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Resonance trapping and saturation of decay widths
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Resonance trapping appears in open many-particle quantum systems at high level density when the coupling
to the continuum of decay channels reaches a critical strength. Here a reorganization of the system takes place
and a separation of different time scales appears. We investigate it under the influence of additional weakly
coupled channels as well as by taking into account the real part of the coupling term between system and
continuum. We observe a saturation of the mean width of the trapped states. Also the decay rates saturate as
a function of the coupling strength. The mechanism of the saturation is studied in detail. In any case, the
critical region of reorganization is enlarged. When the transmission coefficients for the different channels are
different, the width distribution is broadened as compared ¢ aistribution whereK is the number of
channels. Resonance trapping takes place before the broad state overlaps regions beyond the extension of the
spectrum of the closed systef$1063-651X98)00208-4

PACS numbsgs): 05.30—d, 03.65.Nk, 24.306-v, 82.30—b

I. INTRODUCTION existence of different time scales at high level density corre-
sponds to the basic assumption of the unified theory of

At low excitation energy, the states of a many-particlenuclear reactions formulated phenomenologically about 40
quantum system are usually well isolated from one anotheiyears ago by Feshba¢R7] for many resonances coupled to
Their coupling via the continuum of decay channels cang sSmall number of common decay channels.
therefore be neglected. The reaction cross section consists of The main differences in the results of the different theo-
a sum of resonances with Breit-Wigner shapes the positiongetical approaches consist in the behavior of the long-lived
widths, and partial widths of which are well defined. resonance states as a function of further incredsHd.

At higher excitation energy both the level density and theWhile the widths saturate in the more realistic models for
decay widths of the states in most systems become so largéany-body systems, e.fl4], they decrease in the random
that the resonance states overlap. The cross section is 8itrix models. A saturation of the decay rates is observed
interference picture. Neither the positions, the widths, nor thélS0 in the “bottleneck” picture of transition state theory

partial widths of the resonance states can unambiguously gihich relates the saturation value to the number of indepen-

determined from an analysis of the cross section, see e_g?ent decay channels rather than to the widths of individual

[1]. Meaningful values can be obtained from time measureeSonance states of the gystm]. As a reply t0[29)], the
ments which provide the average lifetime of the resonanc echanism of the saturation is shown by the same authors to

. . . , e associated with a broadening of the distribution of reso-
states at high level density. Using the channeling method, thnance widthg30]. A broadening gf the width distribution at
mean lifetime of fine structure resonances under isobari%igh level densit)./ is found also, .g.,[18.24 and shown in
analog resonances in medium nuclei was found experimel-9 10,16.21,22. 2pt0 be caused,by. réson:amce trapping which
tally to be much longer than expected on the basis of the ' = ="

- . e is the basic process of the redistribution of the system. It
statistical theory of nuclear reactiofd. The modification of leads uItimateF:)Iy to the formation of different time sgales
the Fano profiles of autoionizing states due to the coherent In this paper we studv in detail the widths of the lona-
coupling with each other has been studied experimentally b-Yv Pap y 9

means of the two stateg3 'S and 33d P in magnesium ved states as ar:_un_cnon of the co_uFImg str?r:jgth to the
atoms[3]. continuum since this is a controversial point of discussion.

Theoretically, the transition from low to high level den- Most_ calculations are performed beyond the standard random
o ) L . matrix approach.
sity is studied recently in different papers for different sys- | L
i — — n Sec. Il the phenomenon of resonance trapping is de-
tems, seq1,4-2d. As a function ofl'/D (whereI' is the  gcriped in the framework of the random matrix theory. The
average value of the widths of all resonance states, being @idths of the trapped resonance states do not saturate with
measure for the coupling strength of the system to the conpcreasing coupling strength to the continuum. In Sec. Il the
tinuum, andD is the mean level distangell results show  gpeciroscopic values of an open many-particle quantum sys-
the same characteristic features: beyond a critical value Ggm are given. Additional terms in the effective Hamiltonian
I'/D, separated time scales exist when the number of charappear which may prevent the widths of the trapped reso-
nels is smaller than the number of resonance states. The vemance states from decreasing with increasing coupling to the
continuum. In the following sections, we discuss the influ-
ence of additional terms in the effective Hamiltonian on the
*Electronic addresses: persson@mpipks-dresden.mpg.dwidths of the long-lived trapped states. Additional weakly
gorin@mpipks-dresden.mpg.de, rotter@mpipks-dresden.mpg.de coupled channels are shown to cause a saturation of the mean
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PRE 58 RESONANCE TRAPPING AND SATURATION OF DECAY WIDTHS 1335

width with further increasing coupling strengfSec. ). The mean widtH of all resonance states can be obtained
The sharp distinction between short- and long-lived states igjrectly from Eq.(1),

removed by the real part of the coupling term to the con-

tinuum (Sec. V. In both cases, further avoided crossings _ 2 off 1 , 2d

appear and the biorthogonality of the eigenfunction$i6f I'=J Imitr Hewwd = > Vi= - 2 X (6

continues to be essential. That means the critical region ¢ ¢

where the redistribution takes place is enlarged. This can b?he parameters, measure the coupling strengths of the sys-

seen also in the width distribution of the trapped states, ingon 16 the different decay channeds For increasing total

vestigated in Sec. VI. Some conclusions on the broadening,, ,jing they subsequently pass over the critical value one.

of the width distribution, the separation of time scales, anqere the corresponding transmission coefficient reaches its

Fhe saturation (_)f decay rates at high level density are draWFhaximaI valuer,=1. The logarithm in Eq(3) diverges and

in the last section. Eq. (3) loses its validity. Equatior(5) is symmetric with
respect to an exchange xf by 1k.. As a consequence the

Il. RANDOM MATRIX THEORY AND RESONANCE transmission coefficients do not distinguish between weak
TRAPPING and strong total coupling strength. We hawg<1 for all
X.#F 1.

