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The dynamics of generic stochastic Lotka-Voltefidiscrete logistit systems of the formw;(t+1)
=A(t)w;(t) +aW(t) - bwi(t)W(t) is studied by computer simulations. The variablgs i=1, ... N, are the
individual system components am_c(t) =(1/N)Z;w;(t) is their average. The parameterandb are constants,
while \(t) is randomly chosen at each time step from a given distribution. Models of this type describe the
temporal evolution of a large variety of systems such as stock markets and city populations. These systems are
characterized by a large number of interacting objects and the dynamics is dominated by multiplicative
processes. The instantaneous probability distribufiGw,t) of the system componenig turns out to fulfill a
Pareto power lawP(w,t)~w~1~¢. The time evolution of/_v(t) presents intermittent fluctuations parametrized
by a Levy-stable distribution with the same index showing an intricate relation between the distribution of
thew;’s at a given time and the temporal fluctuations of their averfg&063-651X98)00608-4

PACS numbds): 05.40:+j, 05.70.Ln, 02.50-r

I. INTRODUCTION emergence in the system of the macroscopic collective phe-
nomend 36]. This approach was applied to the study of mul-
Power-law distributions have been observed in all do+iscale dynamics in spin glassg37] and stock market dy-

mains of the natural sciences as well as in economics, linnamics[38]. Using a generic class of models with a large
guistics, and many other fields. Widely studied examples ofiumber of interacting degrees of freedom, it was shown that
power-law distributions include the energy distribution be-macroscopic dynamics emerges under rather general condi-
tween scales in turbulendd], distribution of earthquake tions. This dynamics exhibits power-law scaling as well as
magnitudeg2], diameter distribution of craters and asteroidsintermittency{ 38—40. These models are particularly suitable
[3], the distribution of city population§4,5], the distribu- to describe systems such as stock market dynamics with
tions of income and of wealf6—13), the size distribution of ~many individual investor$41-4¢ where each system com-
business firm§14,15|, and the distribution of the frequency Ponent describes a single investor stock[47]). Such sys-
of appearance of words in tex]. A related phenomenon is €MS involve Complex_temporal dynamics of many degregs
the fact that in a variety of systems the temporal fluctuation®f freédom but no spatial structure. The models introduced in
exhibit a scale invariant behavior in the form ofuyestable ~ L40] can also describe systems such as population dynamics

distributions[16]. Well known examples are the fluctuations [48-52, spatial dom_ains_in magpetif.53] or turbulence
in stock market§7,17. models[54,55, or regions in generic phase spa¢66—58,

Although systems which exhibit power-law distributions which have spatial dependence. . . .
have been studied extensively in recent years there is ng In this paper we present numerical studies of generic sto-

universally accepted framework which can explain the originchast|c Lotka-Volterra systems. These systems basically con-

of the abundance and diversity of power-law distributions.S'St of.coupled d_ynamlc equat!ons which describe th? dis-
One context in which the emergence of scaling laws an§"€t€ time evolution of the basic system componemts i

long range correlations in space and time is well understooif L...N. The structure of these equations resembles the
is equilibrium statistical physics at the critical pojag—2g.  °distic map and they are coupled through the average value

By contrast, scaling behavior, power-law distributions asw(t). The dynamics includes autocatalysis both at the indi-
well as spatial and temporal power-law correlationsgger ~ Vidual level and at the community level as well as a satura-

neric natural systems is still the subject of intense stigB~  tion term. We find that under very general conditions, the
35]. system components spontaneously evolve into a power-law
An approach that proved to be useful in the study of comdistribution P(w,t)~w~1~%. The time evolution ofw(t)
plex systems is to identify for each system the relevant elpresents intermittent fluctuations parametrized by ‘ayke
ementary degrees of freedom and their interactions and tstable distribution with the same index showing an intri-
follow up (by monitoring their computer simulatiprthe  cate relation between the instantaneous distribution of the
system components and the temporal fluctuations of their

average.
*Electronic address: biham@flounder.fiz.huji.ac.il The paper is organized as follows. In Sec. Il we present
TElectronic address: malcai@flounder.fiz.huji.ac.il the generalized logistic model. Simulations and results are
*Electronic address: shiki@cc.huji.ac.il reported in Sec. Ill. Discussion of previous results as well as
SElectronic address: sorin@vms.huii.ac.il of our findings is given in Sec. IV, and a summary in Sec. V.
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Il. THE MODEL below, systems which exhibit an effective GL dynaniigsy.
()] lead, under very general conditions, to a power-law dis-

