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Resonance trapping and saturation of decay widths

E. Persson, T. Gorin, and I. Rotter*
Max-Planck-Institut fu¨r Physik Komplexer Systeme, D-01187 Dresden, Germany

and Technische Universita¨t Dresden, Institut fu¨r Theoretische Physik, D-01062 Dresden, Germany
~Received 17 November 1997; revised manuscript received 23 March 1998!

Resonance trapping appears in open many-particle quantum systems at high level density when the coupling
to the continuum of decay channels reaches a critical strength. Here a reorganization of the system takes place
and a separation of different time scales appears. We investigate it under the influence of additional weakly
coupled channels as well as by taking into account the real part of the coupling term between system and
continuum. We observe a saturation of the mean width of the trapped states. Also the decay rates saturate as
a function of the coupling strength. The mechanism of the saturation is studied in detail. In any case, the
critical region of reorganization is enlarged. When the transmission coefficients for the different channels are
different, the width distribution is broadened as compared to axK

2 distribution whereK is the number of
channels. Resonance trapping takes place before the broad state overlaps regions beyond the extension of the
spectrum of the closed system.@S1063-651X~98!00208-6#

PACS number~s!: 05.30.2d, 03.65.Nk, 24.30.2v, 82.30.2b
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I. INTRODUCTION

At low excitation energy, the states of a many-partic
quantum system are usually well isolated from one anot
Their coupling via the continuum of decay channels c
therefore be neglected. The reaction cross section consis
a sum of resonances with Breit-Wigner shapes the positi
widths, and partial widths of which are well defined.

At higher excitation energy both the level density and
decay widths of the states in most systems become so l
that the resonance states overlap. The cross section
interference picture. Neither the positions, the widths, nor
partial widths of the resonance states can unambiguousl
determined from an analysis of the cross section, see,
@1#. Meaningful values can be obtained from time measu
ments which provide the average lifetime of the resona
states at high level density. Using the channeling method,
mean lifetime of fine structure resonances under isob
analog resonances in medium nuclei was found experim
tally to be much longer than expected on the basis of
statistical theory of nuclear reactions@2#. The modification of
the Fano profiles of autoionizing states due to the cohe
coupling with each other has been studied experimentally
means of the two states 3p2 1S and 3p3d 1P in magnesium
atoms@3#.

Theoretically, the transition from low to high level den
sity is studied recently in different papers for different sy
tems, see@1,4–26#. As a function ofḠ/D ~where Ḡ is the
average value of the widths of all resonance states, bei
measure for the coupling strength of the system to the c
tinuum, andD is the mean level distance! all results show
the same characteristic features: beyond a critical value
Ḡ/D, separated time scales exist when the number of ch
nels is smaller than the number of resonance states. The
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existence of different time scales at high level density cor
sponds to the basic assumption of the unified theory
nuclear reactions formulated phenomenologically about
years ago by Feshbach@27# for many resonances coupled
a small number of common decay channels.

The main differences in the results of the different the
retical approaches consist in the behavior of the long-liv
resonance states as a function of further increasedḠ/D.
While the widths saturate in the more realistic models
many-body systems, e.g.@14#, they decrease in the random
matrix models. A saturation of the decay rates is obser
also in the ‘‘bottleneck’’ picture of transition state theo
which relates the saturation value to the number of indep
dent decay channels rather than to the widths of individ
resonance states of the system@28#. As a reply to@29#, the
mechanism of the saturation is shown by the same autho
be associated with a broadening of the distribution of re
nance widths@30#. A broadening of the width distribution a
high level density is found also, e.g., in@18,24# and shown in
@9,10,16,21,22,26# to be caused by resonance trapping wh
is the basic process of the redistribution of the system
leads ultimately to the formation of different time scales.

In this paper we study in detail the widths of the lon
lived states as a function of the coupling strength to
continuum since this is a controversial point of discussi
Most calculations are performed beyond the standard ran
matrix approach.

In Sec. II the phenomenon of resonance trapping is
scribed in the framework of the random matrix theory. T
widths of the trapped resonance states do not saturate
increasing coupling strength to the continuum. In Sec. III
spectroscopic values of an open many-particle quantum
tem are given. Additional terms in the effective Hamiltonia
appear which may prevent the widths of the trapped re
nance states from decreasing with increasing coupling to
continuum. In the following sections, we discuss the infl
ence of additional terms in the effective Hamiltonian on t
widths of the long-lived trapped states. Additional weak
coupled channels are shown to cause a saturation of the m
e,
1334 © 1998 The American Physical Society
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PRE 58 1335RESONANCE TRAPPING AND SATURATION OF DECAY WIDTHS
width with further increasing coupling strength~Sec. IV!.
The sharp distinction between short- and long-lived state
removed by the real part of the coupling term to the co
tinuum ~Sec. V!. In both cases, further avoided crossin
appear and the biorthogonality of the eigenfunctions ofHeff

continues to be essential. That means the critical reg
where the redistribution takes place is enlarged. This can
seen also in the width distribution of the trapped states,
vestigated in Sec. VI. Some conclusions on the broaden
of the width distribution, the separation of time scales, a
the saturation of decay rates at high level density are dr
in the last section.

II. RANDOM MATRIX THEORY AND RESONANCE
TRAPPING

A. Basic equations

In order to describe resonance phenomena at high l
density in a small energy interval far from thresholds t
random matrix theory has been developed. The effec
Hamiltonian is~see, e.g.,@31,6,7#!

