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Generic emergence of power law distributions and Le´vy-Stable intermittent fluctuations
in discrete logistic systems

Ofer Biham,* Ofer Malcai,† Moshe Levy,‡ and Sorin Solomon§
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~Received 26 February 1998!

The dynamics of generic stochastic Lotka-Volterra~discrete logistic! systems of the formwi(t11)

5l(t)wi(t)1aw̄(t)2bwi(t)w̄(t) is studied by computer simulations. The variableswi , i 51, . . . ,N, are the

individual system components andw̄(t)5(1/N)( iwi(t) is their average. The parametersa andb are constants,
while l(t) is randomly chosen at each time step from a given distribution. Models of this type describe the
temporal evolution of a large variety of systems such as stock markets and city populations. These systems are
characterized by a large number of interacting objects and the dynamics is dominated by multiplicative
processes. The instantaneous probability distributionP(w,t) of the system componentswi turns out to fulfill a

Pareto power lawP(w,t);w212a. The time evolution ofw̄(t) presents intermittent fluctuations parametrized
by a Lévy-stable distribution with the same indexa, showing an intricate relation between the distribution of
the wi ’s at a given time and the temporal fluctuations of their average.@S1063-651X~98!00608-4#

PACS number~s!: 05.40.1j, 05.70.Ln, 02.50.2r
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I. INTRODUCTION

Power-law distributions have been observed in all d
mains of the natural sciences as well as in economics,
guistics, and many other fields. Widely studied examples
power-law distributions include the energy distribution b
tween scales in turbulence@1#, distribution of earthquake
magnitudes@2#, diameter distribution of craters and asteroi
@3#, the distribution of city populations@4,5#, the distribu-
tions of income and of wealth@6–13#, the size distribution of
business firms@14,15#, and the distribution of the frequenc
of appearance of words in texts@4#. A related phenomenon i
the fact that in a variety of systems the temporal fluctuati
exhibit a scale invariant behavior in the form of Le´vy-stable
distributions@16#. Well known examples are the fluctuation
in stock markets@7,17#.

Although systems which exhibit power-law distribution
have been studied extensively in recent years there is
universally accepted framework which can explain the ori
of the abundance and diversity of power-law distributio
One context in which the emergence of scaling laws a
long range correlations in space and time is well underst
is equilibrium statistical physics at the critical point@18–21#.
By contrast, scaling behavior, power-law distributions
well as spatial and temporal power-law correlations inge-
neric natural systems is still the subject of intense study@22–
35#.

An approach that proved to be useful in the study of co
plex systems is to identify for each system the relevant
ementary degrees of freedom and their interactions an
follow up ~by monitoring their computer simulation! the
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emergence in the system of the macroscopic collective p
nomena@36#. This approach was applied to the study of mu
tiscale dynamics in spin glasses@37# and stock market dy-
namics@38#. Using a generic class of models with a larg
number of interacting degrees of freedom, it was shown t
macroscopic dynamics emerges under rather general co
tions. This dynamics exhibits power-law scaling as well
intermittency@38–40#. These models are particularly suitab
to describe systems such as stock market dynamics
many individual investors@41–46# where each system com
ponent describes a single investor~or stock@47#!. Such sys-
tems involve complex temporal dynamics of many degr
of freedom but no spatial structure. The models introduce
@40# can also describe systems such as population dyna
@48–52#, spatial domains in magnetic@53# or turbulence
models@54,55#, or regions in generic phase spaces@56–58#,
which have spatial dependence.

In this paper we present numerical studies of generic
chastic Lotka-Volterra systems. These systems basically c
sist of coupled dynamic equations which describe the d
crete time evolution of the basic system componentswi , i
51, . . . ,N. The structure of these equations resembles
logistic map and they are coupled through the average v
w̄(t). The dynamics includes autocatalysis both at the in
vidual level and at the community level as well as a satu
tion term. We find that under very general conditions, t
system components spontaneously evolve into a power
distribution P(w,t);w212a. The time evolution ofw̄(t)
presents intermittent fluctuations parametrized by a Le´vy-
stable distribution with the same indexa, showing an intri-
cate relation between the instantaneous distribution of
system components and the temporal fluctuations of t
average.

