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Smoothing of sandpile surfaces after intermittent and continuous avalanches:
Three models in search of an experiment
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We present and analyze in this paper three models of coupled continuum equations all united by a common
theme: the intuitive notion that sandpile surfaces are left smoother by the propagation of avalanches across
them. Two of these concern smoothing at the ‘‘bare’’ interface, appropriate to intermittent avalanche flow,
while one of them models smoothing at the effective surface defined by a cloud of flowing grains across the
‘‘bare’’ interface, which is appropriate to the regime where avalanches flow continuously across the sandpile.
@S1063-651X~98!07205-5#

PACS number~s!: 05.40.1j, 05.70.Ln, 46.10.1z, 64.60.Ht
s

ng

ig
le
st

n

s
n

ds
ow
dg
th

th
on
n

h
ur

pu

ers
er,
ates

lope.
less
rast,
ava-
sur-

e
cter-
or

ake
In

nu-
en
her

m
s

ill
de-
ins
g
-

otic
is
ec-
cies
en-

ual

sto

s
.K
I. INTRODUCTION

The dynamics of sandpiles have intrigued researcher
physics over recent years@1,2# with a great deal of effort
being devoted to the development of techniques involvi
for instance, cellular automata@3,4#, continuum equations
@5–7#, and Monte Carlo schemes@8# to investigate this very
complex subject. However, what have often been lost s
of in all this complexity are some of the extremely simp
phenomena that are exhibited by granular media, which
remain unexplained.

One such phenomenon is that of the smoothing of a sa
pile surface after the propagation of an avalanche@9#. It is
clear what happens physically: an avalanche provide
means of shaving off roughness from the surface of a sa
pile by transferring grains from bumps to available voi
@2,4#, and thus leaves in its wake a smoother surface. H
ever, surprisingly, researchers have not to our knowle
come up with models of sandpiles that have exhibited
behavior.

In particular what has not attracted enough attention in
literature is the qualitative difference between the situati
that are obtained when sandpiles exhibit intermittent a
continuous avalanches@10#. In this paper we examine bot
of the latter situations, via distinct models of sandpile s
faces.

A particular experimental paradigm that we choose to
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our discussions in context is that of sand in rotating cylind
@11,12#. In the case when sand is rotated slowly in a cylind
intermittent avalanching is observed; thus sand accumul
in part of the cylinder to beyond its angle of repose@13# and
is then released via an avalanche process across the s
This happens intermittently, since the rotation speed is
than the characteristic time between avalanches. By cont
when the rotation speed exceeds the time between
lanches, we see continuous avalanching on the sandpile
face. Though this phenomenon has been observed@13# and
analyzed physically@10# in terms of avalanche statistics, w
are not aware of measurements which measure the chara
istics of the resulting surface in terms of its smoothness
otherwise.

What we focus on here is precisely this aspect, and m
predictions that we hope will be tested experimentally.
order to discuss this, we introduce first the notion that gra
lar dynamics is well described by the competition betwe
the dynamics of grains moving independently of each ot
and that of their collective motion within clusters@2#. A con-
venient way of representing this is via coupled continuu
equations with a specific coupling between mobile grainr
and clustersh on the surface of a sandpile@5#. In the regime
of intermittent avalanching, we expect that the interface w
be the one defined by the ‘‘bare’’ surface, i.e., the one
fined by the relatively immobile clusters across which gra
flow intermittently. This then implies that the roughenin
characteristics of theh profile should be examined. The sim
plest of the three models we discuss in this paper~an exactly
solvable model referred to hereafter as caseA) as well as the
most complex one~referred to hereafter as caseC) treat this
situation, where we obtain in both cases an asympt
smoothing behavior inh. When, on the other hand, there
continuous avalanching, the flowing grains provide an eff
tive film across the bare surface and it is therefore the spe
r that should be analyzed for spatial and temporal rough
ing. In the model hereafter referred to as caseB we look at
this situation, and obtain the surprising result of a grad

n,

ent
.
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PRE 58 1267SMOOTHING OF SANDPILE SURFACES AFTER . . .
crossover between purely diffusive behavior and hyp
smooth behavior. In each case we present analytical re
pertaining to the continuum models and compare the pre
tions so obtained with the results obtained by numer
simulations of the corresponding discretized equations.

In general, the complexity of sandpile dynamics leads
to equations that are coupled, nonlinear, and noisy: th
equations present challenges to the theoretical physicis
more ways than the obvious ones that pertain to their
tailed analysis and/or their numerical solutions. In particu
our analysis of caseC reveals the presence of hidden leng
scales whose existence was suspected analytically, bu
demonstrated numerically in earlier work@5,14#.