A. Basic equations . . .
g In the following sections we will see that at each of the

In order to describe resonance phenomena at high levejoints .= 1 a single resonance state separates in width from
density in a small energy interval far from thresholds thethe remaining ones. Fox.>1 this state becomes much
random matrix theory has been developed. The effectivgroader than the other ones and can no longer be described

Hamiltonian is(see, e.9.[31,6,7) statistically together with the long-lived resonance states.
i The width of the short-lived state j41,25
eff _ s — _ T
T Xe T T XeT ) %>l (7)
C C

HereV is an energy-independent random matrix consisting

of K random vectors of dimensioN with matrix elements while the widths of the long-lived states decrease ag.1/
V5. The valueVi==}_,(V5)? gives the coupling strength

of the system to the channel Each vectoV, has Gaussian B. Resonance trapping at strong coupling

distributed elements with mean value 0 and variawgeN. , . o ,
One interesting question is how the system described by

Hy, is chosen from the Gaussian orthogonal enserf(e@E) NN ;

and the mean level density follows a semicircle law. In ourth® HamiltonianHg,, behaves as the coupling to the con-

case the length of the spectrumlis=2 units and therefore finuum increases. To investigate this question, we replace

the mean level distance in the middle of the spectrum i®Y @V in the termW of the effective Hamiltonian, Eq3),

given byd= m/(2N). and varya. _
According to[32,33, one can obtain the mean wid¢F, ) For smalla we can tregft\lv as a smaI_I perturbatlon_ on

of the long-lived resonance states by considering the diagddb- The rank ofH, is N. Hgyy thus describedl states with

nal elements of the&s matrix, averaged over a sufficiently energies determined by the eigenvaluesigf. The widths
large energy interval. It holds that are proportional tax?. This holds well as long as the reso-

nances are nonoverlapping.
K For largea we can treatH,, as a small perturbation oN.
IT 1(Se)|=e ™, (2) As W has rankK it directly follows that onlyK states have
c=1 large widths, see, e.gl6,7]. The widths of the remaining
N—K states are small. That means two different time scales
The mean widtiI'|) of the states in the middle of the spec- exist.
trum is In this subsection we first illustrate the phenomenon of
resonance trapping fdd resonance states coupled to ke

d & =1 open decay channel. We define
(Ty=-5-2 In(1-7o), 3
2m = > N o1y T,
. N _ W=—"0 > _R_p N ®)
where ther. are the transmission coefficients, defined as N—] r=T+1 Do Do
e=1—[(S.o|? (4) Here the sum runs over all but tHebroadest stated,

=L/(N—1) is the mean level spacing of the eigenvalues of

These coefficients are calculated 8] using a resummation Hp andL is the Ien_qt? of the spectrum. Fot—j>1 the
method in the power series expansion of the transfer matrixdifference betweem’ ~* and «! is 2I'; /[Do(N—j)] (states

The result is ordered according to decreasing widtRurther we define
N _
4X, Ve o j0_ 2 g T

= = =kl=0== > —=2—. 9

T (1rxg?’ X¢T2Nd’ ®) CTEOTN R; D, ‘Do ©)
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10° 3 T T T T T FIG. 2. Eigenvalue picturé&I's andEg) for Hy, consisting of a
1(b) sum of three Gaussian shapdk=300,K=4, and all channels are
L B : ] 3 coupled with the same strength.

the local level density compared to the local mean width is
sufficiently large, see, e.d.14,16,21.
To illustrate the local properties of resonance trapping we
show in Fig. 1b) the widthsI'y versus the energidsy for
the states of Fig. (®. Only a small part of the spectrum is
shown. The calculations are performed for€94°'<10 in
steps of logy(«®")=0.04. The points fokx''=0.1, 1, and 10
are marked with triangles, stars, and squares, respectively.
As a function ofa the complex eigenvalugg=Eg— 3I'g of
_ each resonance state follows a certain “trajectory.” For
FIG. 1. «! for j=0,1,2, and 2I'|)/D,, calculated from Eq(3)  small coupling to the continuum, the widths of the states
(thick line), versus«™ (a). Eigenvalue picturd3T's andEg) cal-  increase with increasing continuum coupling. This process
culated for differentl(tm (b) The calculation shown is performed takes p|ace for every resonance state up to that value of the
within the RMM forK =1 andN=300. In(a) the curves shown are  continuum coupling at which the state starts to overlap one
averages over 20 calculations. Only & part of the spectrum is showgt the resonance states in its neighborhood. The crossing of
in (b). Note the logarithmic scales. The points #6f'=0.1, 1, and  yagpnance states is avoided in the complex plane: The states
10 are marked irfb) with triangles, stars, and squares, reSpeCt'Vely'attract each other in energy and their widths bifurcate, i.e.,