The paper is organized as follows. In Sec. II we pres
the generalized logistic model. Simulations and results
reported in Sec. III. Discussion of previous results as wel
of our findings is given in Sec. IV, and a summary in Sec.
1352 © 1998 The American Physical Society



-

m
-

-

ra

ra

e,
rs

f
ck

o
ri
ry
hi
e

e
e

va
o
uc
W

l

tio

el
n

is-

t

ub-

rate

s

lue

pu-

ns

bal
of
ce

ngle
he
ex-

rac-
p-
ari-
es
acci-

-

ive
.

h an

)

out
of

lim-

PRE 58 1353GENERIC EMERGENCE OF POWER-LAW . . .
II. THE MODEL

A. Formal definition

The generalized logistic system@40# describes the evolu
tion in discrete time of N dynamic variableswi , i
51, . . . ,N. At each time stept, an integeri is chosen ran-
domly in the range 1< i<N, which is the index of the dy-
namic variablewi to be updated at that time step. A rando
multiplicative factorl(t) is then drawn from a given distri
bution P(l), which is independent ofi and t. This can be,
for example, a uniform distribution in the rangelmin<l
<lmax, wherelmin andlmax are predefined limits. The sys
tem is then updated according to

wi~ t11!5l~ t !wi~ t !1aw̄~ t !2bwi~ t !w̄~ t !,
~1!

wj~ t11!5wj~ t !, j 51, . . . ,N; j Þ i .

This is an asynchronous update mechanism. The ave
value of the system components at timet is given by

w̄~ t !5
1

N (
i 51

N

wi~ t !. ~2!

In general, using instead of the average, a weighted ave
of the wi ’s would lead to similar results. The parametersa
andb may, in general, be slowly varying functions of tim
however, we will now consider them as constants. The fi
term on the right hand side of Eq.~1! describes the effect o
autocatalysis at the individual level. For instance, in a sto
market system it represents the increase~or decrease! by a
random factorl(t) of the capital of the investori between
time t and t11. The second term in Eq.~1! describes the
effect of autocatalysis at the community level. In an ec
nomic model, this term can be related to the social secu
policy or to general publicly funded services which eve
individual receives. In molecular or magnetic systems, t
term may represent the mean-field approximation to the
fect of diffusion or convection@53#. The third term in Eq.~1!
describes saturation or the competition for limited resourc
In an ecological model, this term implies that for larg
enough densities, the population starts to exhaust the a
able resources and each subpopulation loses from the c
petition over resources a term proportional to the prod
between the average density population and its own size.
refer to Eq.~1! as the generalized discrete logistic~GL! sys-
tem because when averaged overi , this system gives the wel
known discrete logistic~Lotka-Volterra! equation@59,60#

w~ t11!5~ l̄1a!w~ t !2bw2~ t !. ~3!

In the general case, the parametersa, b and the distribution
P(l) may depend on time. Consequently, even the solu
of the asymptotic stationarity conditionw̄(t11)5w̄(t) may
depend on time according to

w̄~ t !5@ l̄~ t !1a21#/b~ t !. ~4!

In fact, the typical dynamics of microscopic market mod
@61–64# is genericallynot in a steady state. As will be show
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below, systems which exhibit an effective GL dynamics@Eq.
~1!# lead, under very general conditions, to a power-law d
tribution of the valueswi :

P~w!;w212a. ~5!

Moreover, the time evolution ofw̄(t) presents intermitten
fluctuations following a Le´vy-stable distribution with the
same indexa.

