,k21, except the last step for whichtn5t is yet
undefined. Consider the sequence$ f k% consisting of the
terms

f k~x,t![Fk~x,1,1, . . . ,t!. ~22!

Following the standard procedure@10–14#, it is possible to
construct an approximation cascade with a trajectory bij
tive to the sequence$ f k%. For the cascade velocity we ma
write the finite difference

Vk~x,t!5 f k~x,t!2 f k21~x,t!. ~23!

When approaching a fixed point, the cascade velocity te
to zero. Therefore the condition to be as close to the fix
point as possible is the minimum of velocity~23!. This con-
dition

min
t

uVk~x,t!u5uVk„x,tk~x!…u ~24!
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1362 PRE 58V. I. YUKALOV AND S. GLUZMAN
provides us the definition of the time-control functiontk(x).
Equation ~24! is the general form of the minimal-velocit
condition @12,41#. In particular, taking into account defin
tion ~23!, we may have the equation

f k~x,t!2 f k21~x,t!50, ~25!

whose solutiont5tk(x) is the sought control function. Fo
the exponential approximants~18!, Eq. ~25! yields the equa-
tion

t5expS ak

ak21
txbkD . ~26!

The solution to Eq.~26!, that is,t5tk(x), being substituted
into Eq. ~22!, leads us to the self-similar approximation

f k* ~x!5 f k„x,tk~x!…. ~27!

The described scheme of defining control functions is
plicable when no additional restrictions are imposed on
behavior of the sought functionf (x). It may happen that, in
addition to expansion~1!, an asymptotic behavior off (x), as
x→x0, is known. Then the asymptotic condition

f ~x!. f 0~x!, x→x0 ~28!

plays the role of an imposed restriction. And the construc
self-similar approximations are assumed to satisfy
asymptotic condition~28!. In such circumstances, some
control functions are to be chosen so that condition~28! is
valid. This can be done in the following way.

Let us renormalize a seriespk21(x) to a self-similar ap-
proximation f k21* (x) with timelike control functions defined
according to a scheme described above. Limiting ourse
by such a (k21)-step renormalization, we obtain from E
~10!

Fk* ~x,s,t!5F @ f k21* ~x!#2n2
nakt

a0
11n

xsnG21/n

, ~29!

with the same notation as Eq.~9!. Now we require that the
obtained expression~29! would satisfy the asymptotic con
dition

Fk* ~x,s,t!. f 0~x!, x→x0 ~30!

in accordance with Eq.~28!. The control functionss5sk(x)
andt5tk(x) are to be chosen so that condition~30! is valid.
With the so defined control functions, we come to the se
similar approximation

f k* ~x!5Fk* „x,sk~x!,tk~x!… ~31!

possessing the desired asymptotic property~28!.
To clearly illustrate the latter variant of defining contr

functions, consider the integral

J~g!5
1

Ap
E

2`

`

exp~2x22gx4!dx, ~32!

which has the meaning of the partition function for the ze
dimensional anharmonic model, whereg is called a coupling
-
e

d
e

es

-

-

parameter. The series for integral~32! are frequently used a
a model for strongly divergent perturbation expansions
quantum field theory@25#.

The weak-coupling expansion of Eq.~32! gives

J~g!.a1bg1••• ~g→0!, ~33!

with a51, b52 3
4 . In the strong-coupling limit one has

J~g!.Ag21/41Bg23/41Cg25/41Dg27/41••• ~g→`!,
~34!

where

A5
1.813

Ap
, B52

0.612

Ap
, C5

0.227

Ap
.

The strong-coupling expansion~34! is of the form of series
~1! with the coefficients

a05A, a15B, a25C, a35D

and with noninteger powers

a052
1

4
, a152

3

4
, a252

5

4
, a352

7

4
.

We shall renormalize expansion~34! subject to the limiting
condition

lim
g→0

J~g!5a, ~35!

which follows from Eq.~33!.
Starting from

J0~g!5Ag21/4, ~36!

we get

J2* ~g!5J0~g!expFB

A
g21/2expS C

B
g21/2D G . ~37!

At the next step, according to Eq.~29!, we have

F3* ~g,s,t!5$@J2* ~g!#2n1ggsn%21/n, ~38!

with

n5
6

124s
, g52

n Dt

A11n
.

In the weak-coupling limit, Eq.~37! yields

J2* ~g!.Ag21/4 ~g→0!

and Eq.~38! gives

F3* ~g,s,t!5~A2ngn/41ggsn!21/n.

The latter expression satisfies the limiting condition

lim
g→0

F3* ~g,s,t!5a, ~39!
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PRE 58 1363SELF-SIMILAR EXPONENTIAL APPROXIMANTS
corresponding to Eq.~35!, if and only if s50 andg5a or,
respectively,

n56, t52
A7

6a6D
.

Substituting thes andt found into Eq.~38!, we get

J3* ~g!5$@J2* ~g!#261a26%21/6.

Using here form~37! and remembering thata51, we finally
obtain the self-similar approximation

J3* ~g!5H 11
g3/2

A6
expF26B

AAg
expS C

BAg
D G J 21/6

~40!

corresponding to Eq.~31!.
The exponential approximant~40! represents integral~32!

with a very good accuracy. The maximal percentage erro
2.7% occurring atg50.1. And the error for the physically
most interesting region of intermediateg'1 is only 0.7%.

Consider another simple example evidently illustrati
the generality of our method that works when other meth
do not. Assume that we need to find an approximation fo
bounded functionf (x), with 2`,x,`, having the follow-
ing asymptotic properties:

f ~x!.5
11x1O~x2! ~x→0!,

ex ~x→2`!,

1

xa
, a.0 ~x→1`!,

where a is an irrational power. To our understanding, t
Padétechnique is principally inappropriate in this case, wh
in our method, accomplishing the same procedure as is
plained above, we easily obtain

f * ~x!5FexpS 2
2

a
xD1x2G2a/2

.

IV. STABILITY CONDITIONS

In order to check the stability of calculational procedu
one has to analyze mapping multipliers@9–11#. Several
kinds of multipliers occur in the process of construction
self-similar approximations, each kind being related to
corresponding approximation cascade.

The first approximation cascade appearing in our inve
gation is the cascade$yk% composed of transforms~5!. The
local multipliers for this cascade are defined as

mk~w,s![
]

]w
yk~w,s!5 (

n50

k
~s1an!an

~s1a0!a0
S w

a0
D ~an2a0!/~s1a0!

.

~41!

The image of multiplier~41! in the x space can be obtaine
with the use of relation~3!, which yields
is

s
a

x-

,

f
e

i-

mk~x,s![mk„P0~x,s!,s…5
]Pk~x,s!/]x

]P0~x,s!/]x

5 (
n50

k
~s1an!an

~s1a0!a0
x~an2a0!. ~42!

The trajectory$yk(w,s)% of an approximation cascade$yk% is
locally stable@11# at thek step ifumk(w,s)u,1. Note that the
case ofumku51 is called neutrally stable and that ofumku
50 can be termed superstable. Ifumku,1 for somes and all
w from a given domain, thenumk(x,s)u,1 for the sames
and all x from a domain defined by relation~4!. When the
trajectory of a cascade$yk% is locally stable for all k
50,1,2, . . . , that is, whenumk(x,s)u,1 for all k, then the
sequence$Pk(x,s)% converges uniformly with respect tox.
The local stability for allk50,1,2, . . . can becalled the
global stability. The global stability of a trajectory is asuffi-
cient condition for the convergence of the corresponding
quence@11#. But it is not a necessary condition. Thus th
sequence$Pk(x,s)% may be convergent, but the cascade t
jectory not everywhere locally stable, so that the stabi
conditionumk(x,s)u,1 becomes valid for allk starting from
somek0, but for k,k0 this condition may be broken fo
somek.

The concept of stability suggests a recipe of defining
control functions5sk(x). The latter can be defined so as
minimize the absolute value of multiplier~42!, which can be
named the principle of maximal stability@12–14#. Substitut-
ing the foundsk(x) into Pk(x,s), we obtainPk„x,sk(x)….
The renormalized sequence$Pk„x,sk(x)…% can become con-
vergent even if the initial sequence$Pk(x,s)% was not. De-
fining local multipliers for the new sequence, it is necess
to take into account thatPk„x,sk(x)… depends onx explicitly
as well as throughsk(x). The corresponding multipliers are

mk~x!5
]Pk /]x1~]Pk /]sk!~dsk /dx!

]P0 /]x1~]P0 /]sk!~dsk /dx!
, ~43!

where Pk5Pk(x, sk), sk5sk(x), and the partial deriva-
tives mean that another variable is kept fixed. In gene
mk(x) differs from Eq.~42!. But if sk(x) is a slowly varying
function of x, such that the derivativedsk /dx in mk(x) can
be neglected, thenmk(x) approximately coincides with
mk„x,sk(x)…. The stability conditionumk(x)u,1 for all k
50,1,2, . . . implies the convergence of the sequen
$Pk„x,sk(x)…%. Let us stress again that stability is a sufficie
condition for convergence, but not necessary. The seque
$Pk„x,sk(x)…% may converge even if the stability condition
not valid for a finite value ofk. Moreover, the convergenc
of the sequence$Pk„x, sk(x)…% is not compulsory for us.
This sequence is not yet the final product of the proced
but is to undergo the dynamical renormalization involvi
the evolution integral~7!.

After the multiple dynamical renormalization, in the e
ponential variant we consider here, we come to the seque
$Fk(x,t)% of terms given by expression~18!, with the short-
hand notationt[$t1 ,t2 , . . . ,tk%. The stability of the corre-
sponding trajectory is characterized by the multipliers
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1364 PRE 58V. I. YUKALOV AND S. GLUZMAN
Mk~x,t![
]Fk~x,t!/]x

]F1~x,t!/]x
. ~44!