«''is a measure of the total coupling strength of the systenitlrr]]erw'dm of one”cr)]f thfr S;attisv(\;ﬁi?t'r:ﬁef t? t%rowt;/]v 'trh frl:rtr:jer
to the continuunisee Eq(6)]. In the random matrix theory rC eas grhcou{)t gﬂﬁ I? % in the bra 3 teno ero tﬁr e h
(with N large we haved= 7/(2N) andL=2 and thusD creases. eﬁae_ ina y €ing the broadest one goes throug
h ; : tot_ v - a number of “collisions” (avoided resonance crossing be-
=4d/7 which gives«''=x; in the one-channel cageom- . o .

pare Sec. Il A tween two states looks like a “collision” in this representa-

Within the random matrix theorv. we calculaté versus tion) before it dominates the complete spectrum. It is formed
K for N=300, K=1, andj=0,1 ZyWith varying coupling in the middle of the spectrum where the level density is the

. . largest.
to the contmuun{Flg. La)]. The curves shown are averages gl'he stars on the trajectorigBig. 1(b)] show that trapping
over 20 calculatlorjs. Note the Iogquthmm scalles..Unl‘i’f . of resonance states is a local process which takes place
~1 th_e average W'd.th of all sg;}tes increases with INCreasing, e gifferent time scales are formed globally. The widths of
c_oupllng to the continuum. At ®'~1 two globally sepa_rated_ . all the trapped states decrease with further increasing cou-
time scales are formed. The broad state should be identifie

. : " ing strength.
with a QOorway stat¢13] apd a t'.ghtt transition statgasj, This behavior does not change when the level density has
respectively. At the separation poikf'=1, the transmission

S . . : . a band or shell structure. We simulate such a situation b
coefficient is 7.=1. For still further increasing«' the Y

> . . ) choosing aH,,, Eq. (1), with several more or less separated
broadest state is getting a still larger width but the averag?egionS %f hitéh quvel density. Between them and atqthe bor-
width of the remaining ones decreases.

R . ders of the spectrum, the level density is smaller. In the
The thick line in Fig. 1a) shows 2ZT"|)/D, obtained from ; _ ;
Eqs.(3) and (5). Forfc“"_<l, (T'}) is the mean width of alN present calculation we hake=4 andN=300. The coupling

: ) of each state to each channel is randomly chosen, i.e., the
resonance stated,|)~T", while for «®>1,(T'|) is the mean  coupling strengths of the four channels are equal to one an-
width of theN—1 trapped stateg]’|)~1"y_. Therefore the other. We have three regions with Gaussian shaped level
transmission coefficients, related to theT"|) by Eq.(3) do  density. Two of the regions are close to each other and the
not give us information on the coupling strengtlf! of the  third one is lying well separated from the other two. The
system to the continuuftompare Sec. Il A energieEi and widthsl'; of the resonance states are shown
Resonance trapping of many states takes place whenever Fig. 2 for varying total coupling strength to the con-




PRE 58 RESONANCE TRAPPING AND SATURATION OF DECAY WIDTHS 1337

tinuum. (+)_ (N SM
E H =V , 14
We see the following result. In each group of states there ( pp)lor )= Veol $r") (4
are formed some broad states at high level density. Thesﬂﬁhich connects the two subspaces. UsingO=1 we then
states donot overlap regions outside the interval StUdied'expressW) by means of the solutions of Eq&l2)—(14)

With further increasing coupling strength, these broad State8 are must be taken in order to avoid double counting from

attract one another in energy and their widths bifurcate. F"Eqs.(lZ) and(13), i.e., appearance of any resonances in Eq.

nﬁ"y’ tr:erel arti only fourt.broad .sttat;ahs .accqéf[i;]ng to the f?IUEB). For this purpose a cutoff technique for single-particle
channels. In the separation point, their widths are smallef, -0 oo sed i8] when solving Eq(13).

than the energy region covered by the long-lived states. The (1) B )
question whether there are states lying outside the extension " P subspace, the propagator i€ '=P(E+ie
of the spectrum is of interest only when studying the behav—Hpp) ~*P. The propagato@(E—Hg) *Qin Q subspace
ior of the short-lived states at a further increased strength ofontains the effective Hamilton operator in this subspace,
the coupling to the continuum. The resonance trapping in ) )
every group is left unchanged by the effects at the borders of HgﬁQ(E) =Hgot VQPGEJ)VPQ. (15
the spectrum.

We conclude this section by stating the following. In the HH6(E) is non-Hermitian and energy dependent. It has
random matrix theory, the widths of the trapped resonancenergy-dependent complex eigenvalues=Eg— (i/2)T'g
statesdecreaseas a function of increasing coupling strength 5,4 eigenfunctiong®g) describing the quasibound states

tot

e embedded in the continuuf@BSEQ [9]. The|®g) form a
biorthogonal set at each energywith the orthogonality re-
lation ®g/)=06grr (see [21]). Further, it holds that
| (PrlPr)=1, (PrlPr)eC (R£R).

In many-body quantum systems, the widths of the long-  DiagonalizingH &y, we get the solution of Eq10) as
lived resonance states do not decreaseshturateas a func-
tion of the coupling strengtix'®* [29,30. In order to inves- N
tigate the mechanism of saturation we have, according to the |‘I’(E+)>=|§E(+)>+ E |Q(R+>>
results shown in Sec. Il B, to go beyond the random matrix R=1
theory. In the following, we sketch a model which allows us
to describe opemany-bodyquantum systems.