The normal procedure for probing temporal and spa
roughening in interface problems is to determine
asymptotic behavior of the interfacial width with respect
time and space, via the single Fourier transform. Here o
one of the variables, (x,t), is integrated over in Fourie
space, and appropriate scaling relations are invoked to d
mine the critical exponents that govern this behavior. Ho
ever, it turns out that this leads to ambiguities for tho
classes of problems where there is an absence of simple
ing, or to be more specific, where multiple length scales
ist. In such cases we demonstrate that the double Fou
transform~where both time and space are integrated ove!
yields insights that are harder to obtain via the single Fou
transform.

This point is illustrated by caseA, an exactly solvable
model that we introduce; we then use it to understand c
C, a nonlinear model where our analytical results are clea
only approximations to the truth.

In order to make some of these ideas more concrete
now review some general facts about rough interfaces@15#.
Three critical exponents,a, b, andz, characterize the spatia
and temporal scaling behavior of a rough interface. They
conveniently defined by considering the~connected! two-
point correlation function of the heights

S~x2x8,t2t8!5^h~x,t !h~x8,t8!&2^h~x,t !&^h~x8,t8!&.
~1!

We have

S~x,0!;uxu2a ~ uxu→`! and S~0,t !;utu2b ~ utu→`!,

and more generally

S~x,t !'uxu2aF~ utu/uxuz!

in the whole long-distance scaling regime (x and t large!.
The scaling functionF is universal in the usual sense;a and
z5a/b are respectively referred to as the roughness ex
nent and the dynamical exponent of the problem. In addit
we have for the full structure factor, which is the doub
Fourier transformS(k,v),

S~k,v!;v21k2122aF~v/kz!,

which gives in the limit of smallk andv,

S~k,v50!;k2122a2z~k→0! and

S~k50,v!;v2122b21/z ~v→0!. ~2!
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The scaling relations for the corresponding single Fou
transforms are

S~k,t50!;k2122a~k→0! and

S~x50,v!;v2122b ~v→0!. ~3!

In particular we note that the scaling relations forS(k,v)
@Eq. ~2!# always involve the simultaneous presence ofa and
b, whereas those corresponding toS(x,v) and S(k,t) in-
volve these exponentsindividually. Thus, in order to evalu-
ate the double Fourier transforms, we need in each case
formation from the growing as well as the saturated interfa
~the former being necessary forb and the latter fora)
whereas for the single Fourier transforms, we need only
formation from the saturated interface forS(k,t50) and in-
formation from the growing interface forS(x50,v). On the
other hand, the information that we will get out of the doub
Fourier transform will provide a more unambiguous pictu
in the case where multiple length scales are present, so
thing that cannot easily be obtained in every case with
single Fourier transform.

In Secs. II, III, and IV we present, analyze, and discu
the results of casesA, B, and C, respectively. Finally, in
Sec. V, we reflect on the unifying features of these mod
and make some educated guesses on the dynamical beh
of real sandpile surfaces.

II. CASE A: THE EDWARDS-WILKINSON EQUATION
WITH FLOW

Our first model involves a pair of linear coupled equ
tions, where the equation governing the evolution of clust
~‘‘stuck’’ grains! h is closely related to the very well-know
Edwards-Wilkinson~EW! model @16#. The equations are

]h~x,t !

]t
5Dh¹2h~x,t !1c¹h~x,t !1h~x,t !, ~4a!

]r~x,t !

]t
5Dr¹2r~x,t !2c¹h~x,t !, ~4b!

where the first of the equations describes the heighth(x,t) of
the sandpile surface at (x,t) measured from some mean^h&,
and is precisely the EW equation in the presence of the fl
term c¹h. The second equation describes the evolution
flowing grains, wherer(x,t) is the local density of such
grains at any point (x,t). As usual, the noiseh(x,t) is taken
to be Gaussian so that

^h~x,t !h~x8,t8!&5D2d~x2x8!d~ t2t8!,

with D the strength of the noise. Here,^•••) refers to an
average over space as well as over noise.

A. Analysis of the decoupled equation inh

For the purposes of analysis, we focus on the first of
two coupled equations@Eq. ~4a!# presented above,

]h

]t
5Dh¹2h1c¹h1h~x,t !
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FIG. 1. The correlation functionSh(ki ,v) against v for three different wave vectorsk150.02 (L), k250.08 (1), and k3

50.12 (h) with parametersc52.0, Dh51.0, and D251.0. The positions of the peaks are given byv150.04, v250.16, and
v350.24 as expected from Eq.~5!.
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noting that this equation is essentially decoupled from
second.~This statement is, however, not true in rever
which has implications to be discussed later.! We note that
this is entirely equivalent to the Edwards-Wilkinson equat
@16# in a frame moving with velocityc,

x85x1ct, t85t,

and we would on these grounds expect to find only the w
known EW exponentsa50.5 andb50.25 @16#. This would
be verified by naive single Fourier transform analysis of E
~4a! which yields these exponents via Eq.~3!.

