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Generalized force model of traffic dynamics
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Floating car data of car-following behavior in cities were compared to existing microsimulation models,
after their parameters had been calibrated to the experimental data. With these parameter values, additional
simulations have been carried out, e.g., of a moving car which approaches a stopped car. It turned out that, in
order to manage such kinds of situations without producing accidents, improved traffic models are needed.
Good results were obtained with the proposed generalized force ni8d€I63-651X98)15006-7

PACS numbdss): 05.70.Ln, 02.70.Ns, 34.10x, 89.40+k

[. INTRODUCTION rameter has a clear meaning. Moreover, by parameter cali-
bration it turns out that all model parameters have the right

During the last five years, gas-kinefit,2], fluid-dynamic  order of magnitude. Therefore, it can be easily said what the
[1-3], and other models have been developed, aimed at aparameter values will look like, if the speed limit, the accel-
understanding of stop-and-go traffic. The topic is related tceration capability, the average vehicle length, the visibility,
the fields of nonlinear dynamidsg], phase transition§4],  or the reaction time is modifiete.g., due to technical mea-
and stochastic processgs. In addition, microscopic traffic sures. In addition, this model achieves a better fit at a re-
models were proposed for the description of interactingduced number of model parameters than previous models.
driver-vehicle units. They can be classified into cellular au-Finally, the generalized force model manages to cope suc-
tomata model§5], which are discrete in space and time, andcessfully with particular situations like vehicles approaching
continuous model$1,6,7. The latter are required for de- standing cars, in which other models produce accidents.
tailed studies of car-following behavior and traffic instabili-
ties, which are necessary fqr an i_nvestigation of the conse- Il. DISCUSSION OF PREVIOUS MODELS
guences of technical optimization measurés.g., of
autopilots for an automatic control of vehicle acceleration The first microscopic traffic models were developed in the
and braking. 1960s. Many of them are special cases of the follow-the-

Therefore, a research group of the Bosch GmbH has rdeader model proposed by Gazis, Herman, and Rotf&ry
cently recorded follow-the-leader data by means of a floating his assumes that the dynamics of a vehielaith velocity
car « which measured the vehicle speed, the netto dis- v ,(t) at placex,(t) is given by the equation of motion
tances, to the car in front, the acceleratian, of it, and the
relative velocityAv . By a correlation analysis it was dem- dx,(t)
onstrated that, among all possible combinations of subsets of TR, (1)
these four quantities,,, Av,, andv, are the most signifi-
cant variables for the description of vehicle dynam@k In
Sec. Ill, we will find plausible reasons for this.

The follow-the-leader data, if plotted in tlsg-Av , plane,
show the characteristic oscillation of vehicle motion around do,(t+T) t+T D—p (t o
states with relative velocity zer@f. Fig. 1), which was al- dt =K Mva-a(U=va(®] @
ready reported by Hoef®]. Except for the previously men-
tioned significance analysis, the data were also used for cali
brating existing microsimulation models. With the resulting
optimal sets of parameter values, the models were simulate:
for the observed situation. That is, the first vehicle wasz
moved according to its measured velocity, and the following 2
vehicle was simulated according to the respective model un-£
der consideration, starting with the same initial velocity and <
distance as the floating car. The average relative quadratir
deviationD between the simulated and actually measured§
distanceqcf. Eq. (10)] was used as a measure of the good- &
ness of fit of the respective modd].

In order to obtain improved results, we have developed a
generalized force model, in which each term and each pa

and the acceleration equation
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*World Wide Web address: http://www.theo2.physik.uni-  FIG. 1. The follow-the-leader data show the oscillatory nature
stuttgart.de/helbing.html of the relative motion of vehicles.
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According to this, a driver adapts to the velocity 4(t) of .
the car in front, but this is delayed by the adaptation time g
T~1.3 s. The deceleration is proportional to the relative ve- 3,
locity 2
o
>
Av, =0, Vg4 1, ©)
where the proportionality factok reflects the sensitivity to e
the stimulusAv ,. The sensitivity was assumed to depend on g
the vehicle velocity, and on the brutto distance g
é’
Sa:Xafl_Xaa (4) 2
2,
in the following way:
D o(t+T)]™ %
()= g 2D 5 2
[Sa(t)] g
& I
This choice allowed one to fit all equilibrium velocity- T; i
density relations of the form & 4t . . . . . ]
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Ve(p)=vo (6)
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by appropriate specification of the exponehendm (v is