The time-independent Schiimger equation

(H—E)|¥)=0 (10) 1DR7)=(1+ V)| Bg) 1

is solved in a Hilbert space consisting not only of the discretere the wave functions of the resonance st&tels should be
many-particle states of a closed system but also of the corstressed here once more thatis the operator of théwo-

tinuum of decay channels. The potential is assumed to be lgody residual interaction and that thkg are many-particle
spherical one. The Hamilton operator of the system is wave functions.

The relation(17) between the wave functiorﬁ(;) of the
resonance states and the eigenfunctidpsof HgﬁQ is analo-
HO is the unperturbed Hamilton operator describing particleOUS t0 the Lippman-Schwinger equation

in a finite depth potential an¥ is the operator of the two- ey ()N - C
body residual interaction between the particles. For details |68 =(1+Gp V)lxe) (18
see[9]. The relation betweel, Eq. (1), and the two-body

operatorV is considered if36].

Ill. CONTINUUM SHELL MODEL (CSM) FOR AN OPEN
MANY-BODY QUANTUM SYSTEM

- (Vg ™).
E_SR E
(16)

Here the

H=H°+V. (12)

between channel wave functiong and coupled channel

i c ALY I:Sa)
In order to find the solutioft’) of Eq. (10) we first solve wave furlcnons gEj Thereforg (QrlVIxe ™) _
the shell model problem =(Dg/V[ed)). We define the amplitude of the partial
width by
(ER"—Hqo)| R =0 (12 . .
in the Q subspace oN discrete states and the coupled chan- YRe= \/Z<QR|V|XEH)>: _\/Z<®R|V|§CE(+)>' (19
nel equations
(EC)— pr)|§c(+)>_0 (13) By inserting the expressiofi6) for ¥ into the S matrix and
E — Y

using Eq.(19) we get

with the proper boundary conditions in tiesubspace oK
coupled channels. The projection operators aée
=3paldR")(¢R"| and P=3¢_, [dE£E)(¢E|. HereHoq | SeTre
=QHQ and Hpp=PHP. Further, we solve the coupled +i — (20
channel equations with source term ROE-Ert (i/2)Tg

Seer =628, — 2i m(x& 7| V[£2 )
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The first two terms in Eq(20) describe the direct reaction . .
part of the process. The last term describes the resonance Wrr (E)=72 VH(E)VE/(E), (24)
part, i.e., excitation and deexcitation of the resonance states ¢

R. The resonance paf,, of the S matrix has the standard Mo olr o
Breit-Wi ; Note. h thate. | | q where VS(E) = (V| V|x& ")) are real numbers describing
reit-Wigner form. Note, however, thaiz. Is complex an the coupling of the shell model statBsto the channels at

energy dependent. Alsgr and T’ are energy-dependent the energyE of the system and runs over all open chan-

functions.S_,, (E) contains the contributions of all the reso- nels. Further,

nance states at the enerfyof the system. These contribu-

tions may be very different from those at other enerdses o 1 .

[19). Prr(E)=2 Pf VR(E') =57 VR (EdE". (25
The poles of the&s matrix give the energieSg and widths ¢ cc

I'r of the resonance states. They are defined by the fixed- o ) .

point equationE g=Ex(E=Eg) andTr=Tr(E=Eg). The P denotes the principal value of the integral andis the

number of resonance states is exactly equal to the nuiber threshold energy for the channel As a rule, thee; are

: . ; : different for different channels.
of discrete states obtained from HG2) if double counting s o
in P andQ is avoided. Characteristics of the Hamiltonian of an open many-body

- ~ ) ] quantum system are therefofie the different channels are

If the energy dependence BR(E) andI'r(E) is weakin oy pled with different strength ar@) the coupling via the
the interval studied, it holds thaEgr~Eg(E') and I'r  continuum contains not only an imaginary part but also a real
~T'r(E') whereE’ is an energy somewhere in the middle of part. In the following sections we study the widths of trapped
the interval. Only under such conditiorS; andI'g can be  resonance states as a function of increasing coupling strength
considered as resonance parameters. Otherwise, the specte® by considering these properties of the Hamiltonian.
scopic studies performed at the enefgy are meaningful

only at this energy since only here are the orthogonality ey INFLUENCE OF ADDITIONAL WEAKLY COUPLED

lations between the right and left wave functions fulfilled. CHANNELS
The present calculations are performed at the endtgy
=E' of the system. In a many-body quantum system, each channel has a cer-

According to[21], the decay rates can be defined bytain coupling strength which may be quite different from the
kef(t)=— (d/dt) In{(t)| B(t)) whereg(t) is the wave function coupling strength of other channels. Sources for the different
of the system. Using the ansata(t))=Srag(t)|®g) and coupling strengths of the channels are, above all, the struc-
solving the time-dependent Sciinger equation with the ture of the states of the residual system, the different angular
effective Hamiltoniari-lgﬁQ we get Irﬂomenta, and the different threshold energigs see Sec.