HRMM
eff 5Hb2 iW5Hb2

i

2
VVT. ~1!

Here V is an energy-independent random matrix consist
of K random vectors of dimensionN with matrix elements
VR

c . The valueVc
25(R51

N (VR
c )2 gives the coupling strength

of the system to the channelc. Each vectorVc has Gaussian
distributed elements with mean value 0 and varianceVc

2/N.
Hb is chosen from the Gaussian orthogonal ensemble~GOE!
and the mean level density follows a semicircle law. In o
case the length of the spectrum isL52 units and therefore
the mean level distance in the middle of the spectrum
given byd5p/(2N).

According to@32,33#, one can obtain the mean width^G l&
of the long-lived resonance states by considering the dia
nal elements of theS matrix, averaged over a sufficientl
large energy interval. It holds that

)
c51

K

u^Scc&u5e2p^G l &/d. ~2!

The mean widtĥ G l& of the states in the middle of the spe
trum is

^G l&52
d

2p (
c51

K

ln~12tc!, ~3!

where thetc are the transmission coefficients, defined as

tc512u^Scc&u2. ~4!

These coefficients are calculated in@34# using a resummation
method in the power series expansion of the transfer ma
The result is

tc5
4xc

~11xc!
2 , xc5

pVc
2

2Nd
. ~5!
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The mean widthḠ of all resonance states can be obtain
directly from Eq.~1!,

Ḡ5
2

N
Im$tr HRMM

eff %5
1

N (
c

Vc
25

2d

p (
c

xc . ~6!

The parametersxc measure the coupling strengths of the sy
tem to the different decay channelsc. For increasing total
coupling they subsequently pass over the critical value o
Here the corresponding transmission coefficient reaches
maximal valuetc51. The logarithm in Eq.~3! diverges and
Eq. ~3! loses its validity. Equation~5! is symmetric with
respect to an exchange ofxc by 1/xc . As a consequence th
transmission coefficients do not distinguish between w
and strong total coupling strength. We havetc,1 for all
xcÞ1.

In the following sections we will see that at each of t
pointstc51 a single resonance state separates in width fr
the remaining ones. Forxc.1 this state becomes muc
broader than the other ones and can no longer be desc
statistically together with the long-lived resonance stat
The width of the short-lived state is@11,25#

Gs5
2Nd

p S xc2
1

xc
D5S xc2

1

xc
D , xc.1 ~7!

while the widths of the long-lived states decrease as 1/xc .

B. Resonance trapping at strong coupling

One interesting question is how the system described
the HamiltonianHRMM

eff behaves as the coupling to the co
tinuum increases. To investigate this question, we replacV
by aV in the termW of the effective Hamiltonian, Eq.~1!,
and varya.

For small a we can treatW as a small perturbation on
Hb . The rank ofHb is N. HRMM

eff thus describesN states with
energies determined by the eigenvalues ofHb . The widths
are proportional toa2. This holds well as long as the reso
nances are nonoverlapping.

For largea we can treatHb as a small perturbation onW.
As W has rankK it directly follows that onlyK states have
large widths, see, e.g.,@6,7#. The widths of the remaining
N2K states are small. That means two different time sca
exist.

In this subsection we first illustrate the phenomenon
resonance trapping forN resonance states coupled to theK
51 open decay channel. We define

k j5
2

N2 j (
R5 j 11

N
GR

D0
52

ḠN2 j

D0
. ~8!

Here the sum runs over all but thej broadest states.D0
5L/(N21) is the mean level spacing of the eigenvalues
Hb and L is the length of the spectrum. ForN2 j @1 the
difference betweenk j 21 and k j is 2G j /@D0(N2 j )# ~states
ordered according to decreasing width!. Further we define

k tot5k j 505
2

N (
R51

N
GR

D0
52

Ḡ

D0
. ~9!
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1336 PRE 58E. PERSSON, T. GORIN, AND I. ROTTER
k tot is a measure of the total coupling strength of the sys
to the continuum@see Eq.~6!#. In the random matrix theory
~with N large! we haved5p/(2N) and L52 and thusD0
54d/p which givesk tot5xc in the one-channel case~com-
pare Sec. II A!.

Within the random matrix theory, we calculatek j versus
k tot for N5300, K51, and j 50,1,2 with varying coupling
to the continuum@Fig. 1~a!#. The curves shown are averag
over 20 calculations. Note the logarithmic scales. Untilk tot

'1 the average width of all states increases with increas
coupling to the continuum. Atk tot'1 two globally separated
time scales are formed. The broad state should be ident
with a doorway state@13# and a tight transition state@35#,
respectively. At the separation pointk tot51, the transmission
coefficient is tc51. For still further increasingk tot the
broadest state is getting a still larger width but the aver
width of the remaining ones decreases.

The thick line in Fig. 1~a! shows 2̂G l&/D0 obtained from
Eqs.~3! and~5!. For k tot,1, ^G l& is the mean width of allN
resonance states,^G l&'Ḡ, while for k tot.1, ^G l& is the mean
width of theN21 trapped states,^G l&'ḠN21 . Therefore the
transmission coefficientstc related to thê G l& by Eq. ~3! do
not give us information on the coupling strengthk tot of the
system to the continuum~compare Sec. II A!.

Resonance trapping of many states takes place when

FIG. 1. k j for j 50,1,2, and 2̂G l&/D0 , calculated from Eq.~3!
~thick line!, versusk tot ~a!. Eigenvalue picture~ 1

2 GR and ER! cal-
culated for differentk tot ~b!. The calculation shown is performe
within the RMM for K51 andN5300. In~a! the curves shown are
averages over 20 calculations. Only a part of the spectrum is sh
in ~b!. Note the logarithmic scales. The points fork tot50.1, 1, and
10 are marked in~b! with triangles, stars, and squares, respective
m

g

ed

e

ver

the local level density compared to the local mean width
sufficiently large, see, e.g.,@14,16,21#.