A. Formal definition oo
tribution of the values; :

The generalized logistic systef0] describes the evolu-
tion in discrete time of N dynamic variablesw;, i P(w)~w17¢ 5)
=1,... N. At each time stept, an integeri is chosen ran-
domly in the range ¥i<N, which is the index of the dy- Moreover, the time evolution ofv(t) presents intermittent
namic variablew; to be updated at that time step. A random fluctuations following a Ley-stable distribution with the
multiplicative factor\(t) is then drawn from a given distri- same indexx.
butionTI(\), which is independent af andt. This can be,
for example, a uniform distribution in the ranggm,<A\
<\ pmax, Wherel i, and .« are predefined limits. The sys-

B. Motivation and the main features

tem is then updated according to As mentioned above, fal=1 and fixed\, the GL sys-
tem [Eq. (1)] introduced in[40] reduces to the Lotka-
wi(t+1) =N (t)w;(t)+aw(t) —bwi(H)w(t), Volterra model[Eq. (3)]. The rationale for introducingN
(1) >1 is to study the effects of the interactions between sub-
wit+1)=w;(t), j=1,...N; j=#i. populations and to measure their size distribufign. (5)].

Treating each population separately allows their separate

This is an asynchronous update mechanism. The averag@ther than global updating. TH¢=1 case(annual global
value of the system components at titis given by repopulation dynamigss known to lead to chaotic dynamics
of the total population while the detailed dynamjé&sy. (1)]

N ensures a population fluctuating around the equilibrium value
> wit). (2)  given by Eq.(4), with fluctuations described by a g
i=1 flights dynamics. One observes that treating the entire popu-
lation globally (according to the Lotka-Volterra modeis
In general, using instead of the average, a weighted averaggt a good approximation for a system with subpopulations
of the w;’s would lead to similar results. The parametars and/or with overlapping generations. In particular, fdr
andb may, in general, be slowly varying functions of time, =1 neither the Lotka-Volterra systefig. (3)] nor the Kes-
however, we will now consider them as constants. The firsten system(described in Sec. IV A belowlead to Lay-
term on the right hand side of E¢{L) describes the effect of stable fluctuations around an equilibrium value. The global
autocatalysis at the individual level. For instance, in a stockdynamics of Eq(3) may be appropriate only to the case of
market system it represents the increésedecreaseby a  annual nonoverlapping populations highly localized in space
random factor\ (t) of the capital of the investor between and time when indeed the population behaves as a single
time t andt+1. The second term in Eq1l) describes the unit. In general, however, it is crucial to take into account the
effect of autocatalysis at the community level. In an eco-fact that the population is composed of a collection of coex-
nomic model, this term can be related to the social securitysting subpopulations.
policy or to general publicly funded services which every |otka-Volterra systems with more specieN>*1) were
individual receives. In molecular or magnetic systems, thisonsidered in the past, but the differamf's were usually
term may represent the mean-field approximation to the efinterpreted as different species with species-specific interac-
fect of diffusion or convectiof53]. The third term in Eq(1)  tions b;;w;w; between them representing competition, coop-
describes saturation or the competition for limited resourceseration, and prey-predator relations. In our system, the vari-
In an ecological model, this term implies that for large ous w;’s are treated on equal footing and the differences
enough densities, the population starts to exhaust the avathetween the various subpopulations are considered as acci-
able resources and each subpopulation loses from the corfental and represented by the stochastic t&(t). Conse-
petition over resources a term proportional to the produchuently, the interactions-b;;w;w; of other subpopulations
between the average density population and its own size. ngj with the currently updated population; are (at least
:eferbto Eq.(1) 6;15 the gener?jliz_egh(jiscre;e |09i_3(t@|—t)h3y5' ! stochastically the sameb;; =b/N. This leads to the appear-
em because when averaged ovehis system gives the we - W S
known discrete logisti¢Lotka-Volterra equation[59,60 ?srlgihlgsgg\./(alr)ia(:{o:]se f:g:;n thits)v;/é)\:vn: OfEE‘b”W'W‘ - Small
g(l) are accept-
_ able, and lead to qualitatively similar results, but negative
w(t+1)=(N+a)w(t)—bwA(t). (3 coefficientsh;; can lead to significantly different dynamics.
o Note that, as seen below;; =0 leads to the power-law
In the general case, the parametar$ and the distribution  distribution of Eq.(5) in the instantaneous values of tivg's
II(\) may depend on time. Consequently, even the solutioRven though in that case the system does not approach an

of the asymptotic stationarity condition(t+1)=w(t) may  equilibrium value ofw [Eq. (4)] and the entire population