We study the influence of different coupling strengths of
|¢(t)>=2 ag(0)e” (i/h) [Ep— (i/2)fR]t|Z1‘)R>_ (21  the channels on the resonance trapping in a schematic man-
R ner. The main emphasis lies on the question of whether the
mean width of the trapped states at strong coupling to the
Theag(0) define the wave functio#(0) of the system at the continuum saturates or approaches zero. The study is per-
time t=0. Neglecting the oscillations caused by the bior-formed in the random matrix modéRMM) with the Hamil-
thogonality of the function system we get tonian(1) andN =300, K=4, but different average coupling
strengthV§ to the channels. The ratios among the coupling
strengths ar&v2/V2_,=1, 0.1, 0.01, and 0.00fFig. 3a)]
™ (22) andV2V2_,=1, 0.01, 0.0032, and 0.00fFig. 3(b)]. We
show ! for j=0,... ,5averaged over 20 calculations.
The separation points are defined iy=1 for any chan-
for the gross time behavior df®™. This is in analogy to nel, i.e.,x.=1 for a certainc [see Eqs(3) and(5)]. These
kg'=T/# for isolated resonances. THe(t) are given by points are given byc'®=3f_ V2 /V2 This givesx'®=1.11,
A%(t)=|ag(0)|?e TRV"(Dg|Dg). They decrease exponen- 11.1,111, 1110 in Fig.(®) and«™'=1.01, 101, 321, 1010 in
tially with the rateT'r/%. Therefore thedZ(t) for the short-  Fig- 3(b).

; e . .
lived states are negligible in the long-time scale and the sum !N Fig. 3@ there is at«®~1.2 a separation point, where
in Eq. (22 runs only over the trapped states. If the width ©"€ broad state separates from the other ones and the mean

distribution of theN—K trapped states is narrow, it holds \|/_|vidth ojffthe_ reomdaining reso?arr]]tcie Et‘ites starts to decrease.
AT . A . ere,«! for j>0 decreases slightly, but soon increases again
gér])(;él;]l[\“K' The weighted widti™* is generally time de- under the influence of the next channel.;ATtwl_z a second
Let ué write Eq.(15) more explicitly broad state separates from the other ones. Similar situations
' ’ occur at «'~120 and «"'~1200. Finally there are four
off . broad states corresponding to the four channels. For still
Hoq(E)=Hqqt+P(E) —IW(E). (23 larger values ok'®, the values«!, j>3 decrease. Note that
the valuesk!, j>4 are almost constant in the region 1
Here < k™<1500. Thus different coupling strengths to the chan-

1 3pARMTR
ko ZRAD)

1
ff —
KEf(t) ==
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FIG. 3. &) for j=0,. . .,6versus«™ in the RMM for N=300 andk =4 with the ratios of the coupling strengtké/V2_,=1, 0.1, 0.01,
0.001(a) andV2/V2_,=1, 0.01, 0.0032, 0.00(b). Eigenvalue picturéc) and3I'» (dots together with the functior (x.— 1/x.), Eq.(7),
(full line) versusk™ (d) for V2/V2_,=1, 0.01, 0.0032, and 0.001. (8) and(b), 2(T",)/D, versusk™ is shown with a thick line. Ir(c), the
points for«'*'=0.1, 1, 10, 100, and 1000 are marked with triangles, stars, diamonds, large dots, and squares, respectively.

nels are a source for saturation of the average width of the In Fig. 3(d) we showl'g/2 and &.— 1/x;)/2,c=1, ... 4,
long-lived N—K states as a function of". Eq. (7), versusx™ for the same calculation as in Fig(c3.

In Fig. 3(b) we have one strongly coupled channel and aThe agreement between ( 1/x.) and the four different
group of weakly coupled ones. Af®~1.1 a picture similar  widths I'g of the short-lived states illustrates nicely that the
to ordinary trapping with one channel can be seen. One stateparation of every broad mode takes place from the group
separates and the widths of the remaining ones decrease. Faifr long-lived resonance states. This means the separation
larger coupling to the continuum, however, the widths of theprocess is more or less independent of the broad modes sepa-
trapped states start to increase under the influence of thated at smaller values af°.
weakly coupled channels. A new critical region occurs be-
tweenx™'=70 and 2000 where three states corresponding t THE ROLE OF THE REAL PART OF THE COUPLING

the three new channels separate. In this region, the widths o TERM
the trapped states saturate and thereafter their widths de-
crease. A. Two resonances coupled to one common channel

Further, the;e two examples show another interesting re- +na influence of a real part on the phenomenon of reso-
sult. At the points where a broad state separates from thﬁance trapping can be seen by means of the following simple

remaining ones, we have,~1 for a certain channal, see 4 for two resonance states coupled to one common de-
the thick line (2T',)/Dg versus«™). When all 7.<1, we cay channel

have good agreement between {fig) caIc_uIated from Egs.

(3) and(4) and the calculated mean width, ;. Here,j is off 1 0 . e coge CoS¢ sin ¢
determined by the number of broad states aad only for 0 -1 2iae cos o sin @ sirfe
k<1 (compare Sec. Il B

A small part of the eigenvalue pictuf&€g andI'g), Fig. —90°< #=<90°. (26)
3(c) [V4V2_,=1, 0.01, 0.0032, and 0.001 as in FighB
but only one calculatiol shows width increase, energy shift, Here the relative coupling strength of the two states to the
width decrease, and once again increase, shift, and decreasentinuum may be varied by means of the angle(e
The renewed increase of the widths of the states trapped by 0°,90°,...). Theangle # determines the ratio between
the first channel is caused by the fact that the new channetfe real and imaginary part of the coupling term[16] the
become active only at strong coupling to the continuum. cased=0 has been studied.
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FIG. 4. Eigenvalue pictur(e%I‘R andEg) calculated for differeni [(a), (b)] and|®|? versusk [(c), (d)] for two states coupled to one
channel. It isp=45°[(a), (c)] andp=22.5°[(b), (d)]. The values are shown for some differghin the same plotésee the text for details

Note the logarithmic scales.