To illustrate the local properties of resonance trapping
show in Fig. 1~b! the widthsGR versus the energiesER for
the states of Fig. 1~a!. Only a small part of the spectrum i
shown. The calculations are performed for 0.1<k tot<10 in
steps of log10(k

tot)50.04. The points fork tot50.1, 1, and 10
are marked with triangles, stars, and squares, respectiv
As a function ofa the complex eigenvalue«R5ER2 1

2 GR of
each resonance state follows a certain ‘‘trajectory.’’ F
small coupling to the continuum, the widths of the sta
increase with increasing continuum coupling. This proc
takes place for every resonance state up to that value o
continuum coupling at which the state starts to overlap o
of the resonance states in its neighborhood. The crossin
resonance states is avoided in the complex plane: The s
attract each other in energy and their widths bifurcate, i
the width of one of the states continues to grow with furth
increasing coupling strength while that of the other one
creases. The state finally being the broadest one goes thr
a number of ‘‘collisions’’ ~avoided resonance crossing b
tween two states looks like a ‘‘collision’’ in this represent
tion! before it dominates the complete spectrum. It is form
in the middle of the spectrum where the level density is
largest.

The stars on the trajectories@Fig. 1~b!# show that trapping
of resonance states is a local process which takes placebe-
fore different time scales are formed globally. The widths
all the trapped states decrease with further increasing c
pling strength.

This behavior does not change when the level density
a band or shell structure. We simulate such a situation
choosing aHb , Eq. ~1!, with several more or less separate
regions of high level density. Between them and at the b
ders of the spectrum, the level density is smaller. In
present calculation we haveK54 andN5300. The coupling
of each state to each channel is randomly chosen, i.e.,
coupling strengths of the four channels are equal to one
other. We have three regions with Gaussian shaped l
density. Two of the regions are close to each other and
third one is lying well separated from the other two. T
energiesER and widthsGR of the resonance states are show
in Fig. 2 for varying total coupling strength to the con

n

.

FIG. 2. Eigenvalue picture~1
2 GR andER! for Hb consisting of a

sum of three Gaussian shapes.N5300,K54, and all channels are
coupled with the same strength.
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PRE 58 1337RESONANCE TRAPPING AND SATURATION OF DECAY WIDTHS
tinuum.
We see the following result. In each group of states th

are formed some broad states at high level density. Th
states donot overlap regions outside the interval studie
With further increasing coupling strength, these broad sta
attract one another in energy and their widths bifurcate.
nally, there are only four broad states according to the f
channels. In the separation point, their widths are sma
than the energy region covered by the long-lived states.
question whether there are states lying outside the exten
of the spectrum is of interest only when studying the beh
ior of the short-lived states at a further increased strengt
the coupling to the continuum. The resonance trapping
every group is left unchanged by the effects at the border
the spectrum.

We conclude this section by stating the following. In t
random matrix theory, the widths of the trapped resona
statesdecreaseas a function of increasing coupling streng
k tot.

III. CONTINUUM SHELL MODEL „CSM… FOR AN OPEN
MANY-BODY QUANTUM SYSTEM

In many-body quantum systems, the widths of the lon
lived resonance states do not decrease butsaturateas a func-
tion of the coupling strengthk tot @29,30#. In order to inves-
tigate the mechanism of saturation we have, according to
results shown in Sec. II B, to go beyond the random ma
theory. In the following, we sketch a model which allows
to describe openmany-bodyquantum systems.

The time-independent Schro¨dinger equation

~H2E!uC&50 ~10!

is solved in a Hilbert space consisting not only of the discr
many-particle states of a closed system but also of the c
tinuum of decay channels. The potential is assumed to b
spherical one. The Hamilton operator of the system is

H5H01V̂. ~11!

H0 is the unperturbed Hamilton operator describing partic
in a finite depth potential andV̂ is the operator of the two
body residual interaction between the particles. For det
see@9#. The relation betweenV, Eq. ~1!, and the two-body
operatorV̂ is considered in@36#.

In order to find the solutionuC& of Eq. ~10! we first solve
the shell model problem

~ER
SM2HQQ!ufR

SM&50 ~12!

in theQ subspace ofN discrete states and the coupled cha
nel equations

~E~1 !2HPP!ujE
c~1 !&50, ~13!

with the proper boundary conditions in theP subspace ofK
coupled channels. The projection operators areQ̂

5(R51
N ufR

SM&^fR
SMu and P̂5(c51

K *dEujE
c &^jE

c u. Here HQQ

[Q̂HQ̂ and HPP[ P̂HP̂. Further, we solve the couple
channel equations with source term
e
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~E~1 !2HPP!uvR
~1 !&5V̂PQufR

SM&, ~14!

which connects the two subspaces. UsingP̂1Q̂51 we then
expressuC& by means of the solutions of Eqs.~12!–~14!.
Care must be taken in order to avoid double counting fr
Eqs.~12! and~13!, i.e., appearance of any resonances in E
~13!. For this purpose a cutoff technique for single-partic
resonances is used in@9# when solving Eq.~13!.

In P subspace, the propagator isGP
(1)5 P̂(E1 i e

2HPP)21P̂. The propagatorQ̂(E2HQQ
eff )21Q̂ in Q subspace

contains the effective Hamilton operator in this subspace

HQQ
eff ~E!5HQQ1V̂QPGP

~1 !V̂PQ . ~15!