Equation ~4a! can be solved exactly as follows. Th
propagatorG(k,v) is

Gh~k,v!5~2 iv1Dhk21 ikc!21.

This can be used to evaluate the structure factor

Sh~k,v!5
^h~k,v!h~k8,v8!&

d~k1k8!d~v1v8!
,

which is the Fourier transform of the full correlation functio
Sh(x2x8,t2t8) defined by Eq. ~1!. The solution for
Sh(k,v) so obtained is

Sh~k,v!5
D2

~v2ck!21Dh
2k4

. ~5!

This is illustrated in Fig. 1 while representative graphs
Sh(k,v50) andSh(k50,v) are presented in Figs. 2 and
respectively. Before proceeding further, we make the follo
ing observation about the double Fourier transfo
Sh(k50,v); this shows anv22 behavior coming from Eq.
~5!, which we will also see later. We mention here that t
ubiquity of this v22 arises from the form of the scalin
relation Eq. ~2!, which is relevant for frequenciesv,vc
'kzh, whereas forv.vc the high frequency behavior take
e
,

l-

.

r

-

over givingv22 @cf. Eq. ~A2! in the Appendix#. As k50 for
the purposes of calculation of this structure factor, it is
ways the high frequency behavior that dominates, leadin
the ubiquity ofv22 whenever it is measured.

It is obvious from Eq.~5! that Sh(k,v) does not show
simple scaling. More explicitly, if we write

Sh
21~k,v50!5

v0
2

D2S k

k0
D 2F11S k

k0
D 2G

with k05c/Dh , andv05c2/Dh , we see that there are tw
limiting cases :

~i! for k@k0, Sh
21(k,v50);k4; using again Sh

21(k
50,v);v2, we obtainah51/2 andbh51/4, zh52
via Eqs.~2!.

~ii ! for k!k0, Sh
21(k,v50);k2; using the fact that the

limit Sh
21(k50,v) is always v2, this is consistent

with the set of exponentsah50, bh50, andzh51
via Eqs.~2!.

The first of these contains no surprises, being the nor
EW fixed point @16#, while the second represents a ne
‘‘smoothing’’ fixed point.

We now explain this smoothing fixed point via a simp
physical picture. The competition between the two terms
Eq. ~4a! determines the nature of the fixed point observ
when the diffusive term dominates the flow term, the cano
cal EW fixed point is obtained, in the limit of large wav
vectorsk. On the contrary, when the flow term predominat
the effect of diffusion is suppressed by that of a travel
wave whose net result is to penalize large slopes; this le
to the smoothing fixed point obtained in the case of sm
wave vectorsk. We emphasize, however, that this is a t
model of smoothing, which will be used to illuminate th
discussion of modelsB andC below.
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FIG. 2. The double Fourier transform,Sh(k,v50) obtained from Eq.~4! ~Case A!, plotted on a log-log scale to show the crossover fro
k22 at low wave vectors tok24 at high wave vectors. The different markers in the figure correspond to different grid sizesDx to sample
distinct regions ofk space; thus the markersn andh correspond to decreasing grid sizes and increasing wave-vector ranges. The para
used in the calculation arec5Dh5D251.0 and the characteristic wave vector isk05c/Dh51.0. The dashed line is a plot of the theoretic
Sh(k,v50) for Case A with appropriate parameters, to serve as a guide to the eye.
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B. Coupled equations: A model of smoothing

We realize from the above that the interfaceh is
smoothed because of the action of the flow term, which
nalizes the sustenance of finite gradients¹h in Eq. ~4a!.
However, Eq.~4a! is effectively decoupled from Eq.~4b!,
while Eq.~4b! is manifestly coupled to Eq.~4a!. In order for
the coupled Eqs.~4! to qualify as a valid model of sandpil
dynamics, we would need to ensure that no instabilities
generated in either of these by the coupling termc¹h.