Z| -

w(t)=

depend on time according to diverges[38] to infinity (for A systematically larger than 1)
. . or collapses to (for \ typically smaller than 1). The terim
w(t)=[N(t)+a—1]/b(t). (4 is therefore not essential for our results and, as it turns out

below, its variation does not even affect the actual value of
In fact, the typical dynamics of microscopic market modelsthe exponent of the power law. In practical terms, this term
[61-64 is genericallynotin a steady state. As will be shown represents the competition between subpopulations for lim-
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FIG. 1. The distribution of wealtlv;, i=1, ... N [the number FIG. 2. The distribution of the values of,, i=1, ... N for

of investorsP(w) possessing wealt, wherew is dimensionless  N=1000, a=0.0001, b=0.0, andII(\) uniformly distributed in
for N=1000 investors obtained from a numerical integration of Eq.the range 1.&\A<1.1. Because of the absence of the saturation
(%) V.V'th pa.rametersazo.ooo 23,b=0.01, z.and'H().\) uniformly term (b=0), the system is not stationary amdvaries in time by
distributed in the range 1:0A<1.1. The distribution(presented orders of magnitude. In spite of this, the instantaneous normalized

here on a log-log sca]eexh!blt_s a _knee on the _Ieft-hand S'F’e and 8\ distribution at each instant remains always a power law of con-
broad tail of power-law distribution on the right-hand side. This stant exponent

power-law behavior is described B(w)~w~1"¢, where the ex-
ponenta=1.4. The distribution is bounded by an upper cutoff

aroundw, .= NW. At each time step the system component to be updated is

chosen randomly. Since the system componentsxhibit a
power-law distribution, given by E(q5), the impact of the

update move omv(t) exhibits a broad distribution. The dy-
namics involves, according to E(l), a generalized random

alk with step sizes distributed according to ES). There-
{(;re, the stochastic fluctuations

ited resourcegor proportional taxation in an economgnd
the independence of on it, and fits the experimentally
known effect that the exponeat remains stable even in the
presence of large fluctuations in the economical condition
or ecological fluctuations due to changes in the food or othe
resource availability. o o
w(t+7)—w(t)

w0 )

[ll. SIMULATIONS AND RESULTS r(r

To examine the behavior of the GL model presented in
Eq. (1) we performed extensive computer simulations. Mos
simulations were done witiN=1000 system components
using various values of the parametarandb and different
distributionsIT(A) of the multiplicative factor\. We fo-
cused on the power-law distribution of the system compo

nentsw; as well as on the fluctuations of. Figure 1 shows
the distribution of w;, i=1,... N, obtained for N
=1000,a=0.00023p=0.01, and\ uniformly distributed
in the range 1.&A=<1.1. A power-law distribution is found
within the range

fof w(t) after r time steps, are governed by a truncatéy-e
' stable distributiorL ,(r). This means that rather than shrink-

ing like N~ %2 the fluctuations ofv(t) have infinite variance
in the thermodynamic limitmodulo the truncation The
truncation in the Ley-stable distribution corresponds to the
cutoffs in the power-law distribution, given in E). Typi-
cally, the truncation i is bounded by the relative width of

\ times the largestv; /(Nw) value.