HQQ
eff (E) is non-Hermitian and energy dependent. It h

energy-dependent complex eigenvalues«̃ r5ẼR2 ( i /2)G̃R

and eigenfunctionsuF̃R& describing the quasibound state
embedded in the continuum~QBSEC! @9#. The uF̃R& form a
biorthogonal set at each energyE with the orthogonality re-
lation F̃R8&5dRR8 ~see @21#!. Further, it holds that

^F̃RuF̃R&>1, ^F̃RuF̃R8&PC (RÞR8).
DiagonalizingHQQ

eff we get the solution of Eq.~10! as

uCE
~1 !&5ujE

c~1 !&1 (
R51

N

uṼR
~1 !&

1

E2 «̃R

^F̃RuV̂ujE
c~1 !&.

~16!

Here the

uṼR
~1 !&5~11GP

~1 !V̂!uF̃R& ~17!

are the wave functions of the resonance statesR. It should be
stressed here once more thatV̂ is the operator of thetwo-

body residual interaction and that theF̃R aremany-particle
wave functions.

The relation~17! between the wave functionsṼR
(1) of the

resonance states and the eigenfunctionsF̃R of HQQ
eff is analo-

gous to the Lippman-Schwinger equation

ujE
c &5~11GP

~1 !V̂!uxE
c & ~18!

between channel wave functionsxE
c and coupled channe

wave functions jE
c . Therefore ^ṼRuV̂uxE

c(1)&
5^F̃RuV̂ujE

c(1)&. We define the amplitude of the partia
width by

g̃Rc[
1

A2p
^ṼRuV̂uxE

c~1 !&5
1

A2p
^F̃RuV̂ujE

c~1 !&. ~19!

By inserting the expression~16! for C into theS matrix and
using Eq.~19! we get

Scc85e2idcdcc822ip^xE
c8~2 !uV̂ujE

c~1 !&

1 i(
R

g̃Rcg̃Rc8

E2ẼR1 ~ i /2!G̃R

. ~20!
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1338 PRE 58E. PERSSON, T. GORIN, AND I. ROTTER
The first two terms in Eq.~20! describe the direct reactio
part of the process. The last term describes the reson
part, i.e., excitation and deexcitation of the resonance st
R. The resonance partScc8

res of the S matrix has the standar

Breit-Wigner form. Note, however, thatg̃Rc is complex and
energy dependent. AlsoẼR and G̃R are energy-dependen
functions.Scc8

res (E) contains the contributions of all the res
nance states at the energyE of the system. These contribu
tions may be very different from those at other energies~see
@19#!.

The poles of theS matrix give the energiesER and widths
GR of the resonance states. They are defined by the fix
point equationsER5ẼR(E5ER) andGR5G̃R(E5ER). The
number of resonance states is exactly equal to the numbN
of discrete states obtained from Eq.~12! if double counting
in P andQ is avoided.

If the energy dependence ofẼR(E) andG̃R(E) is weak in
the interval studied, it holds thatER'ẼR(E8) and GR

'G̃R(E8) whereE8 is an energy somewhere in the middle
the interval. Only under such conditions,ER andGR can be
considered as resonance parameters. Otherwise, the sp
scopic studies performed at the energyE8 are meaningful
only at this energy since only here are the orthogonality
lations between the right and left wave functions fulfille
The present calculations are performed at the energE
5E8 of the system.

According to @21#, the decay rates can be defined
keff(t)52 (d/dt) ln^f(t)uf(t)& wheref(t) is the wave function
of the system. Using the ansatzuf(t)&5(RaR(t)uF̃R& and
solving the time-dependent Schro¨dinger equation with the
effective HamiltonianHQQ

eff we get

uf~ t !&5(
R

aR~0!e2 ~ i /\! @ẼR2 ~ i /2!G̃R#tuF̃R&. ~21!

TheaR(0) define the wave functionf~0! of the system at the
time t50. Neglecting the oscillations caused by the bio
thogonality of the function system we get

kgr
eff~ t !5

1

\

(RAR
2~ t !G̃R

(RAR
2~ t !

[
1

\
Ḡ~A! ~22!

for the gross time behavior ofkeff. This is in analogy to
kR

eff5G̃R/\ for isolated resonances. TheAR
2(t) are given by

AR
2(t)5uaR(0)u2e2G̃Rt/\^F̃RuF̃R&. They decrease exponen

tially with the rateG̃R /\. Therefore theAR
2(t) for the short-

lived states are negligible in the long-time scale and the s
in Eq. ~22! runs only over the trapped states. If the wid
distribution of theN2K trapped states is narrow, it hold
Ḡ (A)'ḠN2K . The weighted widthḠ (A) is generally time de-
pendent.

Let us write Eq.~15! more explicitly,

HQQ
eff ~E!5HQQ1P~E!2 iW~E!. ~23!

Here
ce
es

d-

tro-

-
.

-

m

WRR8~E!5p(
c

VR
c ~E!VR8

c
~E!, ~24!

where VR
c (E)5^fR

SMuV̂uxE
c(1)& are real numbers describin

the coupling of the shell model statesR to the channelsc at
the energyE of the system andc runs over all open chan
nels. Further,

PRR8~E!5(
c

PE
ec

`

VR
c ~E8!

1

E2E8
VR8

c
~E8!dE8. ~25!

P denotes the principal value of the integral andec is the
threshold energy for the channelc. As a rule, theec are
different for different channels.

Characteristics of the Hamiltonian of an open many-bo
quantum system are therefore~i! the different channels are
coupled with different strength and~ii ! the coupling via the
continuum contains not only an imaginary part but also a r
part. In the following sections we study the widths of trapp
resonance states as a function of increasing coupling stre
k tot by considering these properties of the Hamiltonian.