In this spirit, we look first at the value ofr averaged over
the sandpile, as a function of time@Fig. 4~a!#. We observe
-

re

that the incursions of̂r& into negative values are limited t
relatively small values, suggesting that the addition of a c
stant background ofr exceeding this negative value wou
render the coupled system meaningful, at least to a first
proximation. In order to ensure that this average does
involve wild fluctuations, we examine the fluctuations inr,
viz., A^r2&2^r&2 @Fig. 4~b!#. The trends in that figure indi-
cate that this quantity appears to saturate, at least up to c
putationally accessible times. Finally we look at themini-
mumandmaximumvalue ofr at any point in the pile over a
large range of times@Fig. 4~c!#; this appears to be bounde
t
e

FIG. 3. The double Fourier transformSh(k50,v) vs v obtained from Eq.~4! ~Case A! plotted on a log-log scale. The differen
markers in the figure correspond to different grid sizesDt to sample distinct regions ofv space, as in Fig. 2. The solid line is a plot of th
theoreticalSh(k50,v);v22 for case A with appropriate parameters, to serve as a guide to the eye. The parameters arec5Dh5D251.0.



ple

1270 PRE 58BISWAS, MAJUMDAR, MEHTA, AND BHATTACHARJEE
FIG. 4. ~a! The behavior of̂ r(t)& as a function of timet. Here ^r(t)& is the average over the sandpile surface of 100 sam
configurations. The grid sizeDt50.005 andc5D25Dh51.0. ~b! The root mean square widthr rms(t)5(^r2&2^r&2)1/2 against timet over
100 sample configurations with parametersc5D25Dr5Dh51.0. ~c! The variation ofrmax(t) andrmin(t) with time t. rmax(t) andrmin(t) are
respectively the maximum and minimum values ofr for a given configuration of the sandpile at timet. Again, c5Dh5Dr5D251.0.
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by a modest~negative! value of ‘‘bare’’ r. Our conclusions
are thus that the fluctuations inr saturate at computationall
accessible times and that the negativity of the fluctuation
r can always be handled by starting with a constantr0, a
constant ‘‘background’’ of flowing grains, which is mor
positive than the largest negative fluctuation.

Physically, then, the above implies that at least in
presence of a constant large densityr0 of flowing grains, it is
possible to induce the level of smoothing corresponding
the fixed pointa5b50. This model is thus one of the sim
plest possible ways in which one can obtain a representa
of the smoothing of the ‘‘bare surface’’ that is frequent
observed in experiments on real sandpiles after intermit
avalanche propagation@9#.

III. CASE B: A SIMPLE FORM OF COUPLING,
WITH COMPLEX CONSEQUENCES

Our model equations, first presented in@5#, involve a
simple coupling between the speciesh and r, where the
transfer between the species occurs only in the presenc
the flowing grains and is therefore relevant to the regime
continuous avalanching when the duration of the avalanc
is large compared to the time between them. The equati
are

]h~x,t !

]t
5Dh¹2h~x,t !2T~h,r!1hh~x,t !, ~6a!

]r~x,t !

]t
5Dr¹2r~x,t !1T~h,r!1hr~x,t !, ~6b!

T~h,r!52mr~¹h!, ~6c!

where the termshh(x,t) and hr(x,t) represent Gaussia
white noise as usual:

^hh~x,t !hh~x8,t8!&5Dh
2d~x2x8!d~ t2t8!,

^hr~x,t !hr~x8,t8!&5Dr
2d~x2x8!d~ t2t8!,

and ^•••& stands for average over space as well as noise
A simple physical picture of the coupling or ‘‘transfer

term T(h,r) betweenh and r is the following: flowing
grains are added in proportion to their local density to
gions of the interface that are at less than the critical slo
and vice versa,provided that the local density of flowin
grains is always nonzero. This form of interaction become
zero in the absence of a finite density of flowing grainsr
~when the equations become decoupled! and is thus the sim-
plest form appropriate to the situation of continuous a
lanching in sandpiles. We analyze in the following the p
files of h andr consequent on this form.

It turns out that a singularity discovered by Edwards@18#
three decades ago in the context of fluid turbulence is pre
in models with a particular form of the transfer termT; the
above is one example, while another example is the mo
due to Bouchaudet al. ~BCRE! @7#, where

T52n¹h2mr~¹h!
in
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and the noise is present only in the equation of motion forh.
This singularity, the so-called infrared divergence, larg
controls the dynamics and produces unexpected expone

A. Theoretical analysis

We carry out first the theoretical analysis of Eqs.~6!. An
examination of the above equations reveals the presenc
two likely length scales in each, one associated with the
fusive motion, and the other with the so-called transfer te
T(h,r), representing the coupling between the two spec
In these circumstances, a renormalization group anal
would clearly be inappropriate due to the breakdown
simple scaling. In recent years, however, a self-consis
mode coupling analysis used hitherto in dynamic critic
phenomena@19# has been used to look at, in particular, t
Kardar-Parisi-Zhang~KPZ! equation@17,20# and we extend
its use to the case of the coupled equations presented h

In this method we set up equations~to one-loop order! for
the correlation functions, and self-energies in terms of
full Green’s functions, correlation functions, and vertices u
ing assumed scaling forms for each. The critical exponenta
and b defined above are obtained from the self-consist
solutions of these equations usingDh5Dr .