B. Motivation and the main features

As mentioned above, forN51 and fixedl, the GL sys-
tem @Eq. ~1!# introduced in @40# reduces to the Lotka-
Volterra model@Eq. ~3!#. The rationale for introducingN
.1 is to study the effects of the interactions between s
populations and to measure their size distribution@Eq. ~5!#.
Treating each population separately allows their sepa
rather than global updating. TheN51 case~annual global
repopulation dynamics! is known to lead to chaotic dynamic
of the total population while the detailed dynamics@Eq. ~1!#
ensures a population fluctuating around the equilibrium va
given by Eq. ~4!, with fluctuations described by a Le´vy-
flights dynamics. One observes that treating the entire po
lation globally ~according to the Lotka-Volterra model! is
not a good approximation for a system with subpopulatio
and/or with overlapping generations. In particular, forN
51, neither the Lotka-Volterra system@Eq. ~3!# nor the Kes-
ten system~described in Sec. IV A below! lead to Lévy-
stable fluctuations around an equilibrium value. The glo
dynamics of Eq.~3! may be appropriate only to the case
annual nonoverlapping populations highly localized in spa
and time when indeed the population behaves as a si
unit. In general, however, it is crucial to take into account t
fact that the population is composed of a collection of co
isting subpopulations.

Lotka-Volterra systems with more species (N.1) were
considered in the past, but the differentwi ’s were usually
interpreted as different species with species-specific inte
tions bi j wiwj between them representing competition, coo
eration, and prey-predator relations. In our system, the v
ous wi ’s are treated on equal footing and the differenc
between the various subpopulations are considered as
dental and represented by the stochastic terml(t). Conse-
quently, the interactions2bi j wiwj of other subpopulations
wj with the currently updated populationwi are ~at least
stochastically! the same:bi j 5b/N. This leads to the appear
ance in Eq.~1! of the term2bwiw̄52( jbi j wiwj . Small
~stochastic! variations from this form of Eq.~1! are accept-
able, and lead to qualitatively similar results, but negat
coefficientsbi j can lead to significantly different dynamics

Note that, as seen below,bi j 50 leads to the power-law
distribution of Eq.~5! in the instantaneous values of thewi ’s
even though in that case the system does not approac
equilibrium value ofw̄ @Eq. ~4!# and the entire population
diverges@38# to infinity ~for l systematically larger than 1
or collapses to 0~for l typically smaller than 1). The termb
is therefore not essential for our results and, as it turns
below, its variation does not even affect the actual value
the exponenta of the power law. In practical terms, this term
represents the competition between subpopulations for
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1354 PRE 58BIHAM, MALCAI, LEVY, AND SOLOMON
ited resources~or proportional taxation in an economy! and
the independence ofa on it, and fits the experimentally
known effect that the exponenta remains stable even in th
presence of large fluctuations in the economical conditi
or ecological fluctuations due to changes in the food or ot
resource availability.

III. SIMULATIONS AND RESULTS

To examine the behavior of the GL model presented
Eq. ~1! we performed extensive computer simulations. M
simulations were done withN51000 system components
using various values of the parametersa andb and different
distributions P(l) of the multiplicative factorl. We fo-
cused on the power-law distribution of the system com
nentswi as well as on the fluctuations ofw̄. Figure 1 shows
the distribution of wi , i 51, . . . ,N, obtained for N
51000,a50.000 23,b50.01, andl uniformly distributed
in the range 1.0<l<1.1. A power-law distribution is found
within the range

w̄,wi,Nw̄, ~6!

which is bounded from below by the average wealth a
from above by the total wealth, and spans nearly three
cades. The robust nature of the power-law distribution
demonstrated in Fig. 2 forb50. In this casew̄(t) does not
reach a steady state and keeps increasing~or decreasing! in-
definitely. However, the power-law behavior is maintaine
Moreover we find that the exponenta is insensitive to varia-
tions in b: even for values ofb differing by an order of
magnitude~corresponding tow̄ varying by an order of mag
nitude!, the power-law exponenta is virtually unchanged.