The stability condition uMk(x,t)u,1 for all k51,2, . . .
guarantees the convergence of the sequence$Fk(x,t)%. This
tells us that the time-control functionstk(x) could be chosen
so as to minimizeuMk(x,t)u. In particular, the minimal value
of Eq. ~44! can be zero. Then the equalityMk(x,t)50, un-
der the assumption that]F1(x,t)/]xÞ0, yields the equation

]

]x
Fk~x,t!50, ~45!

restricting the choice of time-control functions.
Defining all time-control functions in one of the way

discussed above, we obtain, as a final result, the expone
approximant~20!. The sequence$ f k* (x)%, with k51,2, . . . ,
of these exponential approximants is what we ultimat
need to analyze with respect to its convergence. For
purpose we can formulate sufficient conditions for conv
gence studying the stability of the corresponding cascade
this end, following the standard procedure@7–11#, we define
a functionx(w) by the equation

f 1* ~x!5w, x5x~w!. ~46!

Then we introduce the transformation

yk* ~w!5 f k* „x~w!…. ~47!

The family $yk* % of the transformations introduced in Eq
~47! forms a cascade. The local multipliers are given by

mk* ~w![
]

]w
yk* ~w!. ~48!

The image of Eq.~48! in the x representation is

mk* ~x![mk* „f 1* ~x!…5
] f k* ~x!/]x

] f 1* ~x!/]x
. ~49!

The cascade trajectory is locally stable at ak step when

umk* ~x!u,1. ~50!

If this condition is valid for allk, then the sequence$ f k* (x)%
converges.

The validity of the stability condition~50! is what finally
justifies the whole renormalization procedure guarantee
the convergence of the renormalized sequence$ f k* (x)%. This
holds true irrespectively of whether other multipliers, such
Eqs.~42!, ~43!, or ~44!, satisfy the same condition~50! as the
multiplier ~49!. The auxiliary multipliers~42!–~44! have ap-
peared at intermediate stages of our multistep renorma
tion procedure. The minimization of these multipliers pr
vides a recipe for defining control functions. Th
minimization is equivalent to the stabilization of local pa
of a cascade trajectory. Remember that we start with se
~1! which, in general, is strongly divergent. Accomplishin
several stages of renormalization we step by step impr
convergence properties, by making the related trajec
more and more stabilized. However, it is not necessary
tial
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demand that the trajectory would become completely sta
at some intermediate step of the multistep procedure.
main point is that the finally resulting sequence$ f k* (x)% be
convergent, for which it is sufficient to require the validity o
condition ~50!.

V. GROUND-STATE PROPERTIES

Now we pass to the consideration of physical examp
illustrating explicitly how the method works.

A. One-dimensional Bose system

The ground-state energy of the one-dimensional Bose
tem with thed-functional repulsive interaction potential i
known in a numerical form from the Lieb-Liniger exact s
lution @42#. We derive below a compact analytical expressi
for the ground-state energye(g) as a function of the inter-
action strengthg, valid for arbitraryg. In the weak-coupling
and strong-coupling limits the following expansions a
known ~see, e.g., Ref.@7#, and references therein!:

e~g!.ag1bg3/21cg21dg5/21••• ~g→0!,
~51!

a51, b52
4

3p
, c50.0654, d520.0018,

while in the strong-coupling limit an exact result is availab
@43#:

e~g!.A5
p2

3
~g→`!. ~52!

The expression satisfying both known limits can be deriv
similarly to the example studied in Sec. III, except that
this case we start from the weak-coupling limit. The resu
ing approximant is

e4* ~g!5agXHexpFb

a
g1/2expS c

b
g1/2D G J 23/2

1S A

a D 23/2

g3/2C22/3

. ~53!

This expression works reasonably well in the region ofg
P@0,10#, where the exact numerical solution of the Bet
ansatz equations is available. The maximal error here
about 5%.

B. Asymmetric Anderson Hamiltonian

The single-orbital Anderson Hamiltonian describes t
system consisting of localizedd electrons interacting with
conductings electrons via a quantum-mechanical exchan
mechanism, whose strength is measured byV, which is the
transfer integral between thes and d states. The energyU
describing the Coulomb interactions between twod electrons
is another relevant physical parameter. The localiz
d-electron numbernd is expressed through the self-energyS
of d electrons at the Fermi level:

nd5
1

2
2

1

p
tanh21S S

D D , D5prV2 ~54!
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wherer stands for the density of states at the Fermi level
conducting electrons. In the case when thed level is fixed to
the Fermi level, the following expansion forS, in powers of
the small parameteru5U/pD,uuu!1, was obtained in Ref
@44#:

S

D
.

p

2
u~11a1u1a2u21a3u31a4u41a5u5! ~u→0!,

a1521, a250.5326, a350.6269, ~55!

a4521.8071, a551.027.

A direct application of expansion~55! gives physically
meaningful results in the region of20.5,u,0.5, as is
shown in Fig. 2 of Ref.@44#. However, the exactly known
limits

nd→0 ~u→`!, nd→1 ~u→2`!

are violated when expansion~55! is used for the calculation
of the impurity level occupancy~54!. To our knowledge, the
Padéapproximants were not applied for resumming exp
sion ~55!, and it is not clear whether they can be applied
large values of the parameteru ~see@2,45#!. We use below
the technique of exponential approximants and observe
they spontaneously recover the known limits. The followi
sequence of self-similar renormalized expressions can
written:

S S

D D
1

*
5

p

2
u@exp~a1u!#, ~56!

S S

D D
2

*
5

p

2
uH expFa1uexpS a2

a1
uD G J , ~57!

S S

D D
3

*
5

p

2
uXexpH a1uexpFa2

a1
uexpS a3

a2
uD G J C, ~58!

S S

D D
4

*
5

p

2
uFexpXa1u

3expH a2

a1
u expFa3

a2
uexpS a4

a3
uD G J CG, ~59!

S S

D D
5

*
5

p

2
uHexpFa1uexpXa2

a1
u

3expH a3

a2
uexpFa4

a3
uexpS a5

a4
uD G J CGJ. ~60!

We observe that already the third-order approximant (S/D)3*
leads to the result

~nd!3* 5
1

2
2

1

p
tanh21F S S

D D
3

* G , ~61!

which possesses the correct limits. The same is true when
higher-order approximants
r

-
t

at

be

he

~nd!4* 5
1

2
2

1

p
tanh21F S S

D D
4

* G ,

~nd!5* 5
1

2
2

1

p
tanh21F S S

D D
5

* G
are considered. Ana posteriori analysis of multipliers sug-
gests that the third-order approximant corresponds to
most stable trajectory. This could be expected beforeha
since the coefficientsa4 anda5 are larger than one.

The density of states ofd electrons as well as the resis
tivity R at zero temperature could also be reconstructed
arbitraryu, e.g.,

S R~u!

R~0! D *
5H 11F S S

D D
3

* G2J 21

.

The shape of the curve@nd(u)#3* is very much like the
smeared Fermi distribution, while@R(u)/R(0)#* has an
asymmetric bell shape. All artifacts, which appear at
curves, when the perturbative expansions are naively
tended beyond the region of smallu, are smeared out, an
the renormalized curves appear to be rather smooth.

C. t expansion

The so-calledt expansion is a tool for a systematic im
provement of variational calculations for Hamiltonian sy
tems @46#. Using a t-dependent variational wave functio
and, after performing calculations, finally, taking thet→`
limit, one can hope to increase the quality of the variatio
estimate for the ground-state energyE. This idea is most
frequently used in conjunction with heavy numerical calc
lations and the Pade´-approximant technique. In the case
the one-dimensional Heisenberg antiferromagnet, the exp
sion in powers of the parametert was obtained explicitly
@46#,

E.2
1

4
2t12t21

4

3
t3216t4 ~ t→0!, ~62!

and the task of getting an estimate for the ground-state
ergy from the asymptotic expression valid att→0 can be
approached by the methods of Secs. II–IV. Since the num
of terms available is finite, it is not necessary to take the lim
t→` explicitly, but instead we can try to minimize the erro
caused by this inevitable truncation by demanding the m
mal sensitivity of the renormalized expressionE* with re-
spect to the ‘‘time’’t determining the ‘‘duration’’ of motion
to the ground-state energy,

]E*

]t
50. ~63!

Applying the self-similar bootstrap in its superexponent
form, one can see that the solution to this equation does e
for any number of terms from the initial expansion~62!.
From thea posteriori analysis of the multipliers, we con
clude that the most reliable value, corresponding to that
tained along the most stable trajectory, is
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E* 52
1

4
expH 4texpF22texpS 2

3
t D G J , ~64!

with t50.33 andE* 520.446. From the viewpoint of ana
priori analysis, it is admissible also to construct another
quence of exponentials, not including the constant, me
field result. In this case, the answer for the ground-state
ergy is 20.434. We conclude that moving along the tw
different, but stable, trajectories, we can determineE reli-
ably, asE520.4460.006. The known Hulthen@47# exact
result20.4431 is located within these boundaries.

VI. EFFECTIVE COUPLING

A. b function of SU„2… lattice gauge model

The Callan-Symanzik b function of the ~311!-
dimensional SU~2! lattice gauge model in its weak-couplin
asymptotically free regime may be presented in the form
an expansion in powers of the parameterg, whereg stands
for the coupling@48#:

2
b~g!

g
.ag21bg41••• ~g→0!,

~65!

a5
11

24p2
, b5

17

64p4
.

In its strong-coupling limit,b can be presented as follow
@48#:

2
b~g!

g
.A1Bx21Cx41Dx61Fx8, x5

4

g4
~g→`!,

A51, B52
76

75
, C5

88

625
, ~66!

D52
131 203

140 625
, F5

551 378

390 625
.

