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Connection between energy spectrum, self-similarity, and specific heat log-periodicity
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As a first step towards the understanding of the thermodynamical properties of quasiperiodic structures, we
have performed both analytical and numerical calculations of the specific heats associated with successive
hierarchical approximations to multiscale fractal energy spectra. We show that, in a certain range of tempera-
tures, the specific heat displays log-periodic oscillations as a function of the temperature. We exhibit scaling
arguments that allow for relating the mean value as well as the amplitude and the period of the oscillations to
the characteristic scales of the spectr{iBl063-651X98)00408-5

PACS numbeps): 05.20-y, 61.43.Hv, 65.40tg, 61.44.Br

I. INTRODUCTION restrictions G<r,r,,r;+r,<1 apply. The starting point
(n=0) for the construction of this spectrum is an arbitrary
The discovery of quasicrystals in 198Y] aroused a great discrete set of levels lying in an energy interval we take to be
interest in quasiperiodic structures, as is confirmed by th¢0,1]. This is the pattern that will be repeatad infinitumin
great number of theoreticg2,3] and experimentdld] works  a self-similar way. The next step consists in compressing the
that followed(see alsd5]). In particular, the behavior of a setn=0 by factorsr, andr, and putting the two resulting
variety of particles and quasiparticléslectrong 6], phonons pieces on the bottom and the top of the intef@gl], respec-
[7], and otherg8]) in quasiperiodic structures has been andtively [see Fig. 18)]. Recursive application of this rule even-
is currently being studied. Aractal energy spectrunis a  tually leads to a set of fractal dimensiah given byr‘lif
common feature to such str_uctur@g.,[g])._As in general | di_4 (hence, ifr y=r,=r, d;= —In 2/Inr). This rule can
these spectra tend to be quite complex, simple models haye 2 ° . |
been studied to enlighten the thermodynamical specificitie\ge expl(lr?;tly written as a recurrence equation for the energy
that such systems may displéy similar approach was used €VeISej " at thenth stage,
in the 1980s to study the transition from finite- to zero-
measure spectra, see, e[§]). Within this vein, we analyzed
in [10] one of the simplest fractal spectithe triadic Cantor . . ) .
se; there it was shown that the specific heat of such a sys]his analytical rule for the construction of the spectrum is
tem exhibits a very particular behavior: it oscillates log- the key to obtaining scaling relations for the thermodynami-
periodically around a mean value that equals the fractal dic@l quantities. The starting point is the partition function for
mension of the spectrum. a given hierarchyn:
In this paper we extend the analysis[@f] to the case of
multiscale spectra and present a theoretical connection be- (0
tween the structure of the spectrum and the corresponding e=1 — 1
ra

{" "V ={rieU{l—r,+r,e"}. 1)

(b)

thermodynamical properties. In particular, we make explicit
the relationship between discrete scale-invariance and log-
periodic oscillations. We start our discussion with the two-
scale ¢q,r,) fractal set, in its discrete versioBec. ). rI
1
e=0 —

RN

Then, in Sec. Ill, we show that the results of Sec. Il can be
extended to the continuous two-scale case, as well as to the

n-scale problem. Section IV contains the conclusions. FIG. 1. Energy spectra. The first four steps in the construction of
(rq,r,) fractal sets. We show a discrete c#aein which the start-
Il. TWO-SCALE DISCRETE MODEL ing point (n=0) is a set of two levels a&¢=0,1. These levels are

. . . then compressed by a factor (r,) and put on the bottorftop) of
Let us begin by considering a spectrum lying on they,, interval[0,1] (n=1), and so on for increasing The construc-

(r1,r2) two-scale fractal seftl1] indicated in Fig. 1a) (the  {jon of a continuous examplé) starts from a band of uniform
density in[0,1]. The iterative rule is the same as (&, i.e.,n=1
corresponds to a spectrum whose first and second bands are the