IV. INFLUENCE OF ADDITIONAL WEAKLY COUPLED
CHANNELS

In a many-body quantum system, each channel has a
tain coupling strength which may be quite different from t
coupling strength of other channels. Sources for the differ
coupling strengths of the channels are, above all, the st
ture of the states of the residual system, the different ang
momenta, and the different threshold energiesec , see Sec.
III.

We study the influence of different coupling strengths
the channels on the resonance trapping in a schematic m
ner. The main emphasis lies on the question of whether
mean width of the trapped states at strong coupling to
continuum saturates or approaches zero. The study is
formed in the random matrix model~RMM! with the Hamil-
tonian~1! andN5300, K54, but different average coupling
strengthVc

2 to the channels. The ratios among the coupli
strengths areVc

2/Vc51
2 51, 0.1, 0.01, and 0.001@Fig. 3~a!#

and Vc
2/Vc51

2 51, 0.01, 0.0032, and 0.001@Fig. 3~b!#. We
showk j for j 50, . . . ,5averaged over 20 calculations.

The separation points are defined bytc51 for any chan-
nel, i.e.,xc51 for a certainc @see Eqs.~3! and ~5!#. These
points are given byk tot5(c851

K Vc8
2 /Vc

2. This givesk tot51.11,
11.1, 111, 1110 in Fig. 3~a! andk tot51.01, 101, 321, 1010 in
Fig. 3~b!.

In Fig. 3~a! there is atk tot'1.2 a separation point, wher
one broad state separates from the other ones and the
width of the remaining resonance states starts to decre
Here,k j for j .0 decreases slightly, but soon increases ag
under the influence of the next channel. Atk tot'12 a second
broad state separates from the other ones. Similar situat
occur at k tot'120 andk tot'1200. Finally there are four
broad states corresponding to the four channels. For
larger values ofk tot, the valuesk j , j .3 decrease. Note tha
the valuesk j , j .4 are almost constant in the region
,k tot,1500. Thus different coupling strengths to the cha
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FIG. 3. k j for j 50, . . . ,6versusk tot in the RMM for N5300 andK54 with the ratios of the coupling strengthsVc
2/Vc51

2 51, 0.1, 0.01,
0.001~a! andVc

2/Vc51
2 51, 0.01, 0.0032, 0.001~b!. Eigenvalue picture~c! and 1

2 GR ~dots! together with the function12 (xc21/xc), Eq. ~7!,
~full line! versusk tot ~d! for Vc

2/Vc51
2 51, 0.01, 0.0032, and 0.001. In~a! and~b!, 2^G l&/D0 versusk tot is shown with a thick line. In~c!, the

points fork tot50.1, 1, 10, 100, and 1000 are marked with triangles, stars, diamonds, large dots, and squares, respectively.
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nels are a source for saturation of the average width of
long-lived N2K states as a function ofk tot.

In Fig. 3~b! we have one strongly coupled channel and
group of weakly coupled ones. Atk tot'1.1 a picture similar
to ordinary trapping with one channel can be seen. One s
separates and the widths of the remaining ones decrease
larger coupling to the continuum, however, the widths of
trapped states start to increase under the influence of
weakly coupled channels. A new critical region occurs b
tweenk tot'70 and 2000 where three states correspondin
the three new channels separate. In this region, the width
the trapped states saturate and thereafter their widths
crease.

Further, these two examples show another interesting
sult. At the points where a broad state separates from
remaining ones, we havetc'1 for a certain channelc, see
the thick line (2̂ G l&/D0 versusk tot!. When all tc,1, we
have good agreement between the^G l& calculated from Eqs.
~3! and ~4! and the calculated mean widthḠN2 j . Here, j is
determined by the number of broad states andj 50 only for
k tot,1 ~compare Sec. II B!.

A small part of the eigenvalue picture~ER andGR!, Fig.
3~c! @Vc

2/Vc51
2 51, 0.01, 0.0032, and 0.001 as in Fig. 3~b!,

but only one calculation#, shows width increase, energy shi
width decrease, and once again increase, shift, and decr
The renewed increase of the widths of the states trappe
the first channel is caused by the fact that the new chan
become active only at strong coupling to the continuum.
e
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-
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In Fig. 3~d! we showGR /2 and (xc21/xc)/2, c51, . . . ,4,
Eq. ~7!, versusk tot for the same calculation as in Fig. 3~c!.
The agreement between (xc21/xc) and the four different
widths Gs of the short-lived states illustrates nicely that th
separation of every broad mode takes place from the gr
of long-lived resonance states. This means the separa
process is more or less independent of the broad modes s
rated at smaller values ofk tot.

V. THE ROLE OF THE REAL PART OF THE COUPLING
TERM

A. Two resonances coupled to one common channel

The influence of a real part on the phenomenon of re
nance trapping can be seen by means of the following sim
model for two resonance states coupled to one common
cay channel,

heff5S 1 0

0 21D 22iae2 iuS cos2w cosw sin w

cosw sin w sin2w
D ,

290°<u<90°. ~26!

Here the relative coupling strength of the two states to
continuum may be varied by means of the anglew (w
Þ0°,90°, . . . ). Theangle u determines the ratio betwee
the real and imaginary part of the coupling term. In@16# the
caseu50 has been studied.
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FIG. 4. Eigenvalue picture~1
2 GR andER! calculated for differentk @~a!, ~b!# and uFu2 versusk @~c!, ~d!# for two states coupled to one

channel. It isw545° @~a!, ~c!# andw522.5° @~b!, ~d!#. The values are shown for some differentu in the same plots~see the text for details!.
Note the logarithmic scales.
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The eigenvalues ofheff are

«652 iae2 iu6A122iae2 iucos~2w!2a2e22iu.
~27!