We will add to the expansion~66! one more trial term
.Gx10, and determineG from the boundary condition fol-
lowing from the weak-coupling limit~65!. Two starting
terms from Eq.~66! will be renormalized to the form of an
exponential approximant, mimicking an instanton contrib
tion bridging these two limits@49#, that is, a nonperturbative
physical mechanism coming into play in the crossover
gion, from strong-to-weak-coupling limit@50#. This term
should disappear completely in the weak-coupling lim
guaranteeing rather sharp crossover. The last four terms
be renormalized to the form satisfying the boundary con
tion ~65!, in a way leading to a smooth matching of tw
limiting kinds of behavior. We obtain the following analyt
cal form for the renormalizedb function:

2
b* ~g!

g
5AexpS B

A
x2D1Cx4S 12

t1

s1

D

C
x2D 2s1

1Fx8S 12
G

s2F
x2D 2s2

,

-
n-
n-

f

-

-

,
ill
i-

s15
9

4
, t152

s1C

D S 2a

C D 21/s1

50.3, s252s1 ,

G52s2FS 4b

F D 21/s2

5215.051. ~67!

The shape of the resulting function is similar to those o
tained in Refs.@48–50#. Crossover occurs atg;1.2. Let us
remember that the quality of the strong-coupling expansi
is jeopardized by the interfering roughening transition@48#.
We believe that the method discussed above allows u
bypass this difficulty in a natural way.

B. Kondo effect

We consider below an application of the exponential a
proximants to such an interesting problem as the Kondo
fect @51#, comparing our results with those of the field
theoretical renormalization group@52–54#.

The behavior of the system, consisting of a local-impur
spin and conduction electrons, interacting by means of
antiferromagnetic exchange of strengthJ, changes from as-
ymptotically free at high temperatures to that when the i
purity is screened by electronic lump at low temperatur
via the crossover region whose onset is characterized by
Kondo temperature estimated as

Tk5DexpS 2
1

2JD , ~68!

whereD stands for the Fermi energy of electrons. We co
sider below only the case of a single-channel Kondo mod
Most of our knowledge about the problem came from t
exact Bethe ansatz solution@55,56#, from the field-theoretical
renormalization group@52–54#, and from the Wilson nu-
merical renormalization group~RG! @57#.

Within the framework of the field-theoretical RG in it
application to the Kondo crossover, the central role is play
by the so-called invariant charge or effective electro
electron couplingJinv @52–54#, measuring the intensity o
electron-electron interactions via the impurity spin:

Jinv5JF112JlnS D

uvu D22J2lnS D

uvu D1••• G . ~69!

Herev stands for the typical external parameter of the pro
lem, such as temperature, or magnetic field. If only the st
ing two terms from Eq.~69! are taken into account, the field
theoretical approach, through calculations based on the G
Mann-Low b function,

b.22J2 ~J!1!, ~70!

leads to the formally divergent, atT5Tk , expression for the
invariant charge@52–54#,

Jinv5
J

122Jln~D/uvu!
. ~71!

We apply below the technique of algebraic self-simi
renormalizationdirectly to the series~69! for Jinv , continu-
ing them from the region ofJ!1 to the region ofJ;1.
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When only two starting terms from Eq.~69! are taken into
account, the optimal, from the viewpoint of stability cond
tions, solution is the following exponential approximant:

Jinv* 5JexpF2JlnS D

uvu D G5J S D

uvu D
2J

. ~72!

If we perform the self-similar renormalization with the co
trol function s50, along the nonoptimal trajectory, we wi
recover the expression~71!. So, the fictitious pole is absen
in our solution to the problem, although the typical ener
scale determined from the condition

2JlnS D

uvu D;1

coincides with the Kondo temperature~68!. Expression~72!
is formally divergent asv→0, in agreement with the con
clusion of the numerical renormalization group@57,58#.

A more complicated situation arises in~quasi-! two-
dimensional metal, when the Van Hove logarithmic singul
ity in the electron density of states can influence the Kon
effect. In this case, as was shown in Ref.@59#, the full
electron-impurity scattering amplitudeG can be estimated a
follows:

G5JH 11c0JF lnS D

uvu D G
2

1•••J , c0.0 ~J!1!,

~73!

i.e., the usual Kondo logarithm should be replaced by
squared logarithm, originating from the Van Hove singul
ity. The self-similarly renormalized expression in this ca
again corresponds to the exponential approximant:

G5JexpH c0JF lnS D

uvu D G
2J , ~74!

and the characteristic energy scale, Kondo temperature,
be found from the condition

c0JF lnS D

uvu D G
2

;1,

leading to the estimate

Tk5DexpS 2
const

AJ
D , const;A 1

c0
. ~75!

Such a dependence ofTk on J was the main result of Ref
@59#, obtained as an outcome of a cumbersome first-or
parquet summation. To our knowledge, the field-theoret
RG approach was not applied to the Kondo effect with
Van Hove singularity. On the other hand, the Bethe ans
fails for this problem@59#.

The higher-order corrections were not considered in R
@59#, because of the technical difficulties arising in more s
phisticated parquet approximations. Our approach may b
interest in this context, allowing us to find the corrections
Kondo temperature due to higher-order terms. Taking i
account the higher-order perturbative terms, one has
y
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G5JH 11c0JF lnS D

uvu D G
2

1c1J2F lnS D

uvu D G
2

1•••J ,

c0.0 ~J!1!, ~76!

with c1,0. The following exponential approximant is opt
mal from the viewpoint of stability:

G5JexpH c0JF lnS D

uvu D G
2

expS 2
uc1u
c0

JD J . ~77!

From the condition

c0JF lnS D

uvu D G
2

expS 2
uc1u
c0

JD;1,

we obtain the Kondo temperature:

Tk5DexpF2
1

c0
1/2J1/2

expS 1

2

uc1u
c0

JD G . ~78!

This estimate suggests a decrease ofTk due to higher-order
corrections.

VII. EQUATION OF STATE

A. Classical hard spheres

The exponential approximants can be used for constr
ing equations of state for simple liquids. For the model s
tem of hard spheres with the diameterd, widely used as a
reference system, an empirical equation of state, sugge
by Carnagan and Starling~see@60#!, is

p

nkT
5

11r1r22r3

~12r!3
, ~79!

connecting pressurep, temperatureT, the number densityn,
and the reduced densityr5pnd2/6. It agrees very well with
the molecular dynamics and virial expansion@60,61#. The
theoretical virial formula, according to Percus and Yevi
@60,61#, is given as follows:

p

nkT
5

11r1r223r3

~12r!3
. ~80!

These two expressions almost coincide at low densities,
at r50.1 the percentage error of Eq.~80!, as compared to
Eq. ~79!, equals20.18%; while for the intermediate an
high densities the agreement becomes very poor, e.g.,r
50.5 the percentage error is215.385%, and atr50.7 it
equals237.141%.

Consider the regular part of Eq.~80!, defined asr :

r .11r1r223r3 ~r→0!, ~81!

as an asymptotic, low-density expansion for the regular p
r (r), and try to continue the expression~81! from the region
of r!1, to the region ofr<1. In order to extend the validity
of Eq. ~81!, let us add to it one more trial term;r4. It is
reasonable to use for renormalization the last four terms fr
the thus extended expansion forr , since the constant term
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describes the ideal gas behavior and we are interested in
region of high densities. Following the standard prescriptio
of Secs. II and III, we write down the two exponential a
proximants, justified from the viewpoint of stability for th
sequence ofa posteriorimultipliers:

r 3* ~r,t!511rexp@rexp~23rt!#, ~82!

r 4* ~r,t!511rexpH rexpF23rexpS 2
t

3
rtD G J . ~83!

We retained in expressions~82! and~83! the effective timet,
introduced at the last step of the bootstrap procedure. It
work now as a control functiont5t(r) determined from the
minimal-velocity condition mintur4* (r,t)2r3* (r,t)u. For the
sake of simplicity we choose a single control parametet,
instead of the control function, from the minimal-differen
condition imposed at a single point, chosen from the reg
of intermediate densities, say forr50.6. Then,t50.845.
Recalculating

p*

nkT
5

r 4* ~r,t!

~12r!3
, ~84!

and comparing it with empirical formula~79!, we obtain that
at r50.1 the percentage error equals20.112%; atr50.5
the percentage error is23.215%, and atr50.7 it equals
22.92%. Formula~84! is more accurate at high densitie
than our previous result@14#, corresponding to

p*

nkT
5

r 3* ~r,1!

~12r!3
, ~85!

which works with the percentage error of24.567% atr
50.7. What is even more important here is the possibility
a self-consistent improvement of the quality of the equat
of state, based on stability conditions. We should recall h
that phenomenological exponential-type expressions are
known in the theory of equations of state, beginning, pr
ably, from the Hudleston equation~see@61#, and references
therein! and ending with its modern modifications@62–64#.
For example, Shinomoto’s equation for the system of h
spheres reads

p

nkT
5expF4rS 11

1

2
r D G , ~86!

and gives atr50.1 the percentage error 0.046%; atr50.5
the error is 26.289%, and at r50.7 it becomes
235.948%.

A single-exponential approximation can also be obtain
from Eq. ~81! by our method:

p*

nkT
5

rexp~r23r2!11

~12r!3
, ~87!

giving at r50.1 the error20.158%, atr50.5 the error is
214.498%, and atr50.7 it becomes228.31%.
the
s

ill

n

f
n
re
ell
-

d

d

We conclude that the multiexponential formula~84!
agrees well with the empirical formula~79!, being superior
to all other formulas in the region of high densities.

B. Quantum hard spheres

At low densityr, the energyE for a boson system ofN
hard spheres with the diameterc and massm is known@65#:

E

N
.

2p

m
rc@11C1~rc3!1/21•••#, C15

128

15Ap
~r→0!.

~88!