*Electronic address: vallejos@cat.cbpf.br intervals[0,r,] and[1—r,,1], respectively, etc. We take the level
TElectronic address: rsmendes@-cybertelecom.com.br density inside each band to be a constant, and the same for all bands
*Electronic address: luciano@cat.cbpf.br in a given hierarchy. In both casé® and(b), a fractal emerges at
8Electronic address: tsallis@cat.chbpf.br the n—co limit.
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whereg is the inverse temperatufee are considering a unit
Boltzmann constant, i.ekg=1). A normalization prefactor
has been included so that" is well defined in the limitn 0.6 -
—o0; in any case, it will not affect the thermodynamics of
the system. Now, a recurrence formula for the partition func-
tion is readily obtained as a direct consequence of the self-
similarity of the energy setl):

Pam Y S,
— [Tt
e’

& /

ZMY(B)=[ZM(Bry) +e Pz (Bry) 12, (3) 0.4 \
IntroducingZ(B)=lim,_... Z(M(B), we have ‘
Z(B)=[Z(Bry) +e P1712zZ(pry)]2. (4) \/ \/ \/ \/ V
From now on we will restrict our discussion to the low- c ((:15.0-3;) ’

temperature regime, as this is the most interesting one. In  0-2 — T T —
fact, as the temperature is lowered, the smaller scales of the -10 -5 0
fractal are progressively revealed, and anomalous effects are |n(T)
expected. Moreover, in the ca3e<1 the analysis gets sim-

o . - . FIG. 2. Specific heafin units ofkg) vs temperaturéin units of
plified and some general conclusions can be obtained. In thlﬂs"le width of the spectrupfor the (r,,r,) discrete fractal set of Fig.

regime we Can_safely negleCt t_he exponentially_small ter_m in_L (n=8). Two levels ae=0,1 were taken as the=0 pattern. The
th' 514) and .dezlve sfcallng relatlolg?;cir thle gar'ﬂtlon fulnctlon, curves are parametrized by the scale factogsr). The horizontal
the dimensionless free ener@y= o n ’ the total en- lines indicate the average vald€)=d=—In 2/Inr,. The dotted
ergy E, the entropyS, and the specific hedt: lines correspond to our predictonC~d+a” cos InT)
_ +b" sin(w In T), wherew=—2#/Inr;. The parametera”, b” are
Z(M)=2(TIry/2, ) related to basic properties of the smoothed spectiagn text. For
high temperatures (Ii>0), the specific heat decays &s?, for
QM=Q(T/ry+In2, (6) arbitraryn. The low-temperature breakdown of the oscillatory be-
havior is pushed towards the left whanincreases.

E(T)=r,E(T/ry), (7)
B that the resulf10) holds as long a3 <1 (we recall that, as
S(T)=S(T/ry)=In2, ®  the spectrum is bounded, for high temperatures the specific
B heat must decay a6 2).
C(T)=C(T/ry). © The scaling reasoning has given us information concern-

Ind dently of the 0 tternth | i | ing the mean values. In order to discuss the oscillations
ndependently of theY energy patternthe relevant Scale -, 4 ng the mean value, we resort to a numerical analysis.

factor. isr, (conversely,r, governs the scaling laws for Starting from Eq.(2) we have computed finite approxima-
negativetemperatures ions toC(T)
The most interesting of the equalities above is the Ias% '

one, which expresses the fact that the specific heat is a log-

periodic function of the temperature, that isC(T) c(T)= i

=f(27 InT/Inry), wheref is a 2mr-periodic function. In aT

other words, if one set¥=r}, C(x) results in a periodic

function of x (of period on¢. Consistently, its mean value and studied its dependences on the hierarchical dehd

can be calculated as the parameters,; andr,. In Fig. 2, we show some plots of
the specific heat vs temperature for different values of