The eigenvalues df™ are

e.=—iae ’+\1-2iae "%cog2¢)— a’e 2.

(27)

At =0 we have two states lying at the energie$ and 1.
Their widths increase with increasingup to some critical
value a.=<1. The eigenvectors di*" are

1
(I)+: -
T V—a%e Fsin(2¢) + ¢

iae”’sin(2<p))
o '

(28

The factor Sx[1—ie '?cos(2p)] is never zero(for 6+
+/2), andthus|®|?— if and only if the distance in the
complex plane between the two eigenvalues goes to zero.

Let us definex=(I"1+TI',)/L whereL=2 is the distance
between the two resonance states. For the Hamilto{@én
it holds thatk=2« cosé.

In the following the two case®=22.5° ande=45° are
studied in detail. In the first case both states are coupled with
equal strength to the decay channel while in the second case
the state having the initial energy 1 is more strongly
coupled to the channel than the other one.

In Fig. 4 the complex eigenvaludg(a)] and the|®|?
versusk [4(c)] are shown forp=45° and¢=0°, 10°, 30°,
and 45°. The different points in Fig(@ correspond to dif-
ferent values ok, 0.2< k<20. As« grows, each eigenvalue

Here, the normalization of the wave functions is made acCfollows a certain trajectory_ Fo9=0° the ER andI‘R of the

cording to (®*|®.)=1 and ¢.=1—2iae '’ cof(¢)

two states meet in one point in the complex planexat

—e.. In our case of only two resonance states, the values: k=2. Here |®(k.q)|°—. Beyond this separation

|®..|? are the same for both states.

point, one state continues to increase in width whereas the

The distance in the complex plane between the two eigerwidth of the other one decreas@gsonance trapping For

values is

le.—e_|=2|J1-2iae ’cog2¢)— a’e %% =2|9.
(29)

Using S, the denominator in Eq28) can be rewritten as

V—a?e @sin(2¢) + 2 =2S{ST[1—ie "cog2¢)]}.
(30

>0 the state with initial energy-1 becomes the broader
one and is shifted towards negative energies. In contrast to
this, for all #<0 (not shown in the figurgsthe state with
initial energy +1 becomes, in this symmetrical cage
=45°, the broader one and is shifted towards large positive
energies. Forw+#0° the minimum distance in the complex
plane between the two states remains different from zero and
|®|2 remains finite for all with its maximum value ak ;.

As 6—90°, h®™ becomes Hermitian. In this limit®|>—1

and x¢;;— 0.
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FIG. 5. «/ versus«™® in the CSM for 190 resonance states'fd with J”=1", K=2 [(a), (b)] andK=10[(c), (d)] channels. I{(a),
(c)] P=0 while P is taken into account if\b), (d)]. Itis j=0,...,4[(a), (b)], j=0,...,14(c) andj=0,...,25(d). The calculations are
performed aE=29 MeV.

The casep= 22-5°2i5 shown in Figs. @) (complex eigen-  onW and the rank oHg, is larger tharK also in the strong
values and 4d2 (|| veorsusK) for some values ob rang- oy pling limit (compare Sec. Il B Nevertheless, resonance
ing from —45° to +60°. For >0 the state with initial trapping occurs also when takirfginto account.

energyEg=+1, being the broader one at smail gets an In Fig. 5 we present’ versus «' for some calcula-
extra shift towards small energies whereas the shift is tog, |« 0" the CcSM. As in the RMM, we us®,=L/

wards large energies far<O0. . is a function of only| 6| -~ .
and has the same values as in the symmetrical case. It has&}g 1) wherel is the length of the spectrum dfiqq.

largest value fov=0°. At #=45° the complex eigenvalues € stucliy tﬁgof. retsonanlgg st:;re)s lﬁg ;Vt;;? J :érd atnhd
of the two states meet in one point ajil(x.)|2 diverges. V&Y @ 1N e IS casgFigs. 58 an we study the

As 6—+90° h®" becomes Hermitian antth(x®)[2—s1. reaction 1501,27(n,n)1501,27' giving K=2 channels
For —90°< #<45° the state with initial energig=—1 is with s and d waves, respectively. The second c4qf@gs.

the one becoming trapped. For 459<90°, however, the 5(‘132_; 5d)] is 1515N1,27(p,x)Y. where x=p, n and Y
state with initial energyEg=+1 becomes trapped even = Niz- 32~ ~Ouz,32- Which gives K=10 channels.
though that state is the broader one at smrall Figures %a), 5(c) and 8b), 5(d) are without and withP,
These examples show that the details of the resonand€@spectively.
trapping change when allowing for extra energy shifts by Figures %a) and §c) with P=0 are similar to Figs. @
introducing the angled in Eq. (26). They are basic for an and 3b). In Fig. 5a we have two channels with different
understanding of the results of the following sections. coupling strength. First we see the increase of the mean
width of all the states for small coupling to the continuum up
to the separation point corresponding to the strong channel.
Thereafter we have a region of saturation of the mean width
We study the influence of the real part of the couplingand the separation point for the second broad state. In Fig.
term on the mean width of the trapped states in the frame5(c) we see first the separation of four strongly coupled states
work of the CSM. We do this by comparing the results ofand the saturation of the widths up to the coupling strength at
calculations with and withou®, Eq. (23), taken into ac- which ten states corresponding to the ten channels are sepa-

B. N resonance states coupled t& common channels

count. rated from the remaining ones. Finally the mean width of all
The rank of P is, generally, larger thaiK. P increases the trapped states decreases.
with « by approximatively the same factor ®¢. Thus the In the calculations with the principal value integral

Hermitian partH o+ P of HgﬁQ is never a small perturbation taken into account, we additionally see another effEajs.
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The corresponding®g|? as a function of«™ are shown

in Fig. 6(b). The |®g|? remain larger than 1 also at large

values of k. This indicates further avoided resonance
crossings which cause, ultimately, the saturation of the
widths of the long-lived resonance states.