And asr→r0 , wherer05A2/c3 is the maximal density for
a system of hard spheres, the following expression is av
able @65#:

E

N
.A

1

2m
~r21/32r0

21/3!22, A5
p2

21/3
~r→r0!,

~89!

corresponding to a second-order pole in the ground-state
ergy. Let us, in analogy with the previous example, extr
the singularity, asr→r0, rewriting Eq.~88! as follows:

E

N
.

2pc

m

r1/3@11C1~rc3!1/21•••#

~r21/32r0
21/3!2

3F12S r

r0
D 1/3G2

~r→0!, ~90!

and, keeping only a few starting terms

E

N
.

2pc

m

r1/3

~r21/32r0
21/3!2

3F122S r

r0
D 1/3

1C1~rc3!1/21••• G . ~91!

After the standard self-similar renormalization, involvin
two terms from Eq.~91!, we obtain

E*

N
5

2pc

m

r1/3

~r21/32r0
21/3!2

expF22tS r

r0
D 1/3G , ~92!

where the control parametert should be determined from th
known asymptotic formula~89!, asr→r0. Finally,

E*

N
5

2pc

m

r1/3

~r21/32r0
21/3!2

expF lnS A

4pc
r0

21/3D S r

r0
D 1/3G ,

t 5 2
1

2
lnS A

4pc
r0

21/3D , ~93!

or, equivalently,

E*

N
5

2pc

m

r1/3

~r21/32r0
21/3!2S A

4pc
r0

21/3D ~r/r0!1/3

. ~94!



i-
-
e
o

s

e
l

o
io

fo

in
n

w

f

ter
a

nse
the
sal

on

e

tion
n

king
ns,
nd
ions

nal
s of
ot-
al
n
spin
tly,
in

the

PRE 58 1369SELF-SIMILAR EXPONENTIAL APPROXIMANTS
Equations~93! and~94! should be compared with the empir
cal London equation of state@66#. Both equations give re
sults very close to each other. So, our derivation can serv
a justification for empirical formulas used for the system
Bose hard spheres.

C. Polymer coil

The expansion factora of a polymer coil is represented a
a function a25a2(z) of the excluded volume variablez
5BAN(3/2p l 2)3/2, whereN is the number of bonds of th
length l each andB is an effective binary cluster integra
@67–70#. The case of a polymer coil corresponds toz.0. In
the region ofz!1, the perturbation theory in powers ofz can
be developed, giving the expansion@68#

a25a2~z!.11k1z1k2z21k3z3

1k4z41k5z51k6z6 ~z→0!,

k15
4

3
, k2522.075 385 396, k356.296 879 676,

~95!

k45225.057 250 72, k55116.134 785,

k652594.716 63.

On the other hand, in the limit ofz@1, a is related toz by a
simple power law

a2.Kzb, b52~2n21! ~z→`!, ~96!

wheren is the critical index, andK stands for the critical
amplitude. One of the popular problems in the physics
polymer coils consists in the continuation of the expans
~95! to the region of arbitraryz. We derive below, using the
self-similar renormalization, a simple equation of state
the polymer coil, valid for arbitraryz, and satisfying by de-
sign both known limits, Eqs.~95! and ~96!. The coefficients
in expansion~95!, starting fromk3 , grow rapidly; so do the
local multipliers. Because of this, we use only three start
terms from Eq.~95!, stabilizing the renormalized expressio
by imposing the asymptotic condition~96!. Finally, after the
standard transformations analogous to those of Sec. III,
obtain

@a2~z!#* 5XH expFk1zexpS k2

k1
zD G J 3/b

1K3/bz3Cb/3

. ~97!

It is known, from different approaches@12,69,70#, that 1/2
<n<0.6 and 1.53<K<1.75. We take the valuesn50.599
andK51.62, which we calculated in Ref.@12#, and compare
the equation of state~97! with the empirical equations o
state@69,70# of Barrett and Domb,

a25S 11
20

3
z14pz2D 1/5

, ~98!

and of Yamakawa and Tanaka,

a250.57210.428~116.23z!1/2. ~99!
as
f

f
n

r

g

e

In the region 0<z<12, our equation~97! yields a curve
lying between those of Eqs.~98! and ~99!.

D. Ising model

The low-temperature expansion for the order parame
~magnetization! M of the three-dimensional Ising model on
fcc lattice reads@71#

M ~T!.11bu61cu11, u5expS 2
4

TD ~T→0!,
~100!

b522, c5224.

Low-temperature expansions are nonuniversal in the se
that they depend on the type of a lattice, spin, etc. At
critical point Tc , order parameter demonstrates a univer
behavior, independent of the type of a lattice, spin, etc.:

M;~Tc2T!b ~T→Tc!, ~101!

whereb'0.325 is the critical index@72#. For the fcc lattice,
Tc'9.8 @72#. We continue the low-temperature expansi
~100! self-similarly to the whole region of 0<T<Tc , im-
posing relation~101! as a boundary condition. Following th
standard prescriptions of Sec. III, we obtain

M* ~T!5F @exp~bu6!#211/s2
11c

s
tu11G2s/11

,
~102!

s5211b, t52
b

cu11~Tc!
expS b

b
u6~Tc! D50.718.

In the region of intermediate temperatures, Eq.~102! agrees
much better with the experimental data for the magnetiza
of Fe and Ni@73# than the Bragg-Williams approximation. I
distinction from the Burley extrapolation@74#, our formula is
simple and has a transparent physical background, ta
into account both short- and middle-range correlatio
which contribute through the exponential function at low a
intermediate temperatures, as well as long-range correlat
dominating at the critical point.

VIII. MAGNETIC PROPERTIES

The ground-state properties of the two-dimensio
Heisenberg antiferromagnet can be considered by mean
an expansion around its Ising limit in powers of the anis
ropy parameterx, equal to zero for the Ising model and equ
to one for the Heisenberg limit@75,76#. Such expansions ca
be generated separately for the most interesting cases of
1/2 and spin 1, allowing us thus to treat them independen
not relying on the expansion in inverse powers of sp
around a very distant case of classical spins.

The expression for susceptibilityx of the two-
dimensional Heisenberg antiferromagnet was obtained in
following form @75,76#:

1

2
x.

1

8
1a1x1a2x21a3x31a4x4 ~x→0!,
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a152
1

6
, a250.177 083, a3520.189 814 8,

a450.191 761, a5520.196 579,

a650.197 934, a7520.201 447 S S5
1

2D , ~103!

a1520.142 857, a250.144 643, a3520.149 916,

a450.150 672, a5520.153 095,

a650.153 437, a7520.154 932 ~S51!.

According to general prescriptions of Sec. IV, we shou
first, analyze the values of local multipliersmk(s), ass→`.

Consider the case ofS51. Since the values of the coe
ficients in the expansion~103! are slowly growing and oscil-
late with increasing number, the local multipliers will osc
late too. We conclude that in some cases we can continue
trajectory moving along the stable regions, while in oth
cases we have to move along unstable regions. In this s
tion we must rely on thea posteriori analysis. In order to
choose the starting term in Eq.~103!, let us compare the
values of mk(s), as s→`. Then m1(`)511a2 /a1
520.143 andm2(`)511a3 /a2520.013. Since the latte
number is smaller, we should start the renormalization p
cedure from the linear term, keeping the constant term
touched. The following sequence of exponential appro
mants can be readily written down, with the correspond
multipliers shown in brackets, calculated att51 andx51:

1

2
x2* ~t!5

1

8
1a1xexpS a2

a1
xt D50.146 ~m1* 51!,

~104!

1

2
x3* ~t!5

1

8
1a1xexpFa2

a1
xexpS a3

a2
xt D G50.05

~m2* 520.025!, ~105!

1

2
x4* ~t!5

1

8
1a1xexpH a2

a1
xexpFa3

a2
xexpS a4

a3
xt D G J

50.107 ~m3* 50.944!, ~106!

1

2
x5* ~t!5

1

8
1a1xexpXa2

a1
x

3expH a3

a2
xexpFa4

a3
xexpS a5

a4
xt D G J C50.075

~m4* 50.225!, ~107!

1

2
x6* ~t!5

1

8
1a1xexpFa2

a1
xexpXa3

a2
xexpH a4

a3
x

3expFa5

a4
xexpS a6

a5
xt D G J CG50.094

~m5* 50.754!, ~108!
,

he
r
a-

-
n-
i-
g

1

2
x7* ~t!5

1

8
1a1xexpHa2

a1
xexpFa3

a2
xexpXa4

a3
xexpH a5

a4
x

3expFa6

a5
xexpS a7

a6
xt D G J CGJ50.083

~m6* 50.394!. ~109!

We observe two subsequences, with odd and even num
probably embracing the correct result from below and abo
respectively. We can suspect that they both define a st
quasifixed point corresponding to a focus. In order to loc
it with maximal possible precision, we can impose
minimal-difference condition on the points, one belonging
the ‘‘odd’’ and another to ‘‘even’’ subsequences, with th
smallest absolute values of multipliers. On the other hand
is interesting to compare the values that can be obtai
from the minimal-difference condition imposed on two sta
ing terms of the renormalized sequence with those obtai
from two last terms. E.g., from the condition mintux3* (t)
2x2* (t)u, we obtain the value of the control parametert
50.56. Correspondingly,x3* (t,S51)50.088. We obtain
thus 0.087<x* (t,S51)<0.088, with the lower bound fol-
lowing from the analysis of two last terms and of two a
proximants with minimal multipliers. Our estimate should
compared to the result of Ref.@76#, 0.09560.002, obtained
by Pade´ summation.

The case ofS5 1
2 may be treated by analogy with the ca

of S51. Following literally the same steps as above,
obtain 0.062<x* (t,S5 1

2 )<0.064, which is close to the re
sult of Pade´ summation, 0.06560.003@75#.