(n)
50 InZ

aT | (D

Xtl 1 T T (rq,r,) and fixed hierarchical depthh=8. It is apparent that
(C(T)= fx C(rydx= - m fr TC(T) T there is a range of temperatures in whicliT) behaves in
0 ' the way the above scaling arguments predict. This is a range
S(7)—S(r.7) In 2 of intermediate temperatures,,;,<T<1, whereT ;,~r] is
- Inr, T n ry (10 associated to the smallest scale of the “truncated fractal”; of

course,Tin—0 in the limitn—c. Figure 2 clearly displays
In Ref.[1] it was shown that for a one-scale Cantor spectrunthe following features.C(T) oscillates log-periodically
(i.e., r=r,=1/3), the average valu€C(T)) coincides with around the mean valugl=—In2/Inr; with frequency
the fractal dimensiownl; . The equality above shows thilis ~ ©=—27/Inr,. Notice that each curve completes about
is not the case for a two-scale fractalVe will come back periods(n=8 in the figure, but we have verified this behav-
to this point later on to argue that the “dimension” ior for higher deptm as wel). In Fig. 3@ we show a typical
d=—In2/Inr, can be given a simple meaning. We remarkexample illustrating the dependence of the amplitudes of the
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FIG. 4. (a) Integrated density of statéé (normalized to unity
vs energy. The full line corresponds to the discrete Cantor spectrum
FIG. 3. Amplitudes of the oscillations of the specific heat in the of Fig. 1(a) with r;=0.34,r,=0.20, anch=12. The dashed line is
log-periodic regime T<1). Maximum and minimum values of given bye®, with d=—In2/Inr,, the spectral dimensioiib) Spec-
C(T) (respectivelyC* and C™) for the family of fractal spectra tral fluctuations.N(e) after dividing by €% (full line) and the
ri+r,=2/3. Also shown is the average specific hg@p. For the  smooth approximationdotted lin@ N/e%=a+b cos In e—¢),
discrete casda), (C)=—In2/Inr;. In the continuous casé),  wherew=—2#/Inr,.a andb are determined by requiring that the
(C)=1—=In(ry+rx)nry. exact and the smoothed fluctuations have the same average value

- and variance. The condition of maximum overlap fixes
specific heat on the scales(r,). We have plotted the p sk

maximum and minimum values_, of trle Iow—tgmperature r€ciated in general to the fact that the cumulative density of
gime of C(T) (denoted, respectivel ;™ andC™), together states(or spectral staircage
with the mean valug/C)=—In2/Inr, for the family r,
+r,=2/3. The oscillations decrease in amplituder asle- .
creases, and far, sufficiently small ¢;=<0.1) asymmetries N(E):f p(x)dx (12)
become significant. 0

A point of view that allows for understanding quantita-
tively the amplitudes of the oscillations consists in relatingscales with energy ag“ (equipartition principle In our
the thermodynamical properties to those of the spectrum. Farase, it can be verified that the spectral staircase grows ap-
instance, a constant value of the specific @ato is asso-  proximately ase® [see Fig. 4a)], and consequently the aver-
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age specific heat iC)=d. It is also apparent from Fig.(8) but starting from aontinuouspattern as shown in Fig.(4).

that the integrated density of statbi{e) is a log-periodic  For instance, if the zeroth hierarchy is chosen as a continu-
function of the energy(Similar results were obtained by ous spectrum with uniform density in the intery@l1], then
Kimball and Frisch for the distribution of normal mode fre- n=1 corresponds to a spectrum whose first and second
guencies of fractal-based modgl®]; see alsd13]). In fact, bands are the interval,yr;] and[1—r,,1], respectively,
this feature could have been anticipated by noting k&) and so on for increasing. We have chosen the density to be

also satisfies a simple scaling law: uniform inside each band. In other words, the number of
states in each band is proportional to its length, whereas in
N(r,€)=N(e)/2, (13 thediscretecase each “band” contains the same number of

states; this is the essential difference between what we call
Bontinuousand discretespectra. Now the partition function
is written as

whose general solution can be written as a power law times
log-periodic function15].
We will now show that an excellent description of the

specific heat can be achieved by considering the first non- ) 1 1
trivial correction to the bare power-law scaling i e): ZonB) = AR JO p(e)exp—Be)de, (18
N(e)~e9a+b codw In e—¢)]. (14

where, as in Eq(2), a normalization prefactor has been in-
cluded. The analog to E¢l) is a recurrence equation for the