Focusing on theh variable to start with, we define th
Green’s functions and the correlation functions of theh and
r variables

Gh~k,v!5K dh~k,v!

dh~k8,V!
L 1

d~k1k8!d~v1V!
,

Gr~k,v!5K dr~k,v!

dh~k8,V!
L 1

d~k1k8!d~v1V!
,

Sh~k,v!5
^h~k,v!h~k8,V!&

d~k1k8!d~v1V!
,

Sr~k,v!5
^r~k,v!r~k8,V!&

d~k1k8!d~v1V!
.

The analysis of these functions will be in terms of a we
scaling hypothesis, which states

Gh~k,v!5k2zhf hS v

kzh
,

v

kzr
D ,

Gr~k,v!5k2zr f rS v

kzh
,

v

kzr
D .

A strong scaling would imply the existence of a single tim
scale, i.e.,zh5zr . As we show below, this cannot be th
case here. The absence of strong scaling implies that
roughness exponentsah andar may become functions ofk.

We consider the full Green’s functionGh(k,v), which is
given via the well-known Dyson equation@21#,

Gh
21~k,v!5Gh

021~k,v!1Sh~k,v!.

Here, the zeroth order Green’s function is
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Gh
0~k,v!5~2 iv1k2!21.

The scaling forms of the functionsGh(k,v) andSh(k,v) are
given by, in the limitv→0,

Gh~k,v!;
1

iv1k21kzh
,

of
rm
e

ica
e
th
n

e
e
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tit

te

ok

l

Sh~k,v!;
1

k112ah2zh
S 1

v21k2zh
D .

Similar scaling relations hold for the speciesr.
To one-loop order, the self-energySh(k) is given by@Fig.

5~b!#
Sh~k,v!5m2E dq

2pE dV

2p
Gh~k2q,v2V!Sr~q,V!k~k2q! ~7a!

;m2E dq

2pE dV

2p F 1

i ~v2V!1Sh~k2q,v2V!Gk~k2q!

q112ar
F 2Sr~q,V!

V21uSr~q,V!u2
G , ~7b!
o-

ce.

for

ion

ur
where the second line follows from the first in the limit
small V. We note that due to the presence of the te
q2122ar, the integral is dominated by the singularity in th
integrand atq→0. This ‘‘infrared divergence,’’ which re-
sults from the divergence of theinternal momentaq, is very
different from the usual divergences encountered in crit
phenomena where the latter occur for small wave numb
and are associated with long wavelength instabilities in
external momenta. In this case due to the infrared diverge
in the above equation in the internal momentaq, the integral
divergesfor any value of the external momenta k, so long as
ar.0.

We thus need either to evaluate the integral with a low
cutoff k0 or to introduce a suitable regulator. We follow th
first of these procedures for the above equation, and the
ond of the procedures to do with the corresponding quan
Sr(k,v), for r.

We then proceed to evaluate the self-energy at zero ex
nal frequency, i.e.,Sh(k,v50) from Eq.~7a!. As q→0 we
can approximateGh(k2q,2V) by

Gh
21~k,2V!5 iV1k21Sh~k,2V!

'k21Sh~k,0!,

where the second line follows from the fact that we are lo
ing at theq.0 limit of the internal frequencyV;qzh. As
Sh(k,0);kzh, the smallk behavior ofGh(k) is dominated by
Sh(k) for zh,2, i.e.,

Gh
21~k!;Sh~k!.

The integral in Eq.~7a! becomes in the limit of zero externa
frequencies

Sh~k!5
m2k2

Sh~k!
E dq

2pE dV

2p
Sr~q,V!.

Using the scaling form for the single Fourier transform@Eq.
~3!# we find
l
rs
e
ce

r

c-
y,

r-

-

Sh~k!5m2k2Sh~k!21CrE dq

2p

1

q112ar
.

We now have to evaluate the integral by cutting off the m
mentum integration atk0!1, i.e., we follow the first of the
procedures given above to handle the infrared divergen
This gives, after some simplification,

Sh
2~k!5m2k2

k0
22arCr

4par
.

From the above equation with the scaling relationSh(k)
;kzh we find, on equating powers ofk,

zh51.