The ground-state energyE of the two-dimensional
Heisenberg antiferromagnet may be presented in the form
an expansion@75,76#:

2E.241a2x21a4x41a6x61a8x8 ~x→0!,

a252
4

3
, a450.0064, a652230.006 326 28,

a852230.003 008 5 S S5
1

2D , ~110!

a2520.571 428, a4520.050 459 7,

a6520.014 476 2, a8520.006 562 38 ~S51!.

In the case of spin 1, the values of the local multiplie
mk(s) are increasing with increasing indexk. In order to
choose the starting term in Eq.~110!, we compared the val-
ues of m1(`)512a2/451.143 with m2(`)511a4 /a2
51.088. I.e., an approximation cascade will have a m
stable beginning if it starts from the second term in E
~110!. Thus we come to the exponential approximants

2E2* 5241a2x2expS a4

a2
x2t D , ~111!

2E3* 5241a2x2expFa4

a2
x2expS a6

a4
x2t D G . ~112!
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From the minimal-difference condition mintuE3* (t)2E2* (t)u
we find t51.568 andE3* (t,S51)522.328, close to the
result of Pade´ summation,E522.32760.001@76#.

In the case of spin 1/2, the same approach is applica
and we obtaint50.457 and 4E3* (t,S5 1

2 )522.665. Pade´
summation gives in this case 4E522.678560.001@75#.

Pass now to considering magnetizationM . In the case of
spin 1

2 it is more convenient to presentM in the form of a
series in the parameterd, related tox by the equation

12d5~12x2!1/2. ~113!

Then @75#,

2M.11a1d1a2d21a3d31a4d41a5d5 ~d→0!,

a152
4

9
, a250.08, a3520.009 319, ~114!

a4520.4642, a550.082 57.

The local multipliersmk behave quite irregularly, reflectin
the behavior of the coefficients. In this situation we resor
an a posteriorianalysis of the sequences of exponential
proximants and correspondinga posteriori multipliers,
whose values will be given in brackets. For the seque
including the constant term we observe a recurrent behav
signaling an emergence of a limiting cycle:

2M1* 5exp~a1d!50.641 ~m1* 51!, ~115!

2M2* 5expFa1dexpS a2

a1
d D G50.69 ~m2* 50.737!,

~116!

2M3* 5expH a1dexpFa2

a1
dexpS a3

a2
d D G J 50.685

~m3* 50.781!, ~117!

2M4* 5expXa1dexpH a2

a1
dexpFa3

a2
dexpS a4

a3
d D G J C

50.641 ~m4* 51!, ~118!

2M5* 5expFa1d

3expXa2

a1
dexpH a3

a2
d expFa4

a3
dexpS a5

a4
d D G J CG

50.679 ~m5* 50.808!. ~119!

We construct also a different sequence of exponential
proximants, not including into the renormalization procedu
the constant term:

2M2* 511a1dexpS a2

a1
d D50.629 ~m1* 51!, ~120!
le,

o
-

e
r,

p-
e

2M3* 511a1dexpFa2

a1
dexpS a3

a2
d D G50.621 ~m2* 50.802!,

~121!

2M4* 511a1dexpH a2

a1
dexpFa3

a2
dexpS a4

a3
d D G J 50.556

~m3* 55.14931026!, ~122!

2M5* 511a1dexpXa2

a1
dexpH a3

a2
dexpFa4

a3
dexpS a5

a4
d D G J C

50.613

~m4* 50.722!. ~123!

The last value agrees well with the result of Ref.@75#, 2M
50.60560.015.

In the case of spin 1, the following expansion in powe
of d can be obtained@76#:

M.11a2d21a3d31a4d41a5d5 ~d→0!,

a2520.326 528, a350.326 528, ~124!

a4520.732 16, a551.300 105 6.

The values of local multipliersmk , in this case, suggest tha
inclusion into consideration of the last term destabilizes
trajectory. In this situation we again resort to thea posteriori
analysis. The following sequence of exponential appro
mants can be readily written down, with the correspond
multipliers, calculated att51, shown in brackets:

M2* 5exp~a2d2t!50.721 ~m1* 51!, ~125!

M3* 5expFa2d2expS a3

a2
dt D G50.887 ~m2* 50.206!,

~126!

M4* 5expH a2d2expFa3

a2
dexpS a4

a3
dt D G J

50.746 ~m3* 50.931!, ~127!

M5* 5expXa2d2expH a3

a2
dexpFa4

a3
dexpS a5

a4
dt D G J D

50.848 ~m4* 50.33!. ~128!

We observe two subsequences, with odd and even num
probably embracing the correct result from below and abo
respectively. We can suspect that they both define a st
quasifixed point, corresponding to a focus. In order to loc
it with the maximal possible precision, we impose the mi
mal difference condition on two points, belonging to tw
different subsequences with the smallest values of multi
ers, i.e., mintuM4* (t)2M3* (t)u. From this condition we deter
mine t50.404 andM4* (t,S51)50.804, in agreement with
the estimateM50.8160.01 @76#.
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The expansions for the frequency moments,r1 andr2, of
the intensity of light scattering on the spin-pair excitation
are available forS51 @76#,

2r1.a01a2x21a3x31a4x41a5x5 ~x→0!,

a0514, a250.530 612, a3520.141 138, ~129!

a450.033 837, a550.017 167 8,

4r2.a01a2x21a3x31a4x41a5x5 ~x→0!,

a05196, a2517.469, a3525.334 53, ~130!

a453.329 92, a550.626 767.

Consider the case ofr1. Comparing the local multipliers
as s→`, m1(`)511a2 /a051.038 and m2(`)51
1a3 /a250.734, we conclude that the constant term sho
not be included into the renormalization procedure. Then
t51 andx51, the following values of the exponential ap
proximants can be calculated:

2~r1* !25a01a2x2expS a3

a2
xt D57.203 ~m1* 51!,

~131!

2~r1* !35a01a2x2expFa3

a2
xexpS a4

a3
xt D G

57.215 ~m2* 50.833!, ~132!

2~r1* !45a01a2x2expH a3

a2
xexpFa4

a3
xexpS a5

a4
xt D G J

57.222 ~m3* 50.585!. ~133!

We observe a smoothly behaving sequence of multipli
From the minimal-difference condition mintu(r1* )42(r1* )3u,
we find t51.593 25 and (r1* )457.221, in agreement with
r157.2260.02, quoted in Ref.@76#. Identical analysis leads
to the value (r2* )4552.804(t51.27), again in agreemen
with r2553.060.3 from Ref.@76#. The value of the param
eterR5(Ar22r1

2)/r1 is equal to 0.113, close to 0.1260.3
from @76#.

IX. CRITICAL PHENOMENA

A. Martinelli-Parisi e expansion

Martinelli and Parisi suggested an interesting way to c
trol the position-space renormalization-group calculatio
@77#, connecting the approximate Migdal-Kadanoff transfo
mation with the exact theory by means of the control sh
parametere, equal to zero for Migdal-Kadanoff approxima
tion and equal to one for the exact renormalization trans
mation. This approach generates the expansions in powe
e, considered as a small parameter, around the Mig
Kadanoff results. Finally, in order to reach the ‘‘exact’’ s
lution, one should sete51. The results can be further im
proved by imposing the condition on zero derivative
physical quantities ate51 @77,78#.
,

d
at

s.

-
s
-
t

r-
of
l-

f

The following expansion for the critical indexn of the
Ising model is available@77# for the square lattice:

n21.w01w1e1w2e2 ~e→0!,
~134!

w050.687, w151.14, w2521.21.

Directly for the indexn, one can find

n.a01a1e1a2e2 ~e→0!,
~135!

a051.456, a1522.415, a256.572.

When only two starting terms from Eq.~135! are considered,
the result is definitely wrong,n520.96, and with three
terms we getn55.61. This shows how expansion~135! is
bad. The renormalization procedure, not including into co
sideration the constant term, gives the exponential appr
mant

n2* ~e!5a01a1eexpS a2

a1
e D51.297. ~136!

This result, is, probably, too large and it does change mu
to the value 0.568, when the condition on zero derivative
imposed. Then, in order to extend the validity of the expa
sion ~135!, let us add to it a negative trial term2ua3ue3. The
following renormalized expression can be written:

n3* ~e,a3!5a01a1eexpS a2

a1
e

1

11~ ua3u/a2!e D . ~137!

From the condition equivalent to Eq.~45!,

]n3* ~e,a3!

]e
50,

at e51, we finda354.268 andn3* (e51)50.992, in excel-
lent agreement with the exact result,n51. Our estimate is
much better than the result of Pade´ summationn50.945,
quoted in@77#.

For the critical temperatureTc the following expansion
was obtained@77#:

Tc
21.b01b1e1b2e2 ~e→0!,

~138!

b050.4359, b150.024, b2520.109.

This gives forTc

Tc.a01a1e1a2e2 ~e→0!,
~139!

a052.294, a1520.126, a250.581.

Two exponential approximants can be written,

~Tc* !15a0expS a1

a0
et D , ~140!

~Tc* !25a0expFa1

a0
eexpS a2

a1
et D G . ~141!
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From the minimal-difference condition, ate51, we find t
50.278 and (Tc* )252.259. The result does not change mu
~to the value 2.248,t50.217) when the condition on zer
derivative of (Tc* )2 is imposed. Let us add to the expansi
~139! one more term2ua3ue3, so that the following approx-
imant can be written:

~Tc* !35a0expFa1

a0
eexpS a2

a1
e

1

11~ ua3u/a2!e D G , ~142!

and determinea3 from the condition on zero derivative a
e51. Then, ua3u50.664 and (Tc* )352.279. Pade´ approxi-
mants in this case give a close result,Tc52.275@77#. This is
to be compared with the exactTc52.269.