In principle, there is not a unique criterion for choosing the .
density of states:

parameters,b, ¢. We have determinea andb by requiring

that the exacN(e) and its smooth approximatioii4) have pM(elry) if 0<e<r,

the same average value and variance. The condition of maxi- )

mum overlap between the exact staircase fluctuathohes p" V()= 0 if r<e<l-—r,
and the cosine function fixegé. An approximate partition pM([e—1]/r,+1) if 1—r,<e<1,
function is now written in terms of the smoothed cumulative (19
level density,

leading to the following result for the partition function:

Z(T)%BJ e[a+b codw In e— ¢)Jexp(— Be)de 1 o
0 Zcom(ﬂ): m[rlzconﬁﬁrl)_krze Al r2)Zconl(IBrZ)]-
=T9aa'+bb’ codw In T—¢) (20
—bc' sinf(w In T—¢)]. (15 In the low-temperature regim@ 1), the expression above

tends to the scaling relation
Here the constanta’,b’,c’ are calculated as the integrals:

!
a’ - 1 Zeon( B) = mzcom(ﬁrl)- (21)
b’ Ef dx xde X coqw In x) (16)
c’ 0 sin(w In X). Note that, as in the discrete case, the scale factds re-

sponsible for the period of the log-oscillations. Thus the dis-
For not very small values af; one hasa’>b’,c’ (e.g., if crete and continuous characteristic frequencies are equal.
r,=0.34, thena’~0.9, b’~0.002, andc’~0.0003) After  The essential difference is the presencer pfin Eq. (21),
some straightforward manipulations, to first order in thewhich can be traced back to a different distribution of the
small parameterd’/a’ andc’/a’, we obtain the specific spectral density(of course, wherr;=r, both cases coin-
heat cide). In consequence,, will also affect the mean value of

specific heat, which is easily shown to be

C(T)~d+a”" cofw In T)+b” siffw InT). (17
(Ceom=1—In(ri+ry)/Inr,=d’. (22

This expression can be seen as a log-Fourier expansion of the
specific heat up to second-order terms. Instead of presentirigduality (22) defines a new dimensiod’, which, together
(complicated expressions for the constan# and b” as with d and d;, constitute the basic set of characteristic
functions ofr, andr,, we prefer to show the specific heat dimensions of our problem. We remark that these dimen-
(17) for a set of selected values of,r, (Fig. 2, dotted sions assume different values, except for the particular case
lines). The agreement of our approximati¢h7) with the  r1=r». Even though the mean valu@2) differs from its
exact(numerical calculations is excellent for the three upper discrete counterpaf0), the continuous and discrete specific
curves and reasonably good for that corresponding to thBeats oscillate in a similar way about their respective aver-

smallestr; (higher-order terms might be necessary in thisages. However, the small- asymmetries are more pro-
case. nounced in the continuous case. These facts can be appreci-

ated by comparing Fig.(8) and Fig. 3b).
The previous analysis for the two-scale spectrgither
discrete or continuoyan also be generalized to the multi-
For the sake of completeness, let us also discuss the caseale case. The construction of a multiscale fractal spectrum
of a spectrum constructed by iterative use of the ruler(,) starts from an arbitrary discrete or continuous set of levels in