Figure 3 shows the distributioP(r) of the stochastic
fluctuationsr (7), for =50, which is given by a Dey-stable
_ _ distributionL ,(r). We find indeed that all the values ofre
w<w;<Nw, (6)  smaller than the relative width of (0.1) times the maximal

value ofw; /(Nw) from Fig. 1. The cutoff in the distribution
which is bounded from below by the average wealth andf the temporal fluctuations originates therefore in the cutoff
from above by the total wealth, and spans nearly three den the Pareto power law in Fig. 1. In the absence of this
cades. The robust nature of the power-law distribution iscutoff the variance of the distribution of fluctuations would
demonstrated in Fig. 2 fdo=0. In this caseﬁ(t) does not be infinite. The divergence of the variance modulo finite size
reach a steady state and keeps increa@nglecreasingin-  €ffects is analogous to the divergence of the susceptibility in
definitely. However, the power-law behavior is maintained.ordinary statistical mechanics systems at criticality.
Moreover we find that the exponeatis insensitive to varia- The peak of thétruncated Levy-stable distribution scales
tions in b: even for values ob differing by an order of With 7 according to

magnitude(corresponding tov varying by an order of mag-
nitude), the power-law exponent is virtually unchanged. L, (r=0)~7 Y (8
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FIG. 3. The distribution of the variations af after 7 steps FIG. 5. The time evolution oP(w) for a system starting from a
r(r)=[w(t+7)—w(t)]/w(t), where r=50, for the same param- uniform distribution ofw;. In the first stages the distribution is
eters as in Fig. 1. This distribution has avyestable shape with log-normal and it then becomes power law as the nonmultiplicative
a=1.4. One can see that the shape on a semilogarithmic scalsffects at the lower bound start being effective. The process of
differs from a parabol&Gaussian distributionin that it has signifi-  convergence to the power law is much shorter than the actual
cantly larger probabilities for large; values. equilibration of thew value.

where « is the index of the distribution. In Fig. 4 we show

the height of the peaR(r =0) of the distribution of fluctua- evolution of a GL system starting from a uniform distribu-

. ) ) . tionofw;, i=1,...,1000. We observe that the distribution
tions inw as a function ofr for the parameters used In Fig. gradually broadens. In the first stages it becomes of log-
1, which give rise to a power-law distribution of ¥&'s  hormal form and then it evolves into a power law as the

with a=1.4. It is found that the slope of the fit in Fig. 4 is onmultiplicative effects in the vicinity of the lower bound
—0.71 which is equal te- 1/a, following the scaling relation pecome significant.

of Eq. (8). This is a further indication that the fluctuations of

w follow a Levy-stable distribution with the index which
equals the exponent of the Pareto power law in Fig. 1. It is
gratifying that an explanation of the 100 year old Pareto
power law in these nonequilibrium systems which we have The numerical results of the preceding section show con-
studied is provided by a straightforward extension of theyincingly that generideven non-stationajysystems with ef-
almost as old Lotka-Volterra equati¢s9,60. fective dynamics governed by the GL system of B, lead

To provide more intuition about the dynamics leading toto (truncated Pareto distributions of the system components.
the power-law distribution ofv;, we show in Fig. 5 the time  They also lead tdtruncated Lévy-stable laws of the fluc-
. tuations of the average. Let us now explain intuitively why
' ‘ ' ' this is the case. Consider first the Kesten system which is
well known to present power law$5-70,

IV. DISCUSSION

A. Previous results

10

w(t+1)=r(t)w(t)+p(t), (9)

where the random numbeksandp are extracted from two
positive distributions independent of The Kesten system

g has a number of shortcomings which makes it unfit for most
practical applications in natural systems.

(1) In Eq. (9), there is only one variabléno indexi). It
describes a noninteracting investanimal, city in a market
(ecology, country which induces effectively to him or her
the return(growth) A(t)—1 after each tradéreproduction,

FIG. 4. The scaling withr of the probability thaw(r)=[v7(t

10

T

100

1000

replication, multiplication periodt.

(2) In order for this system to exhibit a power-law distri-
bution, N has to be predominantly less than 1 such that it
causes\w to be on average smaller than Otherwise, the
resultingw distribution is a log-normal with width expand-

+7)—w(t)]/w(t) is 0. The parameters of the process are as in Figing in time. This would correspond i{1 the infinite time limit
1 and Fig. 3. The slope of the straight line on the logarithmic scaldo a power law of the fornP(w) ~w™". The dependence of

is 0.71 which corresponds to a Westable process withe

=1/0.71=1.4.

the Kesten model on ahrinking dynamics is incompatible
with most of the natural systems in which the growth is
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positive. For instance, the shrinking multiplicative dynamicsin w; is proportional to its current value. For example, even
is certainly not a good model for a stock market where thdf the dynamics leads to a power-law distributionvaf, the
investorsi expect their wealth to increase on avergégier-  fluctuation may not be described bywestable distribution
wise they just stay out of the market if the magnitude of the update wof; is not proportional taw;