On a triangular lattice, the following expression forn was
obtained@78#:

21/n.a01a1e1a2e2 ~e→0!,
~143!

a051.6786, a150.5344, a2520.3952.

In this case, the exponential approximant

~21/n!* 5a0expFa1

a0
eexpS a2

a1
e D G ~144!

leads ton* 51.035, which is a much better value than 1.1
obtained in Ref.@78# directly from Eq.~143!. It is possible to
improve our estimate performing the last step of the s
similar bootstrap along the most stable available trajecto
with the stabilizers corresponding to zero value of the loc
multiplier m511a2(11s)/a1s. This yields

~21/n!* 5a0expFa1

a0
eS s

s2~a2 /a1!et D sG ,
s52

a2e

a11a2e
52.86. ~145!

Then,n* 51.015 fort51. The derivative ofn* is equal to
0.035. At the pointt51.152, the derivative goes to zero, an
our estimate changes slightly ton* 51.036.

For the inverse critical temperature on a triangular latt
@78#, we have

Tc
21.b01b1e1b2e2 ~e→0!,

~146!

b050.3047, b1520.0976, b250.0501.

For the critical temperature we obtain

Tc.a01a1e1a2e2 ~e→0!,
~147!

a053.282, a151.051, a2520.203.

The following exponential approximant is favored from t
viewpoint of local multipliers:

Tc* 5a01a1eexpS a2

a1
et D . ~148!

The derivative of Eq.~148! is quite large att51, so we
resort to the condition
f-
y,

e

]Tc*

]e
50,

and ate51 we findt52a2 /a155.177, and

Tc* 5a01a1e2153.669,

deviating from the exact value 3.642 with the percenta
error 0.741%, while the result 3.888, following from expa
sion ~146! and quoted in@78#, gives the error 6.755%.

For the first coefficient of the beta functionb1 of the
two-dimensional nonlinears-model the following expansion
was obtained@79#:

b1.
A3

ln~2!
~a01a1e1a2e2! ~e→0!,

~149!

a052
1

24
, a25

3

64
, a352

69

86
.

The exponential approximant

b1* 5
A3

ln~2!Fa01a1eexpS a2

a1
e D G520.081 ~150!

is in good agreement with the exact resu
b1521/4p520.08@79#. The derivative ofb1* is small and
equal to 0.006, so that we can safely stop at this point.

B. Localization length

The critical exponentn describing the divergence of th
localization length in the vicinity of the Anderson transitio
from the insulating to the conducting phase,

l;~Ec2E!2n,

as the energyE of an electron approaches the mobility ed
Ec , can be presented in the form of (21e) expansion, or
(d22) expansion, whered is the dimensionality of space
@80#,

n.
1

e
1be21ce3 ~e→0!,

~151!

b52
9

4
z~3!, c5

27

16
z~4!.

The result given by the starting two terms is wron
n521.705, while it is known thatn>2/3 in the three-
dimensional case (e51) @81#. The third term slightly im-
proves the situation, but the result remains small,n50.122.
Renormalizing the starting two terms yields the exponen
approximant

n* ~e,t!5
1

e
exp~be3t!. ~152!

Let us impose the condition

]n* ~e,t!

]e
50,
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discussed above in Sec. IV. Then, the control functiont(e)
is found as follows:

t~e!5
1

3be3
. ~153!

At e51, we obtaint520.123 246, corresponding to th
necessity to move backwards, from the wrong point of
approximation cascade. Our estimate for the critical ind

n* 5exp(13)51.395 61 better agrees with the numerical res
1.3 @82# than the Pade´-Borel estimate 0.730 quoted in Re
@80#.

C. Amplitude ratios

Consider the three-dimensional Ising model. Differe
amplitude ratios are available in the form of the Wilsone
expansion (e542d) around the dimensionality four@83#.
For the ratioC1/C2, related to the magnetic susceptibility
zero field, the following expression is available:

C1

C2
.2g@11a1e1a2e21a3e3# ~e→0!,

~154!

a15
1

2
, a25

25

108
,

a35
1

24
l1

1

36
z~3!1

1159

11 664
, l51.171 953.

In order to improve the stability of the procedure, let
invert C1/C2 and study

S C1

C2D 21

.22g@11b1e1b2e21b3e3# ~e→0!,

~155!

b152
1

2
, b25

1

54
, b3527.551931022.

From the viewpoint of stability conditions, the following tw
approximants are well justified:

F S C1

C2D 21G
2

*
522gF11b1eexpS b2

b1
et D G , ~156!

F S C1

C2D 21G
3

*
522gH 11b1eexpFb2

b1
eexpS b3

b2
et D G J ,

~157!

and from the minimal-difference condition

min
t
UF S C1

C2D 21G
3

*
2F S C1

C2D 21G
2

*U ,
with the typical value ofg51.24, we obtaint50.297. Cor-
respondingly, (C1/C2)* 54.673. This value agrees we
with the theoretical estimates and experimental data@83#.

The ratio A1/A2 is related to the two-point correlatio
function at zero momentum,
e
x

lt

t

A1/A2.2a22@11e2ua2ue2# ~e→0!,

~158!

a25
43

54
2

1

6
l2z~3!.

Two renormalized expressions can be constructed,

S A1

A2D
1

*
52a22@exp~et!#, ~159!

S A1

A2D
2

*
52a22$exp@eexp~2ua2uet!#%, ~160!

both exponential approximants being justified from the vie
point of stability conditions. From the condition

min
t
US A1

A2D
2

*
2S A1

A2D
1

*U ,
with the typical value ofa50.11, we find thatt50.669 and
(A1/A2)2* 50.527, agreeing well with the data of Table
from Ref. @83#.

For the amplitude ratiosRc andRx ~see@83#!, the follow-
ing expansions are available:

Rc.
1

9
222b21e@11a1e2ua2ue2# ~e→0!,

~161!

a15
17

27
, a25

989

2916
2

4

9
z~3!2

2

3
l,

and

Rx.3~d23!/22g1~12d!/2

3F11S 1

72
1

1

36
l2

1

18
z~3! D e3G ~e→0!.

~162!

The self-similar exponential approximants are

~Rc!1* 5
1

9
222b21e@exp~a1et!#, ~163!

~Rc!2* 5
1

9
222b21eH expFa1eexpS 2

ua2u
a1

et D G J .

~164!

From the minimal-difference condition mintu(Rc)2*2(Rc)1* u,
with the typical valueb50.325, we obtaint50.633 and
(Rc)2* 50.053 agreeing well with the results quoted in R
@83#.

The renormalized expression forRx writes

Rx* 53~d23!/22g1~12d!/2

3FexpS 1

72
1

1

36
l2

1

18
z~3! D e3G . ~165!
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We taked54.825, corresponding, by virtue of the scalin
relation, to a reasonable value for the critical indexh
50.03. ThenRx* 51.675, close to various estimates pr
sented in@83#.

Finally, we consider the quantityuz0u, the universal res-
caled spontaneous magnetization,

uz0u.A32b@11a1e1a2e22ua3ue3# ~e→0!,

~166!

a15
1

4
, a25

73

864
, a35

1

24
l2

7

36
z~3!1

5581

93 312
.

The self-similar exponential approximants, justified from t
viewpoint of ana posterioristability analysis, are

uz0u2* 5A32bH expFa1eexpS a2

a1
et D G J , ~167!

uz0u3* 5A32bXexpH a1eexpFa2

a1
eexpS 2

ua3u
a2

et D G J C,
~168!

and from the minimal-difference condition mintzuz0u3*
2uz0u2* z we find t50.633 anduz0u3* 52.913 agreeing well
with the result of Pade´ summation 2.8760.06 @83#.

D. Critical indices from the Wilson e expansion

Critical indices are usually obtained from the Wilsone
expansion@84,85# using some kind of a resummation proc
dure. As a rule, for different values ofn, standing for the
number of the order parameter components, one obt
some values not related to each other analytically. We ob
belowanalytical renormalized expressions for the critical i
dicesn andh, valid for arbitraryn.

For the critical indexh, the expansion is available up t
the fifth-order term ine @85#. For convenience, we reproduc
the higher-order coefficients in the Appendix,

h.a2~n!e21a3~n!e31a4~n!e41a5~n!e5 ~e→0!,

~169!

a2~n!5
n12

2~n18!2
,

a3~n!5
n12

8~n18!4
~272156n2n2!, . . . .

The following exponential approximants are justified fro
the viewpoint of the stability conditions for local multipliers

h4* ~e,n,t!5a2~n!e21a3~n!e3expS a4~n!

a3~n!
et D ,

~170!

h5* ~e,n,t!5a2~n!e21a3~n!e3

3expFa4~n!

a3~n!
eexpS a5~n!

a4~n!
et D G . ~171!
ns
in

From the minimal-difference condition mintuh5* (e,n,t)
2h4* (e,n,t)u, equivalent in this case to the equation

t5expS a5~n!

a4~n!
et D ,

we can find the control functiont5t(n) at e51. From for-
mula ~171!, we can estimate the critical inde
h5* „1,n,t(n)…[h* (n). The results of calculations are pre
sented in Table I. They agree well with the majority of d
ferent kinds of estimates available for the critical indexh.

For the critical indexn, up to the fifth order ine ~see the
Appendix!, one has@85#

n21.b0~n!1b1~n!e1b2~n!e2

1b3~n!e31b4~n!e41b5~n!e5 ~e→0!,
~172!

b0~n!52, b1~n!52
n12

n18
,

b2~n!52
~n12!~13n144!

2~n18!3
, . . . .

The following exponential approximants, preserving the c
rect limitsn5 1

2 at n522 @86–88# andn51, asn→` @89#,
can be written, giving att51 and e51 the following re-
sults:

~n21!2* 5b0~n!1b1~n!eexpFb2~n!

b1~n!
et G ,

~173!

n2* ~n50!50.607, n2* ~n51!50.655,

n2* ~n52!50.698, n2* ~n53!50.736.