FIG. 1. The distribution of wealthwi , i 51, . . . ,N @the number
of investorsP(w) possessing wealthw, wherew is dimensionless#
for N51000 investors obtained from a numerical integration of E
~1! with parametersa50.000 23, b50.01, andP(l) uniformly
distributed in the range 1.0,l,1.1. The distribution~presented
here on a log-log scale! exhibits a knee on the left-hand side and
broad tail of power-law distribution on the right-hand side. Th
power-law behavior is described byP(w);w212a, where the ex-
ponent a51.4. The distribution is bounded by an upper cuto

aroundwmax5Nw̄.
s
er

n
t

-
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At each time step the system component to be update
chosen randomly. Since the system componentswi exhibit a
power-law distribution, given by Eq.~5!, the impact of the
update move onw̄(t) exhibits a broad distribution. The dy
namics involves, according to Eq.~1!, a generalized random
walk with step sizes distributed according to Eq.~5!. There-
fore, the stochastic fluctuations

r ~t!5
w̄~ t1t!2w̄~ t !

w̄~ t !
~7!

of w̄(t) aftert time steps, are governed by a truncated Le´vy-
stable distributionLa(r ). This means that rather than shrin
ing like N21/2 the fluctuations ofw̄(t) have infinite variance
in the thermodynamic limit~modulo the truncation!. The
truncation in the Le´vy-stable distribution corresponds to th
cutoffs in the power-law distribution, given in Eq.~6!. Typi-
cally, the truncation inr is bounded by the relative width o
l times the largestwi /(Nw̄) value.

Figure 3 shows the distributionP(r ) of the stochastic
fluctuationsr (t), for t550, which is given by a Le´vy-stable
distributionLa(r ). We find indeed that all the values ofr are
smaller than the relative width ofl ~0.1! times the maximal
value ofwi /(Nw̄) from Fig. 1. The cutoff in the distribution
of the temporal fluctuations originates therefore in the cut
in the Pareto power law in Fig. 1. In the absence of t
cutoff the variance of the distribution of fluctuations wou
be infinite. The divergence of the variance modulo finite s
effects is analogous to the divergence of the susceptibilit
ordinary statistical mechanics systems at criticality.

The peak of the~truncated! Lévy-stable distribution scales
with t according to

La~r 50!;t21/a, ~8!

.

FIG. 2. The distribution of the values ofwi , i 51, . . . ,N for
N51000, a50.0001, b50.0, andP(l) uniformly distributed in
the range 1.0,l,1.1. Because of the absence of the saturat

term (b50), the system is not stationary andw̄ varies in time by
orders of magnitude. In spite of this, the instantaneous normal
w distribution at each instant remains always a power law of c
stant exponenta.
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PRE 58 1355GENERIC EMERGENCE OF POWER-LAW . . .
wherea is the index of the distribution. In Fig. 4 we sho
the height of the peakP(r 50) of the distribution of fluctua-
tions in w̄ as a function oft for the parameters used in Fig
1, which give rise to a power-law distribution of thewi ’s
with a51.4. It is found that the slope of the fit in Fig. 4
20.71 which is equal to21/a, following the scaling relation
of Eq. ~8!. This is a further indication that the fluctuations
w̄ follow a Lévy-stable distribution with the indexa which
equals the exponent of the Pareto power law in Fig. 1. I
gratifying that an explanation of the 100 year old Par
power law in these nonequilibrium systems which we ha
studied is provided by a straightforward extension of
almost as old Lotka-Volterra equation@59,60#.

To provide more intuition about the dynamics leading
the power-law distribution ofwi , we show in Fig. 5 the time

FIG. 3. The distribution of the variations ofw̄ after t steps

r (t)5@w̄(t1t)2w̄(t)#/w̄(t), wheret550, for the same param
eters as in Fig. 1. This distribution has a Le´vy-stable shape with
a51.4. One can see that the shape on a semilogarithmic s
differs from a parabola~Gaussian distribution! in that it has signifi-
cantly larger probabilities for largewi values.