(3) In realistic marketgecologies, societigsthe average itself.

wealth (population w varies significantly in time. In the
Kesten model this can be realized only by varying the distri-
butions of A and p which in turn would significantly affect
the exponentr of the power law Eq. (5)]. In the GL system, Let us now see how the GL modgt0] solves the prob-
on the other hand, changes in the environment are repréems with the Kesten system. The main new ingredients in
sented by changes in the coefficignof the resource limi- the GL model are the appearancesfind the appearance of
tation or competition term. This can lead to changes by oran indexi in w; . These two objects allow the introduction of
ders of magnitude in the total wealth or populatibiw @ crucial ingredient which was absent in the Kesten system:
without affecting the exponent. Interestingly, it turns out the interaction between the investofsubecologies, sub-
that the exponen, in the distribution of wealth, has been systems While the interaction in the stock markicology,
stable for the last 100 years and across most wegtapi-  Society is represented in the Kesten system only implicitly
talist) countries. by the stock returnggrowth) A(t) —1 we introduce now ad-
We will see later how the GL system solves the shortcomditional interactions between the invest@rgdividuals, fami-
ings of the Kesten model. In the meantime let us give arlies) i which are mediated by the averaggt) and are cru-
intuitive explanation of why the Kesten system leads to &cial for the dynamics of the system. Obviously, such terms,
power law given_by Eq(5). First one should realize thatdue containingw(t) could not appear in an equation like the
to the p(t) term in Eq.(9), the values ofw(t) are typically  Kesten equation which considers only the dynamics of one
kept above a certain minimal value of orderLet us there- variable at a time. In order to introduce the crucial terms

fore effectively substitute thp term in the Kesten equation includingw one has to give up the picture of a single random
[Eqg. (9)] with the condition thaiw(t)ip. More precisely, investor and to embrace the picture of a macroscopic set of

each timew(t) becomes smaller thap, it is reposed “by  Microscopic investors, interacting among themselves through
hand” to the valuq; the market mechanisms. The result is the system of nonlinear

In the resulting systemw(t+1)=\(t)w(t), with w(t)  GL equations which are coupled througlit) [Eq. (1)]. In

>p one can take the logarithm: it+1)=Inw(t)+In\(t). ordder to gainblinsight into the emer:gence of the power law
" — and Levy-stable intermittency in the GL system, one can
The lower bound condition becomes themv{t)>Inp. This y Y y

represents a system in whichalrundergoes a random walk express it formally as

vyith a dﬁt towards smaller valugs a'nd with a reflegting ba'r- wi(t+1)=[\(t)— b(t)W(t)]wi(t)Jr a(t)v_v(t). (12)

rier at Inp. One can compare this with a molecule in gravi-

tational field submitted to the collisions with the rest of the

gas(resulting in friction and Brownian motigrand bounded If one ignores for the moment the effect of the changes of
from below by the ground level. It is not surprising thereforew;’s on the value ofv, the systeniEq. (12)] is of the Kesten
that (by analogy to the barometric equatjothe resulting type [Eq. (9)] and we expect therefore the emergence of a
probability distribution for Inv is an exponential: scaling law, given by Eq(5). If the effect of the changes in

w; onw is considered, then one sees tffat nonvanishing

b) the system is self-tuning towards the vaIusz\_ogiven by
written in terms ofw itself gives Eq. (4). This self-tuning is realized by the dynamics of the

average in Eq(12). If w(t) is small, then according to the
first term in Eq.(12), w; will typically increase and will