We note here that the presence of the termr¹h could in
principle cause the vertexm to renormalize, leading to a
correction tozh . In these circumstances, the expression
the self-energySh(k,v50) is given by

Sh~k,v50!5m2E dq

2pE dV

2p
G3~k,q,k2q!

3Gh~k2q,2V!Sr~q,V!k~k2q!, ~8!

where we have introduced a three-point vertex funct
G3(k,q,k2q) in Eq. ~7a!. Assuming that asq→0, we can
write the asymptotic form for the three-point vertex as

G3~k,q,k2q!;kxm ~9!

we find

zh511
xm

2
.

In the event that numerical results suggestzhÞ1 we will
have to incorporate this new renormalized vertex into o
calculations.

Next we examine the correlation function forh, Sh(k,v),
which to one-loop order is given by@Fig. 6~a!#
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Sh~k,v!5
1

v21uSh~k,v!u2 F11m2E dq

2pE dV

2p Uk2qU2

3Sh~k2q,v2V!Sr~q,V!G ~10a!

'
1

v21uSh~k,v!u2 F11m2E dq

2pE dV

2p

3
uk2qu2

uk2qu112ah

1

q112ar
S 2Sr~q,V!

V21uSr~q,V!u2
D

3S 2Sh~k2q,v2V!

~v2V!21uSh~k2q,v2V!u2D G ~10b!

'
1

v21uSh~k,v!u2 F11m2E dq

2p

uk2qu122ah

q112ar

3S Sr~q!1Sh~k2q!

v21„Sr~q!1Sh~k2q!…2
D G . ~10c!

The frequency-dependent self-energySh(k,v) in the above

FIG. 5. One-loop diagrams for~a! Sr(k,v), the self-energy in
r, ~b! Sh(k,v), the self-energy inh for the coupled equations o
caseB @Eq. ~6!#. ~c! The glossary for the diagrams shown in~a! and
~b! and Fig. 6. For example, the propagators for theh andr vari-
ables are represented by solid and dashed lines, respectively, w
right arrow. Additionally there are diagrammatic definitions for t
vertex and for the correlation functions for theh andr variables.
is given by evaluating the integral over the internal fr
quencyV in Eq. ~7b!. This leads to

Sh~k,v!'m2E dq

2p

k~k2q!

q112ar

A

2 iv1Sr~q!1Sh~k2q!

~11a!

'm2
A

4par

k2k0
22ar

2 iv1G0k
~11b!

'
G0

2k2

2 iv1G0k
, ~11c!

where G05mk0
2arAA/4par, and the second line in the

above follows from taking aq→0 limit and introducing a
cutoff wave vectork0 in the integral on the first line. Intro-
ducing this expression forSh(k,v) in Eq. ~10b! and recog-
nizing that the divergence due toq2(112ar) dominates the
integral we find

Sh~k,v!5S v21
G0

4k4

v21G0
2k2D 21

3F11
m2Cr

4par
k0

22ar
k2

k112ah

G0k

v21G0
2k2G .

~12!

On integrating with respect tov we can write the structure
factor Sh(k,t50) as

h a

FIG. 6. One-loop diagrams for~a! Sh(k,v), theh2h correlation
function,~b! Sr(k,v), ther2r correlation function for the coupled
equations of caseB @Eq. ~6!#.
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Sh~k,t50![E Sh~k,v!
dv

2p
5

A0

k
1

B0

k112ah
. ~13!

Recognizing that the scaling form ofSh(k,t50)
;k2122ah, we notice thatah cannot in general be dete
mined from Eq.~13!. This is because the second term on t
right-hand side of Eq.~13! dominates at small momentak
providedah.0, indicating thatah is indeterminate to this
order of calculation.

We turn now to the critical exponents inr. The single
loop self-energySr(k,v) is given as shown in Fig. 7~a! by

Sr~k,v50!52m2E dq

2pE dV

2p
Gr~k2q,2V!Sh~q,V!q2.

~14!

Inserting the expressions forGr(k2q,v2V) andSh(q,V)
we find

Sr~k,v50!52m2E dq

2pE dV

2p F 1

iV1uk2quzrG
3F 2qzh

V21q2zh
G q2

q112ah
.

This gives, on performing the integral over internal fr
quencyV,

Sr~k,v50!52m2E dq

2p

q2

q112ah

1

uk2quzr1qzh
.

In order to discuss this further in the context ofzr , we need
to make a statement aboutah andzh . We have already ob
tained zh51 in the foregoing and will now quote our nu
merical result forah , viz., ah50.5. For smallk the self-
energy can then be written as

Sr~k,v!.2m2F E dq

2p

1

~q1qzr!

1zrkE dq

2p

1

~q1qzr!~q1q2zr!
G .