[ll. CONTINUOUS AND MULTISCALE EXTENSIONS
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the intervall0,1] (n=0). Then one makes! rescaled copies hierarchical depth of the fractal spectrum, implying that
of the patternn=0, with different scale factors;,...,ry. these anomalies may appear in systems displaying a self-
Each one of these copies is placed in the unit interval asimilar spectrum up to dinite hierarchichal depth. These
positionsay,...,ay, So that the copies do not overléhis  observations, related to multiscale fractal spectra, might also
requiresa;+r;<a; ). Iteration of this rule eventually leads be relevant in the case of the more realistic multifractal ones,
to a fractal of dimensiorEi'V':lridf: 1. Analogous consider- because usually a few scales suffice for a good description of

ations to those made for the two-scale case result in the fo Multifractal spectrum.

lowing relationships for the discrete and the continuous mul- Moreover, since the effect is a consequence of the scale
tiscale cases, respectively: invariance of the spectrum, it is expected that similar phe-

nomena would generically exist for bosonic and fermionic
1 M systemg16]. Let us mention that Petri and Ruodd®] have
Zisd B) = i 2 e Pz d Bri), (23 observed fractional scaling laws when studying tBebye
=1 vibrational specific heat of a one-dimensional hierarchical
M model. However, those authors were mainly concerned with
1 2 re Pz (Br). (24) mean values and did not discuss the; smal_l amplitude oscilla-
sMne com i tions that can be clearly observed in their results. Further-
more, Luck and Nieuwenhuizen observed that the specific
These partition functions lead to the average specific heatseat of a Fibonacci spin chain oscillates log-periodically
(T<1) with the temperatur¢14]. They also established a connec-
tion between the average specific heat and the integrated
(Caisg=—In M/In r,=d, (25 density of states. Rema?rkabrljy, for zero external maggnetic
M field, this spin chain can be mapped onto a system of free
—1_ _ — fermions(with zero chemical potentigin a fractal spectrum.
{Coond =1 In( 2’1 r') / Inr,=d". (26) Even though it is not surprising that log-periodic correc-
tions (or “complex exponents) are a natural consequence
(Naturally, thed andd’ we introduced in Sec. Il are thd  of discrete scale invarian¢&7], a contribution of the present
=2 particular case of those defined abgw@nce more the paper is to have reported and analyzed examples in which
scaling exponents only depend opin the discrete case and the connection between scale invariaiogan energy spec-
on the whole set of scaling factorg in the continuous trum) and log-periodicity(of the specific heat as a function
(banded case. As in the two-scale case, these scale factorsf temperatureshows up transparently.
will be the essential ingredients for a very good approximate Before concluding, let us comment on a possible connec-
description of the thermodynamics of the system. tion of the present calculation with the recently introduced
We point out that the fractals considered in this papemonextensive thermostatisti¢$8]. Alemany[19] has sug-
might also be analyzed in theiutboundand completever-  gested that this formalism could be connected to systems
sions(in the nomenclature df10]). These variations, which with fractally structured Boltzmann-Gibbs probability distri-
can also be treated within our formalism, will give rise to aputions. Although, for our present calculation, we have not

Zeonl B) =

thermodynamics analogous to that described above. succeeded in making a transparent connection along Alema-
ny’s lines, it is worth mentioning one intriguing feature. The
IV. CONCLUSIONS generalized specific heaCy(T) of the quantum one-

: . ._dimensional harmonic oscillatd0] does present oscilla-
The models we have studied suggest that the hierarchicgl < i e entropic index qc[ s;tisfies qp<1 In fact

organization of the energy spectra reflects itself in the Spee (T)/T!9is an oscillatory function o ; in a similar way
cific heat in two ways. Simple scaling arguments show tha qT) is a periodic function of I '

the average behavior is associated with a noninteger spectral( P '
dimension(d andd’ in our examples which in general is
different from the fractal dimensiord(). The corrections to
this result are log-periodic oscillations that can be traced We gratefully acknowledge partial financial support by
back to the log-periodicity of the spectral staircase. TheCNPqg, FAPERJ, and PRONErazilian agencigs R.O.V.
number of oscillations that can be observed is related to ththanks C. Anteneodo for useful discussions.
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