FIG. 4. The scaling witht of the probability thatr (t)5@w̄(t

1t)2w̄(t)#/w̄(t) is 0. The parameters of the process are as in F
1 and Fig. 3. The slope of the straight line on the logarithmic sc
is 0.71 which corresponds to a Le´vy-stable process witha
51/0.7151.4.
s
o
e
e

evolution of a GL system starting from a uniform distrib
tion of wi , i 51, . . .,1000. We observe that the distributio
gradually broadens. In the first stages it becomes of l
normal form and then it evolves into a power law as t
nonmultiplicative effects in the vicinity of the lower boun
become significant.

IV. DISCUSSION

A. Previous results

The numerical results of the preceding section show c
vincingly that generic~even non-stationary! systems with ef-
fective dynamics governed by the GL system of Eq.~1!, lead
to ~truncated! Pareto distributions of the system componen
They also lead to~truncated! Lévy-stable laws of the fluc-
tuations of the average. Let us now explain intuitively w
this is the case. Consider first the Kesten system whic
well known to present power laws@65–70#,

w~ t11!5l~ t !w~ t !1r~ t !, ~9!

where the random numbersl andr are extracted from two
positive distributions independent oft. The Kesten system
has a number of shortcomings which makes it unfit for m
practical applications in natural systems.

~1! In Eq. ~9!, there is only one variable~no index i ). It
describes a noninteracting investor~animal, city! in a market
~ecology, country! which induces effectively to him or he
the return~growth! l(t)21 after each trade~reproduction,
replication, multiplication! period t.

~2! In order for this system to exhibit a power-law distr
bution, l has to be predominantly less than 1 such tha
causeslw to be on average smaller thanw. Otherwise, the
resultingw distribution is a log-normal with width expand
ing in time. This would correspond in the infinite time lim
to a power law of the formP(w);w21. The dependence o
the Kesten model on ashrinking dynamics is incompatible
with most of the natural systems in which the growth

le

.
le

FIG. 5. The time evolution ofP(w) for a system starting from a
uniform distribution ofwi . In the first stages the distribution i
log-normal and it then becomes power law as the nonmultiplica
effects at the lower bound start being effective. The process
convergence to the power law is much shorter than the ac

equilibration of thew̄ value.
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positive. For instance, the shrinking multiplicative dynam
is certainly not a good model for a stock market where
investorsi expect their wealth to increase on average~other-
wise they just stay out of the market!.

~3! In realistic markets~ecologies, societies!, the average
wealth ~population! w̄ varies significantly in time. In the
Kesten model this can be realized only by varying the dis
butions ofl andr which in turn would significantly affect
the exponenta of the power law@Eq. ~5!#. In the GL system,
on the other hand, changes in the environment are re
sented by changes in the coefficientb of the resource limi-
tation or competition term. This can lead to changes by
ders of magnitude in the total wealth or populationNw̄
without affecting the exponenta. Interestingly, it turns out
that the exponenta, in the distribution of wealth, has bee
stable for the last 100 years and across most western~capi-
talist! countries.

We will see later how the GL system solves the shortco
ings of the Kesten model. In the meantime let us give
intuitive explanation of why the Kesten system leads to
power law given by Eq.~5!. First one should realize that du
to ther(t) term in Eq.~9!, the values ofw(t) are typically
kept above a certain minimal value of orderr̄. Let us there-
fore effectively substitute ther term in the Kesten equatio
@Eq. ~9!# with the condition thatw(t). r̄. More precisely,
each timew(t) becomes smaller thanr̄, it is reposed ‘‘by
hand’’ to the valuer̄.