We see from the above thatSr(k,0), the relaxation rate forr
fluctuations, is negative and finite ask→0, and we need to
add a positive constant,S0, to the self-energy@S0.uSr(k
→0)u# for regulatory purposes. This divergence in the rela
ation rate, needing regulation, is reflected in the diverge
we have encountered in our numerical investigations bel
we have there followed an analogous procedure by introd
ing a numerical regulator that replaces divergent values
the transfer term by suitably defined cutoffs@5#. The result-
ing constancy ofSr implies zr'0 for the regulated equa
tions and will be used in the following.

The correlation functionSr(k,v) is given by@Fig. 6~b!#
e

-
e
;

c-
of

Sr~k,v!5
1

~v21k2zr!
E dq

2p

3E dV

2p
~k2q!2Sh~k2q,v2V!Sr~q,V!.

The above integral will now be evaluated in the limitq
→0 and sinceV;qzh for Sh we can replace

Sh~k2q,v2V!.Sh~k,v!.

Then using the scaling relation Eq.~3! we have

Sr~k,v!.
1

~v21k2zr!
E dq

2p

Cr

q112ar
k2Sh~k,v! ~15a!

5
k2Cr

~v21k2zr!
Sh~k,v!E dq

2p

1

q112ar

~15b!

5
Crk0

22ar

4par

k122ah1zh

~v21k2zr!~v21k2zh!
,

~15c!

where the last step follows from introducing a lower cuto
k0 in the momentum integration overq.

Using Eq.~3! we have after integrating Eq.~15c! over v

Sr~k,t50!;k2~112ar!;
k122ah

kzr~kzh1kzr!
. ~16!

Finally usingzr'0 we have

ar5H ah1
zh

2
21 for largek ~17a!

ah21 for smallk. ~17b!

Given our numerical result ofah50.5, the above predicts
negativear , at smallk. This is consistent with, and validate
our assumption of, a cutoffk0 that arises naturally as th
wave vector separating the region ofar,0 ~no infrared di-
vergence! andar.0 ~infrared divergence prevalent! in Eqs.
~7b! and ~10c!.

More importantly, this nontrivial result forar indicates
that should we see numerical evidence of a negativear for
small wave vectors, we will have verified the existence of
asymptotic hypersmoothing in our model equations, wh
has an important bearing on sandpile surfaces in the cont
ous avalanching regime. This is discussed further in our c
cluding section.

B. Numerical analysis

We focus now on our numerical results for caseB. The
coupled equations in this section and the following one w
numerically integrated by using the method of finite diffe
ences@22#. Our grids in time and space were kept as fi
grained as computational constraints allowed so that our
size in spaceDx was chosen to be in the range~0.1,0.5!
whereas that in time was in the rangeDt ~0.001, 0.005!.
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FIG. 7. Log-log plot of the single Fourier transformSh(k,t50) vs k obtained from Eqs.~6! ~caseB). The best fit has a slope of21
22ah522.03160.014. Other parameters arem5Dh5Dr5Dh

25Dr
251.0.
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Thus the instabilities associated with the discretization
nonlinear continuum equations were avoided and con
gence was checked by keepingDt small enough such that th
quantities under investigation were independent of furt
discretization. Our results were also checked for finite s
effects. In the calculations of this section we choseDh
5Dr51.0 andm 5 1 and our results were averaged ov
several independent configurations. We have calculated
exponentsa and b and the corresponding error bars usi
the linear least square fit so that2(112b) and 2(1
12a) are given by slopes of the fitted straight lines.

On discretizing Eqs.~6! we found once again the diver
gences that were previously observed in@5#. These diver-
gences are in our view a direct representation of the infra
divergence mentioned above, and we follow here a para
course in regulating these via an explicit regulator. In ear
f
r-

r
e

r
he

d
el
r

work @5#, a regulator was introduced that replaced the fu
tion mr¹h by the following:

T5H 11 for mr~¹h!.1

mr~¹h! for 21<mr~¹h!<1

21 for mr~¹h!,21 .

In addition in this paper, we have introduced noise reduct
to the regulated equations, which has led to a more accu
evaluation of all our critical exponents.