The particular value o3 depends in the Kesten system on Makew(t) increase too. Itv(t) is large, then according the
the details of the distributiofl (\) and is such that the drift first term in Eq.(12), w; will typically decrease and will
towards lower values induced hyis balanced by the driftto make w(t) decrease. While in the synchronous Lotka-
larger values induced hy. As a consequence, this model, if Volterra[with a global time step updating based on E3}]
(mistakenly applied to the stock markedecology, society, the system may have large steps and get into behavior alter-
etc), would predict not onlynegative average returns nating chaotically between large and sma(lt) values, in
(growth) but also an exponent in the power law that is the case of the sequential updatireg. (1)] of thew;’s, the
highly sensitive to the parametef85-69. On top of all  average will eventually self-tune to a valuewft) given by
these shortcomings, the Kesten system does not predict gy, (4). The fluctuations around this value will be dominated
(truncatedl Lévy-stable distribution of thev fluctuations(as by the first term in Eq(12) and will consist of a random
repeatedly measured in naty23-32). To get the Lgy-  walk with steps proportional tw; . Sincew; are distributed
stable distribution the following conditions should be satis-by a power law, the fluctuations will be distributed by a
fied: the index, of the componenty; to be updated at time Lévy-stable distribution of corresponding indgx6,71]. In

t, is chosen randomly, the,’s satisfy a power-law distribu- order to understand why the; distribution is only weakly
tion and the update step is multiplicative, namely, the changdependent orb(t), one can substitute E¢4) into Eq. (12)

B. How does our model work

p(Inw)~e~Anw, (10)

P(w)~w 178, (12)
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and use the normalized variables=w;/w. One then ob- ANO—Fi[r(.),t], (14
tains an equation of the Kesten form: S .
which in particular may take the form
vi(t+1) —v(t)=[N(t) =N (1) —a(t) Jvi(t) +a(t). 13 M) — ¢+ di[w(t) —w(t) Jw(t)), (15)
L . wheret; is the time thatw; was updated last time. The ap-

NoEz that we used here the approximation that the dy”am'cﬁroach of Eq(14) would bring the model of Eq(1) closer to
of w is much slower than the dynamicswf. One observes the model with various investor strategies introducefbiti.
that bothb(t) andw(t) are absent from Eq13): their re- At a more conceptual level, the challenge is to identify, in an
spective effects cancel. In fact, one finds in simulatifig. ~ as wide as possible range of natural systems, the elementary
2) that the distribution of;(t) [and therefore ofv;(t)] ful-  objectsi, the degrees of freedom; associated with them
fills a power law of Eq(5) with exponente independent of and the GL interactions explaining in each case the emer-

the variations ofw(t). One also sees from E€L3) that the ~9€nce of scaling and intermittency.
dynamics is invariant to an overall shift in the distribution
IT(N). This means that in particular the GL multiplicative
factors\ can be significantl(and generically larger than In summary, we have studied the dynamics of a generic
unity allowing (in contrast to the Kesten systgfior expand-  class of stochastic Lotka-Volterfgiscrete logistif systems
ing (growing) dynamics. Equatioi12) implies time correla- introduced in[40] using computer simulations. These sys-
tions in theamplitudeof the fluctuations ofv. It was brought ~tems consist of a large number of interacting degrees of free-
to our attention by Sornette that our data seem consistetom w;(t), i=1,... N, which are updated asynchro-
with the log-periodic corrections due to complex exponentgiously. The time evolution of each system component is
discussed if72] as well as other data collected in the stockdominated by a stochastic individual autocatalytic dynamics,
market[23-32,73-7T. in addition to a global autocatalytic interaction mediated by
Our mechanism relates the emergence of power laws anthe averagev(t), and a saturation term. These models de-
macroscopic fluctuations to the existence of autocatalyzingcribe a large variety of systems such as stock markets and
subsets in systems composed of many microscopic entitiesity populations. We find that the distributid®(w,t) of the
In particular, the use of thev is not mandatory: generic system componentw; fulfills a Pareto power lawP(w,t)
systems of the type  wi(t+1)=3;N;5w;(t) ~w~17% The averagew(t) exhibits intermittent fluctua-

— 3 kbijw;(t)wi(t) may also present similar properties.  tions following a Levy-stable distribution with the same in-
For the specific financial application of stock markets, thedex «. This intricate relation between the distribution of sys-
feedback between the evoluti¢kq. (1)] of the individual  tem components and the temporal fluctuations resembles the
wealthw; and the evolutiorfEq. (7)] of the global market behavior of a variety of empirical systems. For example, it
returns,r(t), can be expressed Ijy8] substitutingk in Eq.  provides a connection between the power-law distribution of
(1) by a functionalF;[r(.),t] of the previous returns history wealth in society and the fluctuations in the stock market

V. SUMMARY

r.. which follow a (truncated Lévy-stable distribution.
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