FIG. 2. The time-dependent velocity,(t) (a), distances,(t)
(b), and acceleratiodv ,(t)/dt (c) according to the optimal veloc-

h ; loci h ial hicle d \ d ity model (OVM), the general force moddlGFM), and the T3
the maximum velocity,p the spatial vehicle density, an model in comparison with follow-the-leader data of city traffic. Ac-

Ppmax the maximum vehicle densityThe best fit was reached . qing to(a), most of the models compare well with the measured
for fractional exponentsn~0.8 and1~2.8, so that this yeocities. Only the OVM shows a significant overshooting, indi-
model has no obvious interpretation. Apart from that, thecating too large accelerations. Fitting of the vehicle distances is a
model does not allow one to distinguish drivers with differ- much harder task, as shown (i), but the T3 model and the GFM
ent preferred velocities, and it cannot describe the accelergrerform well. In(c), one can see that the empirical accelerations
tion of a single vehicle correctly. and decelerations are usually limited to the range betwegmnd

Only a few years ago, Bandet al. proposed a very +4 m/g, which is met by the GFM. Note that the vehicles had to
charming microscopic traffic model. Despite its simplicity stop three times due to red traffic lighturing the periods between
and its few parameters, their optimal velocity mo@@vM) 169.9 and 184 s, 233.5 and 253.5 s, and &fte?88 9. At a time
described many properties of real traffic flolg] and is t=143.8 s, the vehicle in front was turning right, so that the second
easily interpretable. It is based on the acceleration equatioar was following another vehicle, afterwards.

dv (1) N
d—:K[V(Sa)_va(t)] ’ (7) i z
N =1

D= (10

s.()—sh(v) | *
Sa(t)
so that the vehicles adapt to a distance-dependent optimal

velocity
of the simulated distancs,(t) from the measured vehicle
V(s,)=V;+V, tanCys,—C>) (8)  distancesy(t). The resulting optimal parameter values for
city traffic in Stuttgart arex=0.85 s, V,=6.75 m/s,V,
with a certain relaxation time= 1/«. Here =7.91 m/s,C;=0.13 m !, andC,=1.57.
A comparison with the data shows that the extremely
Se=Xp-1—Xg— g 1=S,— 1,1 (9) short relaxation timer=1/k=1.17 s results in values of the

acceleration which are too high, which leads to an overshoot-

denotes the netto distance, whdrg means the length of ing of the vehicle velocitycf. Fig. 2Aa)]. The unrealistically
vehicle a. Like the follow-the-leader models, the optimal high accelerations also become obvious in Fig. 3, since em-
velocity model is able to describe the formation of stop-pirical accelerations are limited to 4 rA/f. Fig. 2c)]. A
and-go waves and emergent traffic jams, but it overcomesimilar problem occurs with the deceleration behavior, if a
the aforementioned problems. standing cafe.g., at the end of a traffic jam or in front of a

We carried out a calibration of the optimal velocity model red traffic lighy is approached from a large distance by an
with respect to the empirical follow-the-leader data, whichinitially freely moving car. It turns out that the moving ve-
we obtained from Bleileet al. The optimization procedure hicle reacts too late to the vehicle at rest. The values of
was based on the evolutionary Boltzmann strafgd}, and  deceleration are unrealistic large, but still not sufficient to
the optimization criterion was the average relative quadratiavoid an accidenfcf. Fig. 4).
deviation These problems are solved by thia model
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of many-particle systeni43], e.g., of driven granular media

OVM, Leader
OVM, Follower ----- l (14l , o
T3, Leader ------ 1 Besides various methodological similarities in the theoret-