At a50 we have two states lying at the energies21 and 1.
Their widths increase with increasinga up to some critical
valueacrit<1. The eigenvectors ofheff are

F65
1

A2a2e22iusin2~2w!1f6
2 S iae2 iusin~2w!

f6
D .

~28!

Here, the normalization of the wave functions is made
cording to ^F6* uF6&51 and f65122iae2 iu cos2(w)
2«6 . In our case of only two resonance states, the val
uF6u2 are the same for both states.

The distance in the complex plane between the two eig
values is

u«12«2u52uA122iae2 iucos~2w!2a2e22iuu[2uSu.
~29!

Using S, the denominator in Eq.~28! can be rewritten as

A2a2e22iusin2~2w!1f6
2 5A2S$S7@12 ie2 iucos~2w!#%.

~30!
-

s

n-

The factor S6@12 ie2 iucos(2w)# is never zero~for uÞ
6p/2), andthus uFu2→` if and only if the distance in the
complex plane between the two eigenvalues goes to zer

Let us definek5(G11G2)/L whereL52 is the distance
between the two resonance states. For the Hamiltonian~26!
it holds thatk52a cosu.

In the following the two casesw522.5° andw545° are
studied in detail. In the first case both states are coupled w
equal strength to the decay channel while in the second
the state having the initial energy11 is more strongly
coupled to the channel than the other one.

In Fig. 4 the complex eigenvalues@4~a!# and the uFu2
versusk @4~c!# are shown forw545° andu50°, 10°, 30°,
and 45°. The different points in Fig. 4~a! correspond to dif-
ferent values ofk, 0.2<k<20. Ask grows, each eigenvalue
follows a certain trajectory. Foru50° theER andGR of the
two states meet in one point in the complex plane atk
5kcrit52. Here uF(kcrit)u2→`. Beyond this separation
point, one state continues to increase in width whereas
width of the other one decreases~resonance trapping!. For
u.0 the state with initial energy21 becomes the broade
one and is shifted towards negative energies. In contras
this, for all u,0 ~not shown in the figures! the state with
initial energy 11 becomes, in this symmetrical casew
545°, the broader one and is shifted towards large posi
energies. ForuÞ0° the minimum distance in the comple
plane between the two states remains different from zero
uFu2 remains finite for allk with its maximum value atkcrit .
As u→90°, heff becomes Hermitian. In this limit,uFu2→1
andkcrit→0.
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FIG. 5. k j versusk tot in the CSM for 190 resonance states in16O with Jp512, K52 @~a!, ~b!# andK510 @~c!, ~d!# channels. In@~a!,
~c!# P50 whileP is taken into account in@~b!, ~d!#. It is j 50, . . . ,4 @~a!, ~b!#, j 50, . . . ,14~c! and j 50, . . . ,25~d!. The calculations are
performed atE529 MeV.
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The casew522.5° is shown in Figs. 4~b! ~complex eigen-
values! and 4~d! ~uFu2 versusk! for some values ofu rang-
ing from 245° to 160°. For u.0 the state with initial
energyER511, being the broader one at smallk, gets an
extra shift towards small energies whereas the shift is
wards large energies foru,0. kcrit is a function of onlyuuu
and has the same values as in the symmetrical case. It h
largest value foru50°. At u545° the complex eigenvalue
of the two states meet in one point anduF(kcrit)u2 diverges.
As u→690° heff becomes Hermitian anduF(kcrit)u2→1.
For 290°,u,45° the state with initial energyER521 is
the one becoming trapped. For 45°,u,90°, however, the
state with initial energyER511 becomes trapped eve
though that state is the broader one at smallk.

These examples show that the details of the resona
trapping change when allowing for extra energy shifts
introducing the angleu in Eq. ~26!. They are basic for an
understanding of the results of the following sections.

B. N resonance states coupled toK common channels

We study the influence of the real part of the coupli
term on the mean width of the trapped states in the fra
work of the CSM. We do this by comparing the results
calculations with and withoutP, Eq. ~23!, taken into ac-
count.

The rank ofP is, generally, larger thanK. P increases
with a by approximatively the same factor asW. Thus the
Hermitian partHQQ1P of HQQ

eff is never a small perturbatio
-

its

ce
y

e-
f

on W and the rank ofHQQ
eff is larger thanK also in the strong

coupling limit ~compare Sec. II B!. Nevertheless, resonanc
trapping occurs also when takingP into account.

In Fig. 5 we presentk j versusk tot for some calcula-
tions in the CSM. As in the RMM, we useD05L/
(N21) where L is the length of the spectrum ofHQQ .
We study 190 resonance states in16O with Jp512 and
vary a. In the first case@Figs. 5~a! and 5~b!# we study the
reaction 15O1/22(n,n)15O1/22 giving K52 channels
with s and d waves, respectively. The second case@Figs.
5~c!, 5~d!# is 15N1/22(p,x)Y where x5p, n and Y
515N1/22,3/22, 15O1/22,3/22 which gives K510 channels.
Figures 5~a!, 5~c! and 5~b!, 5~d! are without and withP,
respectively.

Figures 5~a! and 5~c! with P50 are similar to Figs. 3~a!
and 3~b!. In Fig. 5~a! we have two channels with differen
coupling strength. First we see the increase of the m
width of all the states for small coupling to the continuum
to the separation point corresponding to the strong chan
Thereafter we have a region of saturation of the mean w
and the separation point for the second broad state. In
5~c! we see first the separation of four strongly coupled sta
and the saturation of the widths up to the coupling strengt
which ten states corresponding to the ten channels are s
rated from the remaining ones. Finally the mean width of
the trapped states decreases.