~n21!3* 5b0~n!1b1~n!e

3expFb2~n!

b1~n!
eexpS b3~n!

b2~n!
et D G ,

~174!

n3* ~n50!50.579, n3* ~n51!50.616,

n3* ~n52!50.651, n3* ~n53!50.683.

~n21!4* 5b0~n!1b1~n!e expH b2~n!

b1~n!
e

3expFb3~n!

b2~n!
eexpS b4~n!

b3~n!
et D G J ,

~175!

n4* ~n50!50.603, n4* ~n51!50.649,

n4* ~n52!50.692, n4* ~n53!50.729.

~n21!5* 5b0~n!1b1~n!eexpXb2~n!

b1~n!
eexpH b3~n!

b2~n!
e

3expFb4~n!

b3~n!
eexpS b5~n!

b4~n!
et D G J C.

~176!
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TABLE I. Critical indices, for the models with different numbers of componentsn, calculated by using
self-similar exponential approximants obtained from thee expansion, and compared to the results listed
literature. The indicesn, h, and u are calculated directly, and other indices are found from the kno
scaling relations.

n n h g b a d u

22 1/2 0 1 1/4 1/2 5 0.4

21 0.545 0.019 1.08 0.278 0.365 4.888 0.431

0.589 0.03 1.16 0.303 0.233 4.825 0.464
0 0.587–0.592 0.026–0.034 1.157–1.162 0.302–0.305 0.231–0.236 0.46560.01

@90# @92# @90# @92# @92# @91#

0.632 0.035 1.242 0.327 0.104 4.797 0.498
1 0.629–0.634 0.031–0.038 1.237–1.244 0.324–0.327 0.107–0.110 0.560.02

@90# @92# @90# @92# @92# @91#

0.671 0.036 1.318 0.348 20.013 4.792 0.531
2 0.662–0.677 0.032–0.039 1.308–1.327 0.346–0.34820.007–20.1 0.5260.02

@90# @92# @90# @92# @92# @91#

0.708 0.037 1.39 0.367 20.124 4.786 0.562
3 0.704–0.72 0.031–0.038 1.385–1.406 0.362–0.36620.115–20.117 0.5560.015

@90# @92# @90# @92# @92# @91#

0.741 0.036 1.455 0.384 20.223 4.792 0.592
4 0.738–0.755 0.036 1.449–1.483 0.382 20.213

@90# @92# @90# @92# @92#

0.797 0.033 1.568 0.412 20.391 4.808 0.645
6 0.79–0.818 0.031 1.556–1.608 0.407 20.37

@90# @92# @90# @92# @92#

0.84 0.029 1.656 0.432 20.52 4.831 0.688
8 0.83–0.856 0.027 1.637–1.687 0.426 20.489

@90# @92# @90# @92# @92#

0.872 0.026 1.721 0.447 20.616 4.848 0.723
10 0.85–0.884 0.024 1.697–1.744 0.440 20.576

@90# @92# @90# @92# @92#

0.896 0.023 1.771 0.458 20.688 4.865 0.751
12 0.881–0.902 0.021 1.741–1.783 0.450 20.643

@90# @92# @90# @92# @92#

` 1 0 2 1/2 21 5 1
a
ue

x-

n5* ~n50!50.58, n5* ~n51!50.618,

n5* ~n52!50.654, n5* ~n53!50.688.

Two sequences, with odd and even numbers, are cle
seen. The last two approximants give the closest val
From the minimal-difference condition mintu(n21)5*
2(n21)4* u, which simply reduces to the equation

t5expS b5~n!

b4~n!
et D ,

one can easily find the control functiont5t(n), and, finally,
calculate the critical index,n* (n)5@(n21)5* #21.
rly
s.

For the critical exponentv(e)52Be
8 , calculated in the

renormalized infrared-stable fixed point, the following e
pansion is available@85#:

v~e!.e1c2~n!e21c3~n!e3 ~e→0!,

c2~n!52
9n142

~n18!2
,

~177!

c3~n!5
1

4~n18!4
@33n31538n214288n

196581z~3!~n18!96~5n122!#.
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We limit here the discussion by the third-order terms, sin
the higher-order terms grow impetuously, jeopardizing
fulfillment of the stability conditions. The following expo
nential approximants are available being well justified fro
the viewpoint of stability:

v2* ~e,n,t!5eexp@c2~n!et#, ~178!

v3* ~e,n,t!5eexpFc2~n!eexpS c3~n!

c2~n!
et D G , ~179!

and from the minimal-difference condition

t5expS c3~n!

c2~n!
et D ,

one can find the control functiont5t(n) at e51. We obtain
the following values of the index in the physically interesti
region:

v* ~n50!50.788, v* ~n51!50.788,

v* ~n52!50.791, v* ~n53!50.794.

The limiting values, v* (n522)'0.8, v* (n→`)'1,
sound reasonable. The dynamical critical indexu5vn can
be estimated using Eqs.~176! and ~179!. The results for the
critical indicesh andn, presented in Table I, agree well wit
other theoretical estimates and available experimental
@90–92#. Let us stress again, that atn522 andn→`, we
obtain the exact results.

E. Critical indices from the field-theory expansion

Field-theory approach in the theory of critical phenome
is, usually, very accurate@92,93#. In Ref. @13# we analyzed
the expansions in powers of the interaction constantg (g
expansion! for some critical indices from the viewpoint o
the limiting casesn522, n→`, and found by a direct in-
spection of the expressions forh and g from @92# that the
n→` limit, corresponding to the spherical model@89#, is
obeyed rigorously if g51, i.e., h50, g52, and the
n522 limit, corresponding to the Gaussian polymer@86–
88#, is obeyed with a very high accuracy for arbitraryg, i.e.,
h'0, g'1.

The standard approach@93# uses, for computing the renor
malized infrared-stable fixed pointg* of the beta function
B1(g), a complicated Borel summation technique. Th
critical indices are calculated asg(g* ) andh(g* ). The re-
sults, thus, depend on the way in which the position of
fixed point is determined, although different approaches g
the results very close to each other@92#. We suggest below a
simple way to minimize an uncertainty related to the posit
of the fixed point. Let us use below two different approach
to the determination ofg* . The first approach was suggest
in Ref. @13#. It is based on three starting terms from theg
expansion from Ref.@92# ~see the Appendix!:

B1~g!.2g1g21a3~n!g31a4~n!g4

1a5~n!g51a6~n!g6 ~g→0!,

~180!
e
e

ta

a

e
e

n
s

a3~n!52
6.074 074 08n128.148 148 15

~n18!2
, . . . .

For the velocity field we have

v3~ f !52
a3

8 S 1

2
~11A114 f ! D 3

,

which is to be substituted into the evolution integral

E
2g1g2

B1* d f

v3~ f !
5t. ~181!

The rootg1* 5g1* (n,t) of the equationB1* (g,n,t51)50 is
obtained numerically, as a functiong1* 5g1* (n). The follow-
ing values were obtained in the physically important case

g1* ~n50!51.59, g1* ~n51!51.559,

g1* ~n52!51.524, g1* ~n53!51.491.

Such a decreasing, withn, dependence is characteristic
the majority of related studies. We observed also, tha
n522, g1* 51.599 and atn→`, g1* 51. The dependence
of g* (n) in the interval nP(22,0) is nonmonotonous, a
maximum is reached atn521, whereg1* 51.61. We also
constructed a different beta functionB2(g),

B2~g,t!52gexp@2a3~n!g2#1g2exp@a4~n!g2#

1a5~n!g5expS a6~n!

a5~n!
gt D , ~182!

leading to the following increasing withn values of the fixed
point g2* (n,t) at t51:

g2* ~n50!51.163, g2* ~n51!51.208,

g2* ~n52!51.249, g2* ~n53!51.285,

possessing a maximum atn57. Such an increasing depen
dence better corresponds to the known decrease of the
cal temperatureTc , from the Ising (n51) to Heisenberg
(n53) model@72#, sinceTc;g21 @94#. We attempt now to
minimize uncertainty, connected to the way of determini
the fixed point. Imposing the minimal-difference condition

min
t

ug2* ~n,t!2g1* ~n,t!u,

we obtain the control functiont5t(n), and the following
values for the optimized zero of theb function

g* ~n50!51.311, g* ~n51!51.334,

g* ~n52!51.352, g* ~n53!51.365.

These values increase untiln55, wheng* (n55)51.372,
and then decrease untilg* 51, asn→`.

For the critical indexh, we keep all the terms available
up to the sixth order in powers ofg @92# ~see the Appendix!:
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h~g!.b2~n!g21b3~n!g31b4~n!g41b5~n!g51b6~n!g6 ~g→0!,
~183!

b2~n!5
0.296 296 296 3~n12!

~n18!2
, b3~n!5

0.024 684 001 4n210.246 840 014n10.394 944 022 4

~n18!3
, . . . .
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From thea posterioristability analysis we select the fifth
order approximant corresponding to the smallest multipli

h5* ~g,n!5b2~n!g2

3expH b3~n!

b2~n!
gexpFb4~n!

b3~n!
gexpS b5~n!

b4~n!
gD G J ,

~184!

so that

h5* ~g* ,n50!50.027, h5* ~g* ,n51!50.034,

h5* ~g* ,n52!50.039, h5* ~g* ,n53!50.04.

These values agree well with those quoted in Refs.@91,92#.
For the critical indexg we write down all the terms avail

able, in powers ofg @92# ~see the Appendix!,

g21.11c1~n!g1c2~n!g21c3~n!g3

1c4~n!g41c5~n!g51c6~n!g6 ~g→0!,
~185!

c1~n!52
n12

2~n18!
, c2~n!5

n12

~n18!2
, . . . .