T3, Follower -~~~ ical treatment of traffic and granular flows, there are also

phenomenological analogies like the formation of density
waves[15]. In both cases, the interactions are dissipative,
i.e., they do not conserve kinetic energy. However, there are
also differences. For granular media, the interaction forces
are short ranged and belong to collision processes, where
particles touch and temporarily deform each other. Vehicle

FIG. 3. Acceleration of an unobstructed vehicle and of a follow-interactions are long ranged and correspond to deceleration
ing vehicle according to the optimal velocity mod€lVM) and the ~ Maneuvers. They are usually not related to collisiires,

Time (s)

T3 model. Initially, both vehicles are at rest. accidenty since the drivers try to keep a safe distarsce
from each other which can be considerably larger than the
dv, 1+byv,+D0,S,+050,5,+bsw, 1+bsv,v, 1 vehicle length[cf. Eq. (16)]. Therefore, the effective space

requirements of vehicles are much larger than their actual
size. Moreover, vehicular interactions do not conserve mo-
(11) mentum(in contrast to granular ongs
Another difference between granular and traffic dynamics
is that the laws of granular interactions are very well known,
é)retty much like the basic laws of physics, whereas the laws
of driver-vehicle dynamicsif they exist at al) are still to be

dt  CotCiv,+CpSy+Ca0 Syt Catg1+CsV gl 1

proposed by Bleileet al. [8]. b, and c, are model param-
eters. The regression modéll), which is based on a rational
function, describes all aspects of vehicle dynamics in citie

realistically (cf. Figs. 2—4, but at the cost of additional pa- ; . ; . 5
rameters. Whereas the optimal velocity model needs OnIestabllshed. The particular challenge of modeling vehicle dy

. : amics is its dependence on factors like perceptions, psycho-

five model parameters, the T3 model contains 11 parameterls. ical o d . 2l behavi Th

If the model equations are scaled to dimensionless equationOg'Cal motivations and reactions, or social behaviors. Thus,
. . . AUONS contrast to physical processes, driver behavior cannot be

(by scaling space or velocity and time by characteristic

o ; expected to be describable by a few natural constants.
model quantities the number of parameters is reduced by 2. . )
. : ) According to the social force concept, the amount and
In Sec. Il, we will propose an alternative model which

reaches about the same goodness of fit as the T3 model, b(EII ection of a behavioral chanddere the temporal change

with a considerably smaller number of parameters Of velocity, i.e., the accelerations given by a sum of gen-
y P ' eralized forces. These reflect the different motivations which
an individual feels at the same time, e.g., in response to their

Ill. GENERALIZED FORCE MODEL respective environment. Since these forces do not fulffill

Motivated by the success of so-called social force modelQEWton’s laws Iikea}ctio = reactiq they are cal!ecgeneral-
in the description of behavioral chanddd,1], especially of |z_ed forcesAIternatlver, they are namekiehawora_llor_ S0-
pedestrian dynamickL2,1], we developed a related model Ci@l forces since they mostly correspond to social interac-
for the dynamics of interacting vehicles. In setting up antions. The success of this approach in describing traffic
equation of motion by specifying the effective accelerationdYamics is based on the fact that driver reactions to typical
and deceleration forces, the approach is analogous to t [pffic situations are more or less automatic and determined
molecular-dynamics method which is used for the simulatiorPY € Optimal behavioral strategwhich is the results of an
initial learning process A detailed motivation, description,

and discussion of the social force concept was given in Refs.

18 — : : : .
O S OWM — 1 [11,1,13
A e REN GFTI\?[ A The driver behavior is mainly given by the motivation to
> 10 ~ b . . . . .
g 8 1 reach a certain desired velocity, (which will be reflected
§ 2 L "'\‘; 1 by an acceleration forcé;), and by the motivation to keep a
6 L@ s s Se e safe distance from other caBs(which will be described by
0 10 20 30 40 50 repulsive interaction forces, z):
N/; 1 T T T T T dU
§ O gt =Tt 2 fapevaiXpp) e - (12
g 3
£ 4t The fluctuating forceé,(t) may be used to include indi-
g :g [ (b) vidual variations of driver behavior, but in our present inves-
< 7 : : : tigations it was set to zero. If we assume that the acceleration
0 10 20 30

force is proportional to the difference between the desired
Time () and actual velocity, and suppose that the most important in-