In the calculations with the principal value integralP
taken into account, we additionally see another effect@Figs.
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5~b! and 5~d!#. There are, at strong coupling to the co
tinuum, not onlyK broad states, but more states separ
from the remaining ones and get large widths. In Fig. 5~d!
we have atk tot560 about 15 states that are broad but
sharp distinction between the lifetimes of the broad and
trapped states is washed out.

Similar results are obtained by studying other resona
states with other quantum numbers.

In the eigenvalue picture, Fig. 6~a!, we showẼR and G̃R
for the same resonance states as in Fig. 5~d! by varyingk tot

in the interval 0.008<k tot<60. Note that the steps ink tot are
approximatively equidistant. We see extra shifts in ene
caused by the principal value integralP. Such a shift is,
generally, in the order of magnitude of the width of the sta
i.e., it is large for states getting large widths with increas
coupling strength to the continuum. That means the br
states leave the energy region where the trapped state
lying. These shifts are similar to those in Figs. 4~a! and 4~b!
for uÞ0.

Figure 6~a! illustrates also the behavior of trapped sta
under the influence of increasing coupling to the continuu
First their widths increase, then the states get trapped,
their widths start to decrease and they get a small ene
shift. For even stronger coupling to the continuum the wid
can start to increase again with a renewed energy shift an
on. In distinction to Figs. 1~b! and 3~c!, these shifts have
mainly two origins: the energy attraction accompanying
bifurcation of the widthsand the influence ofP.

FIG. 6. Eigenvalue picture~1
2 G̃R andẼR! for different coupling

strengths 0.008<k tot<60 ~a! anduF̃Ru2 versusk tot ~b! in the CSM.
N5190 resonance states in16O with Jp512 andK510.P is taken
into account@compare Fig. 5~d!#.
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The correspondinguF̃Ru2 as a function ofk tot are shown
in Fig. 6~b!. The uF̃Ru2 remain larger than 1 also at larg
values of k tot. This indicates further avoided resonan
crossings which cause, ultimately, the saturation of
widths of the long-lived resonance states.

Summarizing, theP enlarges the critical region of reorga
nization where the local process of resonance trapping ta
place. The mean width of the long-lived states saturates
there is no longer a sharp distinction between the br
states and the long-lived ones.

VI. RESONANCE TRAPPING AND BROADENING
OF THE WIDTH DISTRIBUTION

In the RMM with equally strongly coupled channels it
shown in, e.g.,@26,22# that the width distribution in the criti-
cal region of reorganization is broader than in noncritic
regions. In noncritical regions, i.e., as long as all transm
sion coefficients are small, the width distribution follows
xK

2 law with the number of degrees of freedom correspo
ing to the numberK of open channels@8#. In this section we
study the width distribution in the RMM with varying cou
pling strengths to the channels and in the CSM.

In the RMM with varying coupling strengths of the cha
nels we have tried to fit the width distribution in noncritic
regions to axK

2 distribution. The error in the fit is large eve
for small transmission coefficients. We conclude that the s
tem must be coupled to all the channels with compara
strengths for the widths to bexK

2 distributed.
In the following we therefore study the broadening of t

width distribution by calculating the normalized variancesy
j

of the widths,

sy
j 5A 1

N2 j (
R51

N2 j

~yR21!2, yR5GR /Ḡn2 j ~31!

where the sum runs over all but thej broadest states. Th
theoretical value obtained in the RMM withK equally
strongly coupled channels for the~trapped! states far from
the critical region of reorganization issy

j 5K5A2/K
[sy

RMM .
The results of calculations in the RMM with varying cou

pling strengths to the channels are shown in Fig. 7. In F
7~a! sy

j is shown forK510 channels withVc
2/Vc51

2 distrib-
uted on @1,...,0.1# with equal distances at the logarithm
scale forj 50, . . . ,13. InFigs. 7~b! and 7~c! we showsy

j for
K54 channels andj 51, . . . ,6with Vc

2/Vc51
2 51, 0.1, 0.001,

0.001 andVc
2/Vc51

2 51, 0.01, 0.0032, 0.001, respective
@compare Figs. 3~a!, 3~b!#. Note thatsy

j before the separation
of a broad state should be compared with the valuesy

j 11

after the separation.
In the figures, the valuessy

RMM5A2/K are shown with a
dashed line. In the case of different coupling strengths of
K channels, the width distribution is broader than in the c
of K channels with comparable coupling strengths.

The separation of every broad state is accompanied b
broadening of the width distribution, see Figs. 7~a!–7~c!. The
distribution between the separation points in Fig. 7~b! and
between the separation points of the first and second b
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FIG. 7. sy
j , sy

l , andsy
RMM versusk tot in the RMM for three selected values ofVc

2/Vc51
2 ~for details see the text!. sy

j is shown for
j 50, . . . 14 ~a! and j 50, . . . ,6 @~b!, ~c!#. The thick lines aresy

l obtained from Eq.~33! and the dashed lines aresy
RMM . ~d! sy

j for j
51,...,20 versusk tot in the CSM forJp522, K512, andP is taken into account.j 50, . . . ,20 and thedashed line issy

RMM for K512.
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state in Fig. 7~c! is, however, narrower than the distribution
for very small and very largek tot.

To describe the distribution of the long-lived states
regions where alltc,1 we make the following ansatz, com
pare Eq.~3!:

GR
l 52

d

2p (
c

ln~12tc!gR,c
2 . ~32!

HeregR,c
2 for a certainc is a Gaussian distributed vector wit

mean zero and variance 1 andtc is the transmission coeffi
cient defined in Eq.~5!.