In the resulting system:w(t11)5l(t)w(t), with w(t)
. r̄ one can take the logarithm: lnw(t11)5lnw(t)1lnl(t).
The lower bound condition becomes then lnw(t).lnr̄. This
represents a system in which lnw undergoes a random wal
with a drift towards smaller values and with a reflecting b
rier at lnr̄. One can compare this with a molecule in gra
tational field submitted to the collisions with the rest of t
gas~resulting in friction and Brownian motion! and bounded
from below by the ground level. It is not surprising therefo
that ~by analogy to the barometric equation! the resulting
probability distribution for lnw is an exponential:

p~ lnw!;e2b lnw, ~10!

written in terms ofw itself gives

P~w!;w212b. ~11!

The particular value ofb depends in the Kesten system o
the details of the distributionP(l) and is such that the drif
towards lower values induced byl is balanced by the drift to
larger values induced byr. As a consequence, this model,
~mistakenly! applied to the stock market~ecology, society,
etc.!, would predict not only negative average returns
~growth! but also an exponenta in the power law that is
highly sensitive to the parameters@65–69#. On top of all
these shortcomings, the Kesten system does not pred
~truncated! Lévy-stable distribution of thew̄ fluctuations~as
repeatedly measured in nature@23–32#!. To get the Le´vy-
stable distribution the following conditions should be sat
fied: the indexi , of the componentwi to be updated at time
t, is chosen randomly, thewi ’s satisfy a power-law distribu-
tion and the update step is multiplicative, namely, the cha
e

i-

e-

r-

-
n
a

-

t a

-

e

in wi is proportional to its current value. For example, ev
if the dynamics leads to a power-law distribution ofwi , the
fluctuation may not be described by Le´vy-stable distribution
if the magnitude of the update ofwi is not proportional towi
itself.

B. How does our model work

Let us now see how the GL model@40# solves the prob-
lems with the Kesten system. The main new ingredients
the GL model are the appearance ofw̄ and the appearance o
an indexi in wi . These two objects allow the introduction o
a crucial ingredient which was absent in the Kesten syst
the interaction between the investors~subecologies, sub
systems!. While the interaction in the stock market~ecology,
society! is represented in the Kesten system only implici
by the stock returns~growth! l(t)21 we introduce now ad-
ditional interactions between the investors~individuals, fami-
lies! i which are mediated by the averagew̄(t) and are cru-
cial for the dynamics of the system. Obviously, such term
containing w̄(t) could not appear in an equation like th
Kesten equation which considers only the dynamics of o
variable at a time. In order to introduce the crucial term
includingw̄ one has to give up the picture of a single rando
investor and to embrace the picture of a macroscopic se
microscopic investors, interacting among themselves thro
the market mechanisms. The result is the system of nonlin
GL equations which are coupled throughw̄(t) @Eq. ~1!#. In
order to gain insight into the emergence of the power l
and Lévy-stable intermittency in the GL system, one c
express it formally as

wi~ t11!5@l~ t !2b~ t !w̄~ t !#wi~ t !1a~ t !w̄~ t !. ~12!

If one ignores for the moment the effect of the changes
wi ’s on the value ofw̄, the system@Eq. ~12!# is of the Kesten
type @Eq. ~9!# and we expect therefore the emergence o
scaling law, given by Eq.~5!. If the effect of the changes in
wi on w̄ is considered, then one sees that~for nonvanishing
b) the system is self-tuning towards the value ofw̄ given by
Eq. ~4!. This self-tuning is realized by the dynamics of th
average in Eq.~12!. If w̄(t) is small, then according to the
first term in Eq. ~12!, wi will typically increase and will
makew̄(t) increase too. Ifw̄(t) is large, then according the
first term in Eq. ~12!, wi will typically decrease and will
make w̄(t) decrease. While in the synchronous Lotk
Volterra @with a global time step updating based on Eq.~3!#
the system may have large steps and get into behavior a
nating chaotically between large and smallw(t) values, in
the case of the sequential updating@Eq. ~1!# of the wi ’s, the
average will eventually self-tune to a value ofw̄(t) given by
Eq. ~4!. The fluctuations around this value will be dominat
by the first term in Eq.~12! and will consist of a random
walk with steps proportional towi . Sincewi are distributed
by a power law, the fluctuations will be distributed by
Lévy-stable distribution of corresponding index@16,71#. In
order to understand why thewi distribution is only weakly
dependent onb(t), one can substitute Eq.~4! into Eq. ~12!
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PRE 58 1357GENERIC EMERGENCE OF POWER-LAW . . .
and use the normalized variablesv i5wi /w̄. One then ob-
tains an equation of the Kesten form:

v i~ t11!2v i~ t !>@l~ t !2l̄~ t !2a~ t !#v i~ t !1a~ t !.
~13!

Note that we used here the approximation that the dynam
of w̄ is much slower than the dynamics ofwi . One observes
that bothb(t) and w̄(t) are absent from Eq.~13!: their re-
spective effects cancel. In fact, one finds in simulations~Fig.
2! that the distribution ofv i(t) @and therefore ofwi(t)# ful-
fills a power law of Eq.~5! with exponenta independent of
the variations ofw̄(t). One also sees from Eq.~13! that the
dynamics is invariant to an overall shift in the distributio
P(l). This means that in particular the GL multiplicativ
factors l can be significantly~and generically! larger than
unity allowing ~in contrast to the Kesten system! for expand-
ing ~growing! dynamics. Equation~12! implies time correla-
tions in theamplitudeof the fluctuations ofw̄. It was brought
to our attention by Sornette that our data seem consis
with the log-periodic corrections due to complex expone
discussed in@72# as well as other data collected in the sto
market@23–32,73–77#.

Our mechanism relates the emergence of power laws
macroscopic fluctuations to the existence of autocatalyz
subsets in systems composed of many microscopic enti
In particular, the use of thew̄ is not mandatory: generic
systems of the type wi(t11)5( jl i j wj (t)
2( j ,kbi jkwj (t)wk(t) may also present similar properties.

For the specific financial application of stock markets,
feedback between the evolution@Eq. ~1!# of the individual
wealth wj and the evolution@Eq. ~7!# of the global market
returns,r (t), can be expressed by@78# substitutingl in Eq.
~1! by a functionalFi@r (.),t# of the previous returns histor
r .:
rt

e,
cs

nt
s

nd
g
s.

e

l~ t !→Fi@r ~ .!,t#, ~14!

which in particular may take the form

l~ t !→ci1di@w̄~ t !2w̄~ t i !#/w̄~ t i !, ~15!

where t i is the time thatwi was updated last time. The ap
proach of Eq.~14! would bring the model of Eq.~1! closer to
the model with various investor strategies introduced in@61#.
At a more conceptual level, the challenge is to identify, in
as wide as possible range of natural systems, the elemen
objects i , the degrees of freedomwi associated with them
and the GL interactions explaining in each case the em
gence of scaling and intermittency.

V. SUMMARY

In summary, we have studied the dynamics of a gene
class of stochastic Lotka-Volterra~discrete logistic! systems
introduced in@40# using computer simulations. These sy
tems consist of a large number of interacting degrees of f
dom wi(t), i 51, . . . ,N, which are updated asynchro
nously. The time evolution of each system component
dominated by a stochastic individual autocatalytic dynam
in addition to a global autocatalytic interaction mediated
the averagew̄(t), and a saturation term. These models d
scribe a large variety of systems such as stock markets
city populations. We find that the distributionP(w,t) of the
system componentswi fulfills a Pareto power lawP(w,t)
;w212a. The averagew̄(t) exhibits intermittent fluctua-
tions following a Lévy-stable distribution with the same in
dexa. This intricate relation between the distribution of sy
tem components and the temporal fluctuations resembles
behavior of a variety of empirical systems. For example
provides a connection between the power-law distribution
wealth in society and the fluctuations in the stock mar
which follow a ~truncated! Lévy-stable distribution.
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