FIG. 4. Time-dependent velocity ,(t) (8) and acceleration teraction concems the car(-1) in front, we end up with

dv,(t)/dt (b) for a vehicle which approaches a standing vehicle do o_,
according to the different simulation models discussed. The optimal A foac1(XgVaiXao10a-1) - (13
velocity model produces an accident at titre34.7 s. dt Ta '
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TABLE I. Minimal values of the average relative deviatién
between empirical data and simulation results that were reached for
the different traffic models by evolutionary parameter optimization.

1 Model OVvM T3 GFM

Stationary Velocity (m/s)
ko fk
=Y S N R S S RN N

o D 0.0586 0.0354 0.0316
. GFM -
0 40 50 60
Netto Distance (m) order of magnitude. A calibration with respect to the follow-

o ) ) ] the-leader data shows that this is indeed the case. We found
FIG. 5. Velocity-distance relations of the different traffic models o following optimal parameter values® = 16.98 m/s.7
in the stationary case, if all vehicles have identical parameters.  _, /o' 4 — 138 m T =074 s+ =0 7"7 S R. _s 59’ r;‘;

The acceleration time,, is a third of the time which a freely andR,=98.78 m. Now the acceleration timg is more than

accelerating vehicle needs to reach 95% of the desired vdWice as large as in the optimal velocity model, the braking
locity. time 7., is smaller thanr,, as demanded, and the reaction

Now we have to specify the interaction forég,_,. For ~ fimeT, is also realistic. Note that the rang, of the accel-
’ eration interaction is much shorter than the rafjeof the
V(sa)—vg deceleration interaction. This is not only sensible, it is also
@a-1T T (14)  the reason for the astonishingly good agreement with the
“ empirical data. Table | compares the minimal values of the
and 7,=1/k, we would again obtain the optimal velocity average relative quadratic deviatibnthat could be reached
model. We extend this relation by a complementary ternfor the different discussed traffic models by evolutionary pa-
which should guarantee early enough and sufficient braking@meter optimizatior{10]. (The advantage of the applied
in cases of large relative velocitiesv, . This term should Boltzmann strategy is that this particular gradient method
increase with growing velocity differenckv ,, but it should ~ €scapes local minima by means of a fluctuation term with
be only effective if the velocity of the following vehicle is €ventually decreasing variange. ' _ '
larger than that of the leading vehicle, i.e., if the Heaviside It turns out that the optimal velocity model is consider-
function ®(Av,) is equal to 1. Moreover, the additional ably improved by the T3 model. This is not surprising, since
deceleration term should increase with decreasing distandg€ goodness of fit should increase with the number of model

s, but vanish for large distance,— . The braking time Parameters. Nevertheless, the generalized force model
7 belonging to this term should be smaller thap, since reaches the best agreement with the data, although it includes

deceleration capabilities of vehicles are greater than acceRNY two third of the number of parameters of the T3 model.

eration capabilities. We chose the following formula which The Simulation results for the generalized force model are
meets the above conditions: depicted in Fig. 2. Finally, the representation of the relative

vehicle movement in thdv ,-s, plane shows the expected

f

V(s,) —v° Av O(Av,) , oscillatory character of the follow-the-leader behavior, which
foq = —= - . e [s.7swJVR, = (15)  can cause the development of stop-and-go trééficFig. 6).
Ta Ta In comparison with physical models, the generalized force

) ) ) model still seems to contain a lot of parameters. However, let
This formula takes into account that vehicles prefer to keep &g discuss this in more detail for the previously mentioned
certain velocity-dependent safe distance

S(v,)=d,+ T, v,, (16) 4
whered,, is the minimal vehicle distance, afg, is the safe 3r
time headwayi.e., about the reaction timeR! can be in- 2z ,|

S o = 2
terpreted as range of the braking interaction. =
We can further reduce the number of parametersl the § 1}
numerical effor}, if we replace the previoug(s,) function ©
(8) by o O
g
Vo(Sg104) =02 1— e[S Sl Re) an &

In the case of identical model parameters of all vehicles, the
corresponding equilibrium velocity-distance relation results 3
from the implicit conditionv ,=V (s, ,v,), and is depicted

in Fig. 5.