The normalized variance ofGR
l is

sy
l 5

A~GR
l !22~GR

l !2

GR
l

5

A2(c@ ln~12tc!#
2

2(c ln~12tc!
>sy

RMM .

~33!

~Note thatg251 andg453.! sy
l 5sy

RMM for the same num-
ber K of open decay channels holds only when alltc are
equal. The values calculated from Eq.~33! are shown with a
thick line in Figs. 7~a!–7~c!. The variances are well de
scribed by Eq.~33! in regions of the coupling strengthk tot

with all tc,1.
The valuessy

j as a function ofk calculated in the CSM
are similar to those obtained in the RMM. One example
shown in Fig. 7~d! for the caseJp522 with K512 open
channels.

We conclude that in many-body quantum systems,
distribution of the widths is broader than in the RMM wit
equal coupling strength to the channels~also at small trans-
mission coefficients!. This result explains the broadening o
the width distribution described in the literature by introdu
ing an effective numberKeff of channels being smaller tha
K.

For the case shown in Fig. 7~a!, we have calculated also
kgr

eff , Eq. ~22!, as a function of timet with 12 different cou-
pling strengthsk tot of the system to the channels~Fig. 8!.

\51. In Table I the valuesk tot and ḠN2K for the different
curves are given. All the curvesa– f , being below the criti-
cal region, differ considerably from one another. Inside
critical region, the curves for differentk tot (g– i ) are, how-
ever, similar to one another.

As a result, weakly coupled channels cause a saturatio
the mean valueḠN2 j as a function ofk tot. Since the width
distribution sy

j does not change much, alsokgr
eff saturates in

the long-time scale, i.e.,kgr
eff remains almost unchanged b
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varyingk tot in the critical region. The saturation is related
the enlarged width distribution.

VII. CONCLUSION

In this paper we studied the positions and widths of re
nance states in a many-body quantum system withN reso-
nance states as a function of increasing coupling strengthk tot

to the continuum which consists ofK!N decay channels. In
a critical region of the coupling strength, the system reor
nizes itself under the influence of the decay channels.
local process is the avoided crossing of two resonance s
which takes place whenever the distance in energy betw
the states is comparable to the sum of their widths. I
accompanied by an essential biorthogonality of the eig
functions ofHeff. As a result, one state continues to increa
in width whereas the other one decreases with further
creasing coupling strength~resonance trapping!. For a sys-
tem with many states, this leads to a broadening of the w
distribution.

With further increased coupling strength, the broaden
of the width distribution goes over into a separation of tim
scales ifK!N. The smallerK, the better expressed is th
separation. Weakly coupled channels as well as the Her

FIG. 8. kgr
eff versus timet for K510 andVc

2/Vc51
2 51, . . . ,0.1

@compare Fig. 7~a!#. The 12 curves are calculated withk tot between

0.1 and 50.k tot and ḠN2K for the curves are given in Table I.

TABLE I. k tot and ḠN2K for the different curves in Fig. 8.

Curve k tot
ḠN2K

a 0.10 0.094
b 0.18 0.17
c 0.31 0.29
d 0.54 0.51
e 0.96 0.89
f 1.7 1.5
g 3.0 2.6
h 5.2 3.9
i 9.2 4.7
j 16. 4.9
k 28. 4.5
l 50. 3.3
-
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ian part of the coupling termV̂QPGP
(1)V̂PQ have the ten-

dency of washing out the differences between the lifetim
of the group of long-lived trapped states, on the one ha
and the group of short-lived states, on the other hand.

We studied in detail the widths of theN2 j long-lived
trapped states under different conditions. We introduced
ditional channels to which the system is weakly coupled a

we took into account the Hermitian part ofV̂QPGP
(1)V̂PQ in

HQQ
eff , Eq. ~15!. Under the influence of these additional term

in the Hamiltonian, the trapped states can increase t
widths and change their positions in energy. Thus trap
resonance states may again come close to each other i
coupling to the continuum is stronger. The resonance cro
ing is avoided and accompanied by an essential biortho
nality of the eigenfunctions ofHeff in the same manner as a
smaller coupling strength. As a result of all these proces
the average width of the states saturates as a function o
coupling strength to the continuum when an appropri
number of states with the largest widths is excluded from
mean value. This number is equal to the number of op
decay channels as long as the real part of the coupling t

V̂QPGP
(1)V̂PQ is small compared to its imaginary part.

The width distribution of the long-lived states is related
the transmission coefficients. If all transmission coefficie
are equal and smaller than one, the widths arexK

2 distributed
whereK is the number of channels. In many-body quantu
systems with different coupling strengths to the different d
cay channels, the distribution is broader than axK

2 distribu-
tion also for small transmission coefficients.

The decay rates are related to the mean decay width
the long-lived states. This means the decay rates also sat
in quantum systems at high level density as a function of
coupling strengthk tot.

Summarizing the results we state that resonance trap
is a realistic process occurring in many-particle quantum s
tems at high level density. It leads to a saturation of both
decay rates and the average decay width of the long-li
states as well as to a broadening of the width distribut
and—if the number of open decay channels is not
large—to a separation of time scales. That means the de
rates and the decay widths of the long-lived resonance st
show the same behavior not only at low level density b
also at high level density. The saturation is caused in b
cases by the finite numberK,N of channels into which the
N resonance states can decay. The application of the s
dard random matrix approach to the details of the trapp
process in an ensemble of resonance states is limited.

We would like to state once more that the time deexc
tion of resonance states at high level density should be
rectly measured. The results could make a proof of the p
nomenon of resonance trapping possible.
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