Summarizing, thé® enlarges the critical region of reorga-
nization where the local process of resonance trapping takes
place. The mean width of the long-lived states saturates but
there is no longer a sharp distinction between the broad
states and the long-lived ones.

Iy [MeV]

1%
2

VI. RESONANCE TRAPPING AND BROADENING
OF THE WIDTH DISTRIBUTION

5 T - L In the RMM with equally strongly coupled channels it is
b o : shown in, e.g.[26,22 that the width distribution in the criti-

RN cal region of reorganization is broader than in noncritical
regions. In noncritical regions, i.e., as long as all transmis-
sion coefficients are small, the width distribution follows a
Xﬁ law with the number of degrees of freedom correspond-
ing to the numbeK of open channelg8]. In this section we
study the width distribution in the RMM with varying cou-
pling strengths to the channels and in the CSM.

In the RMM with varying coupling strengths of the chan-
nels we have tried to fit the width distribution in noncritical
regions to aa(ﬁ distribution. The error in the fit is large even

Klot for small transmission coefficients. We conclude that the sys-
tem must be coupled to all the channels with comparable

FIG. 6. Eigenvalue picturésT's andEr) for different coupling ~ strengths for the widths to bgZ distributed.
strengths 0.008 <60 (a) and|®g|? versus«™ (b) in the CSM. In the following we therefore study the broadening of the
N=190 resonance states#O with J"=1" andK=10. Pis taken ~ width distribution by calculating the normalized varianeg
into accounfcompare Fig. &)]. of the widths,

|®i2-1

5(b) and Fd)]. There are, at strong coupling to the con- L

tinuum, not onlyK broad states, but more states separate i a2 _ =

from the remaining ones and get large widths. In Figl)5 7T NN=] R; (Yr= D% Yr=Tr/Tn-j (3D
we have at«'®'=60 about 15 states that are broad but the

sharp distinction between the lifetimes of the broad and th‘\?vhere the sum runs over all but thebroadest states. The
trapped states Is washed ot. theoretical value obtained in the RMM witK equally
tat ith oth t b Etrongly coupled channels for th&rapped states far from
states wi _o er quan_um num ers. ~ ~ the critical region of reorganization is(rJy:K= V2K

In the eigenvalue picture, Fig(®, we showkEg andl'r ~ _ ;RMM

: oo tot Oy
for the same resonance states as in Hd) by varying « The results of calculations in the RMM with varying cou-

in the interval 0.008 «'*’<60. Note that the steps i are pling strengths to the channels are shown in Fig. 7. In Fig.
approximatively equidistant. We see exira shifts in energy; ;"1 s shown fork =10 channels withv2/V2_ | distrib-
e b g s et S S UG Wi e s o e g
, - ! J
i.e., it is large for states getting large widths with increasingscflj ::%rémnoeyl.s.a.lr’lg'lii. 1' nF'gSévﬁ)he\‘/nzc;Vch) vielsgoilv%yggrl
= = 1l,..., c c=1— 4+, V.1, U. ’

coupling strength to the continuum. That means the broa e .
states leave the energy region where the trapped states at@01 andVe/Ve_; =1, 0.01, 0.0032, 0.001, respectively

lying. These shifts are similar to those in Figéaand 4b)  Lcompare Figs. @), 3(b)]. Note thato, before the separation
for 6+0. of a broad state should be compared with the vahyé'l
Figure a) illustrates also the behavior of trapped statesafter the separation.
under the influence of increasing coupling to the continuum. In the figures, the values 2/K are shown with a
First their widths increase, then the states get trapped, i.edashed line. In the case of different coupling strengths of the
their widths start to decrease and they get a small energl¢ channels, the width distribution is broader than in the case
shift. For even stronger coupling to the continuum the widthsof K channels with comparable coupling strengths.
can start to increase again with a renewed energy shift and so The separation of every broad state is accompanied by a
on. In distinction to Figs. (b) and 3c), these shifts have broadening of the width distribution, see Fig&)#7(c). The
mainly two origins: the energy attraction accompanying thedistribution between the separation points in Fi¢)7and
bifurcation of the widthsand the influence ofP. between the separation points of the first and second broad

RMM _
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versusk™ in the RMM for three selected values WE/V2_, (for details see the te)(ta'y is shown for
.,6[(b), (©)]. The thick lines arer}, obtained from Eq(33) and the dashed lines arf™". (d) o), for j

,20 and thelashed line isri"™ for K 12.

state in Fig. Tc) is, however, narrower than the distributions thick line in Figs. Ta)-7(c). The variances are well de-

for very small and very larga™".

scribed by Eq(33) in regions of the coupling strengtk®

To describe the distribution of the long-lived states inwith all 7,<1.

regions where al.<1 we make the following ansatz, com-
pare Eq.(3):

——E IN(1— 7o) 03 (32

HeregﬁyC for a certainc is a Gaussian distributed vector with
mean zero and variance 1 amgdis the transmission coeffi-
cient defined in Eq(5).