The traffic model defined by EqéL3), (15), and(17) will, FIG. 6. The simulation of the follow-the-leader behavior accord-
in the following, be called theyeneralized force modedf  ing to the generalized force model shows the oscillatory nature of
traffic dynamics(GFM). Since all its seven parameters havethe relative motion of vehicles. The above result is in good agree-
a clear and measurable meaning, they should have the rightent with the empirical findings depicted in Fig. 1.
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Netto Distance (im)
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molecular-dynamic models of granular media. If we want tostronger the closer the vehicles come to each other. There-
describe interactions of smooth, inelastic, and sphericdiore, the limiting cases of the generalized force model be-
grains only, we need to know the particle size and the normahave very reasonably.

restitution coefficient related to translational energy dissipa-

tion. In cases of rough spheres, we require two additional IV. SUMMARY AND DISCUSSION

parameters: a tangential restitution coefficient and a friction \ye have calibrated several microscopic traffic models to
coefficient[16]. Moreover, if the grains are nonspherical, the city traffic, compared them with empirical follow-the-leader
situation becomes even more complicated. In conclusion, thgata, and investigated their properties. It turned out that one
small number of parameters occurring in physical models arenodel showed accelerations and decelerations that were too
often a result of simplifications and idealizations. large, but nevertheless caused accidents in certain situations.
Finally, let us check the plausibility of the generalized Another model was a regression model, so that the meaning
force model. In order to do this, we rewrite the model in theof the model and its parameters was not clear. Therefore, we

form developed the generalized force model, which reached the
best agreement with the empirical data, although it had only
dv, Vi(Se,va, Avy)—v4(t) two parameters more than the optimal velocity model and
— = ; (18 four parameters less than the T3 model. Another advantage
dt 7'* . . .
@ of the generalized force model is that all its parameters are

easily interpretable and have the expected order of magni-
tude. Therefore, it can be immediately stated how the param-
1 1 0(Auy eters will differ between fast cars, slow cars, and trugks
i i (19) latter being characterized by smaﬂ, but larger, and 7).
7n  Ta T It can also be predicted what happens if the speed lingit,
vg) is changed, if the weather conditions are kaikaterr,,
and but smallerv? andR.), if roads are used by vehicles with
, smaller lengthl ,, if the reaction timeT, is reduced(by
o TaVaT 7080, )1 0  Means of technical measures like an autopilefc. For these
a4 O(Av,) ; (20 reasons, the generalized force model is an ideal tool for car-
« e * rying out detail studies of traffic flow, as well as for devel-
where oping and testing traffic optimization measures.
The simulation of large vehicle numbers is completely
=1 exp[Se—S(va)/RL} . (21)  analogous to molecular-dynamic simulation studies of many-
particle systems, e.g., of granular flows. The parameters of
For small velocity differencedv , or large distances,, we  the different driver-vehicle units are specified individually
find (a dependent then. In this case, one would specify typical
parameter values of fast cars, slow cars, and trucks, and their
respective percentages. Alternatively, one could introduce a
distribution of each parametée.g., a Gaussian oparound
a typical value. Then the simulation is started with the initial
so that vehicles try to approach the optimal veloaitywith ~ and boundary conditions of interest. Of course, the model
a relaxation timer, . This corresponds to the optimal veloc- can be also extended to a multi-lane model with lane-
ity model, but with a velocity-dependent function changing and overtaking maneuvetsl?|. This is a topic of
V,.(S..,v,). If a vehicle is faster than the leading vehicle current research.
(i.e.,Av,>0), and its distance is sufficiently small, we have

with

dt T

dva(t) Va(salva)_va(t) , (22)

[e3
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