The third-order exponential approximant is selected by aa
posteriorianalysis, since it corresponds to the smallest va
of the multiplier, giving the following expression for th
critical index:

~g21!3* 511c1~n!gexpFc2~n!

c1~n!
gexpS c3~n!

c2~n!
gD G ,

~186!

so that

g* ~g* ,n50!51.164, g* ~g* ,n51!51.243,

g* ~g* ,n52!51.319, g* ~g* ,n53!51.39,

which again agrees well with the data of Refs.@90–92#.

X. DISCUSSION

In this paper we have developed ananalytical approach
for summing divergent series with arbitrary noninteger
well as integer powers. This approach is based on the no
of theself-similar exponential approximants. By a number of
examples we show that the developed method is genera
accurate. In addition, the exponential approximants hav
simple analytical structure, even for the quite large num
of perturbative terms used, when one usually has to reso
numerical techniques. Because of its analytical nature,
method permits one to accomplish direct analysis of res
:

e

s
on

nd
a
r
to
ur
t-

ing formulas with respect to the variation of physical para
eters. All examples we have analyzed are related to imp
tant physical phenomena, such as critical and crosso
phenomena. We demonstrate that the method of self-sim
exponential approximants provides an effective general
for treating many different problems of statistical physics

In conclusion, it is worth touching the following questio
Assume that we are given a truncated series~1!. Then, would
it be possible, looking at the given series, to get some h
ristic arguments, when the self-similar approximants in
form of nested exponentials should yield good results? T
answer to this question is yes, we can make a prelimin
estimate of whether the nested exponentials would w
well. Such a first-glance investigation can be done by a
lyzing the a priori multiplier ~42!. Since the case of the
nested exponentials corresponds tos→`, then from Eq.~48!,
we have

lim
s→`

mk~x,s!5 (
n50

k
an

a0
xan2a0. ~187!

From here, we immediately notice what would be the fav
able cases for the better stability of the procedure, which
related to the condition of the minimal multiplier modulu
umk(x,`)u. Such favorable cases include the following.~i!
When an decreases asn increases, so thatuan /a0u,1 and
an /a0→0, asn→`. If uxan2a0u increases withn, then, to
compensate this increase,uan /a0u must decrease sufficientl
fast. ~ii ! When with increasingn, uxan2a0u decreases. This
kind of situation occurs, e.g., in the strong-coupling limit
many quantum problems, whenan,0, andxan2a0→0, as
n→`. If the decrease ofuxan2a0u is sufficiently fast, then
uan /a0u may even grow withn. ~iii ! When Eq. ~1! is an
alternating series, that is, the coefficientsan change their
signs with changingn. In this case, even if neitheruan /a0u
nor uxan2a0u decrease, but nevertheless, because of alter
ing signs ofan , the valueumk(x,`)u may be small.

The worst case, as is seen from Eq.~187!, would be when
all coefficientsan are of the same sign,an increases withn,
so thatan /a0.1, and in addition, whenxan2a0.1. To ex-
plain why this case is really the worst, consider a sim
illustration for series~1! truncated at second order,

p2~x!5a01a1x1a2x2.

The relateda priori multiplier ~187! is

m2~x,`!511
a1

a2
x1

a2

a0
x2. ~188!

Starting withp2(x), let us construct the simplest nested e
ponentials, not invoking control functions,
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f 1* ~x!5a0expS a1

a0
xD , f 2* ~x!5a0expFa1

a0
xexpS a2

a1
xD G .
~189!

The sequence$ f k* (x)% has to satisfy the stability conditio
~50!, with the a posteriori multipliers ~49!. In our case,
m1* (x)51 and

m2* ~x!5S 11
a2

a1
xDexpS a2

a1
xD f 2* ~x!

f 1* ~x!
. ~190!

Assume now that an11.an.0 and x.0. Then
f n11* (x).~x!. In such a case, multiplier~190! is more
than unity. Hence, the procedure is locally unstable, and
cannot trust to approximants~189!. The first of them, i.e.,
f 1* (x), can yet give a reasonable estimate, but the sec
f 2* (x), is certainly untrustable.

In this way, a quick glance at thea priori multiplier ~187!
gives us a feeling of whether the self-similar exponenti
would produce good results. But the final conclusion
whether we have managed to construct a convergent
quence of nested exponential approximants is to be base
the stability analysis of the renormalized multipliers~49!.
The relation between the latter and thea priori multipliers
~187! is not direct, as can be seen even from the simp
case resulting in Eqs.~188! and~190!. In general, it would be
more correct to say that there is no direct relation betw
these two types of multipliers. Therefore there is no nec
sity of requiring that thea priori multipliers ~187! be com-
pulsory less than unity in their absolute values. It is suffici
to require that the final multipliers~49! satisfy the stability
condition ~50!.

Another question that may arise is as follows. Suppose
have met with the worst case, when we are not able to c
struct a convergent sequence of self-similar exponential
proximants. How then should we proceed in order to defi
an effective limit of a divergent sequence$pk(x)%? In such a
case, there are several possibilities. First of all, since i
always m1* (x)51, as is clear from definition~49!, then
f 1* (x) may serve as an estimate for an effective limit of t
sequence$pk(x)%.

Second, recall that the nested exponentials are only on
the admissible forms of self-similar approximants, cor
sponding to a particular case, when the power in the a
braic transformation~2! is assumed to tend to infinity. If the
latter assumption is waved aside, we return to the rad
form ~10!. Then, we have to define control functionss
e

d,

s
f
e-
on

st

n
s-

t

e
n-
p-
e

is

of
-
e-

al

5sk(x) and t5tk(x) so that the sequence$pk* (x,sk ,tk)% is
convergent. Equations defining these control functions,
always in the framework of the self-similar approximatio
theory @7–14#, follow from the requirement for the corre
sponding approximation cascade to have a stable fixed p
the stability of a fixed point being in one-to-one correspo
dence with the existence of a limit to which the sequence
approximations converges@10,11,95#. Developing this pro-
cedure, we come to a convergent sequence$ f k* (x)% of self-
similar approximantsf k* (x)5pk* „x,sk(x),tk(x)… which can
give very accurate approximations for the sought functi
but will not have such a nice structure as that of nes
exponentials.

The self-similar exponential approximants, in addition
having a nice and convenient mathematical structure,
dently illustrate by their form the idea of self-similarity o
approximations@7–9#. Thus if we introduce a function

G~x,y![xey

and use the notation

xi[bix
b i, x0[a0xa0,

then the self-similar approximant~18! can be written as

Fk~x!5G~x0 ,G„x1 , . . . ,G~xk21 ,xk!…, . . . !.

Finally, one more possibility of treating divergent serie
when the direct construction of nested exponentials does
work, could be either by resorting to a change of variables
by invoking a transformation of the given series, so that
following application of the self-similar approximatio
theory would result in a convergent sequence of nested
ponentials. What kind of a transformation or a change
variables is appropriate can again be decided by means o
a priori multipliers ~187!.
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APPENDIX

The higher-order coefficients in thee expansion for the
critical indexh are @85#
a4~n!52
1

32

n12

~n18!6
@5n41230n321124n2217 920n246 1441z~3!~n18!384~5n122!#,

a5~n!52
1

128

n12

~n18!8
@~13n61946n5127 620n41121 472n32262 528n222 912 768n25 655 552!

2z~3!~n18!16~n5110n411220n321136n2268 672n2171 264!1z~4!~n18!31152~5n122!

2z~5!~n18!25120~2n2155n1186!#.
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For the critical indexn one has

b3~n!5
~n12!

8~n18!5
@3n32452n222672n253121z~3!~n18!96~5n122!#,

b4~n!5
~n12!

32~n18!7
@3n51398n4212 900n3281 552n22219 968n2357 1201z~3!~n18!16~3n42194n31148n219472n

119 488!1z~4!~n18!3288~5n122!2z~5!~n18!21280~2n2155n1186!#,

b5~n!5
~n12!

128~n18!9
@3n721198n6227 484n521 055 344n425 242 112n325 256 704n216 999 040n2626 6882z~3!~n

18!16~13n62310n5119 004n41102 400n32381 536n222 792 576n24 240 640!2z2~3!~n18!21024~2n4

118n31981n216994n111 688!1z~4!~n18!348~3n42194n31148n219472n119 488!

1z~5!~n18!2256~155n413026n31989n2266 018n2130 608!2z~6!~n18!46400~2n2155n1186!

1z~7!~n18!356 448~14n21189n1526!#.

The higher-order coefficients of the field-theory expansion@92# for the b function are

a4~n!5
1

~n18!3
~1.348 942 76n2154.940 376 98n1199.640 417 0!,

a5~n!52
1

~n18!4
~20.155 645 89n3135.820 203 78n21602.521 230 5n11832.206 732!,

a6~n!5
1

~n18!5
~0.051 236 18n413.237 876 20n31668.554 336 8n217819.564 764n120 770.176 97!.

For the critical indexh,

b4~n!5
1

~n18!4
~20.004 298 562 6n310.667 985 920 2n214.609 221 057n16.512 109 933!,

b5~n!52
1

~n18!5
~0.006 550 922 2n420.132 451 061 4n311.891 139 282n2115.188 093 40n121.647 206 43!,

b6~n!5
1

~n18!6
~20.005 548 920n520.020 399 448 5n413.054 030 987n3164.077 446 56n21300.720 893 3n

1369.713 073 9!.

For the critical indexg,

c3~n!52
1

~n18!3
~0.879 558 892 6n216.485 476 868n19.452 718 166!,

c4~n!5
1

~n18!4
~20.128 332 104 3n317.966 740 703n2151.844 212 98n170.794 806 31!,

c5~n!52
1

~n18!5
~0.049 096 605 8n414.288 152 493n31108.361 821 9n21537.813 610 5n1675.699 607 7!,
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