The normalized variance df}, is

(T2— (T2 V25 In(1— o) )2

y . -
I'g

—3. In(1-7y)
(33

(Note thatg?=1 andg*=3,) o},= o™ for the same num-
ber K of open decay channels holds only when &flare
equal. The values calculated from E§3) are shown with a

The values(r{, as a function ofx calculated in the CSM
are similar to those obtained in the RMM. One example is
shown in Fig. 7d) for the caseJ™=2" with K=12 open
channels.

We conclude that in many-body quantum systems, the
distribution of the widths is broader than in the RMM with
equal coupling strength to the channé¢so at small trans-
mission coefficients This result explains the broadening of
the width distribution described in the literature by introduc-
ing an effective numbeK®™ of channels being smaller than
K.

For the case shown in Fig(aj, we have calculated also
kgf, Eqg. (22), as a function of tima with 12 different cou-
pling strengths<™ of the system to the channe(Big. 9).
f=1. In Table | the valuex' andT"y_ for the different
curves are given. All the curves-f, being below the criti-
cal region, differ considerably from one another. Inside the
critical region, the curves for different' (g—i) are, how-
ever, similar to one another.

As aresult, Weakly coupled channels cause a saturation of
the mean valud'y_; as a function of«®. Since the width
distribution ch does not change much, aIk@ saturates in
the long- tlme scale, |ek remains almost unchanged by
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ian part of the coupling ternVopGL'Vpq have the ten-
dency of washing out the differences between the lifetimes
of the group of long-lived trapped states, on the one hand,
and the group of short-lived states, on the other hand.

We studied in detail the widths of thd—j long-lived
trapped states under different conditions. We introduced ad-

s \ ditional channels to which the system is weakly coupled and
ﬁ\ we took into account the Hermitian part fingf;’)\A/pQ in

0.01

o ] HgﬁQ, Eqg. (15). Under the influence of these additional terms
b in the Hamiltonian, the trapped states can increase their
a widths and change their positions in energy. Thus trapped
o 2% s00 750 1000 1250 1500 resonance states may again come close to each other if the
t coupling to the continuum is stronger. The resonance cross-

ing is avoided and accompanied by an essential biorthogo-
nality of the eigenfunctions dfi®" in the same manner as at
smaller coupling strength. As a result of all these processes,
the average width of the states saturates as a function of the
coupling strength to the continuum when an appropriate
number of states with the largest widths is excluded from the
mean value. This number is equal to the number of open
decay channels as long as the real part of the coupling term

VII. CONCLUSION VorGE Ve is small compared to its imaginary part.

In this paper we studied the positions and widths of reso- The Widt_h o_Iistributio_n_of the long-lived states is relaj[e_d to
nance states in a many-body quantum system Witteso- the transmission coefficients. If all transmission coefficients
nance states as a function of increasing coupling stresigth are equal and smaller than one, the widths)gralistributed
to the continuum which consists 8f<N decay channels. In WhereK is the number of channels. In many-body quantum
a critical region of the coupling strength, the system reorgasystems with different coupling strengths to the different de-
nizes itself under the influence of the decay channels. Theay channels, the distribution is broader thagZadistribu-
local process is the avoided crossing of two resonance staté&sn also for small transmission coefficients.
which takes place whenever the distance in energy between The decay rates are related to the mean decay widths of
the states is comparable to the sum of their widths. It ighe long-lived states. This means the decay rates also saturate
accompanied by an essential biorthogonality of the eigenm quantum systems at high level density as a function of the
functions ofH®™. As a result, one state continues to increasq:oup”ng strengthc®®.

in wid_th where_as the other one decrease_s with further in- Summarizing the results we state that resonance trapping
creasing coupling strengtfiesonance trappingFor a sys-  ig 5 reajistic process occurring in many-particle quantum sys-

tem with many states, this leads to a broadening of the W'dttf'ems at high level density. It leads to a saturation of both the

distribution. decay rates and the average decay width of the long-lived

of :/r\]het T/vl;gtr;hgirslt?igﬁ?ff gsg: gl\l,r;? i?]ttrggggg’p:]rzt%g%iiinr;‘ne%tates as well as to a broadening of the width distribution
i .. “and—if the number of open decay channels is not too
scales ifK<N. The smallerK, the better expressed is this { ! u p y I

FIG. 8. kSf' versus timet for K=10 andV2/VZ_,=1,...,0.1
[compare Fig. @)]. The 12 curves are calculated wikf* between

0.1 and 50« andT"y_y for the curves are given in Table I.

varying <™ in the critical region. The saturation is related to
the enlarged width distribution.

.Jarge—to a separation of time scales. That means the decay

separation. Weakly coupled channels as well as the Hermi ‘ates and the decay widths of the long-lived resonance states

show the same behavior not only at low level density but

TABLE I. «"'andTy_ for the different curves in Fig. 8. also at high level density. The saturation is caused in both
o — cases by the finite numb&<N of channels into which the
Curve K -k N resonance states can decay. The application of the stan-
dard random matrix approach to the details of the trapping
a 0.10 0.094 . s
process in an ensemble of resonance states is limited.
b 0.18 0.17 . - .
0.31 0.29 We would like to state once more that the time deexcita-
3 0' 0. tion of resonance states at high level density should be di-
54 Sl rectly measured. The results could make a proof of the phe-
€ 0.96 0.89 nomenon of resonance trapping possible.
f 1.7 1.5
g 3.0 2.6
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