The Fourier transformSh(k,t50) ~Fig. 7! is consistent
with a spatial roughening exponentah;0.50160.007 via
our observation of

Sh~k,t50!;k22.0360.014
FIG. 8. Log-log plot of the single Fourier transformSh(x50,v) vs v for caseB obtained from Eqs.~6!. The best fit shown in the figure
has a slope of2122ah51.9360.017. Againm5Dh5Dr5Dh

25Dr
251.0.
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FIG. 9. The double Fourier transformSh(ki ,v) vs v ~caseB) calculated at two different wave vectorski50.1 (L), 0.2~1!. The curves
@solid ~1! and dashed~2! lines# shown in the figure are plots of Eq.~18! with G050.4 and 0.5~for k1 andk2 , respectively!, to serve as a
guide to the eye. Other parameters arem52, Dh

25Dr
250.1, Dh5Dr51.0.
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and the Fourier transformSh(x50,v) ~Fig. 8! is consistent
with a temporal roughening exponentbh;0.46560.008 via
our observation of

Sh~x50,v!;v21.9360.017.

Hencezh;1.07, and thus the exponentxm.0 @Eq. ~9!#, in-
dicating that them vertex does not renormalize.

Usingah;0.5 in Eq.~12! we can write the structure fac
tor Sh(k,v) as

Sh~k,v!5
1

11V2~11V2!
F11V2

G0
2k2

1
1

G0k3G , ~18!

whereV5v/G0k. We find from the above that the expecte
form of Sh(k,v50) in the limit of small wave vectors is
Sh~k,v50!;k23. ~19!

Realizing that our computedah,1, we obtain from Eq.~12!
the prediction

Sh~k50,v!;v22. ~20!

The full structure factorSh(k,v) has been calculated a
two differentk points and Fig. 9 displays our results fitted
Eq. ~18!. The solid and the dashed line in Fig. 9 are the pl
of Eq. ~18! for k50.1 andk50.2 with G050.4 and 0.5,
respectively. The spatial structure factorSh(k,v50) shows
a power-law behavior~Fig. 10! given by

Sh~k,v50!;k23.406.029
FIG. 10. Log-log plot of the double Fourier transformSh(k,v 50) vs k ~caseB) obtained from Eqs.~6!. The best fit has a slope of
2(112ah1zh)523.4060.029. Again,m51.0, Dh5Dr51.0, Dh

25Dr
250.5.
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FIG. 11. Log-log plot of the double Fourier transformSh(k50,v) vs v obtained from Eqs.~6! ~caseB). The best fit displayed in the
figure has a slope of2(112bh11/zh)521.9160.017. Other parameters arem51.0, Dh5Dr51.0, Dh

25Dr
250.5.
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in qualitative accord with Eq.~19!, and the temporal struc
ture factorSh(k50,v) shows a power-law behavior~Fig. 11!
given by

Sh~k50,v!;v21.916.017

in accord with Eq.~20!.
Given our values ofah.0.5 andzh.1, Eqs.~17a! and

~17b! predict a crossover inar from 0 at largek to 20.5 as
k→0. The single Fourier transformSr(k,t50) ~Fig. 12!
shows a crossover behavior from

Sr~k,t50!;k22.1260.017

for large wave vectors to

Sr~k,t50!;const
ask→0. In Fig. 12 we find a crossover from 0.56 at largek
to 20.5 ask→0, which shows the same trend as the pred
tion above. Note, however, that the simulations also ma
fest, in addition to the theoretical predictions, the norm
diffusive behavior represented byar50.56 at large wave
vectors. The single Fourier transform in timeSr(x50,v)
~Fig. 13! shows a power-law behavior:

Sr~x50,v!;v21.8160.017.

While the range of wave vectors in Fig. 12 over whic
crossover inSr(k,t50) is observed was restricted by ou
computational constraints, the form of the crossover appe
conclusive. Checks~with fewer averages! over larger system
sizes revealed the same trend; additionally our theoret
calculations support the observed crossover via Eqs.~17!.
FIG. 12. Log-log plot of the single Fourier transformSr(k,t50) vs k ~caseB) showing a crossover from a slope of2122ar50 at
small k to 22.1260.017 at largek. Other parameters arem51.0, Dh5Dr51.0, Dh

25Dr
250.5.
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FIG. 13. Log-log plot of the single Fourier transformSr(x50,v) vs v obtained from Eqs.~6! ~caseB). The best fit has a slope of
2122br521.8160.017. Again,m51.0, Dh5Dr51.0, Dh

25Dr
250.5.
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C. Homing in on the physics: A discussion of smoothing

We focus in this section on the physics of the equatio
and our results. In the regime of continuous avalanching
sandpiles, the major dynamical mechanism is that of mo
grainsr present in avalanches flowing into voids in theh
landscape as well as the converse process of unstable clu
~a surfeit of¹h above some critical value! becoming desta-
bilized and adding to the avalanches. Our results for the c
cal exponents inh indicate no further spatial smoothing b
yond the diffusive; however, those in the speciesr indicate a
crossover from purely diffusive to an asymptotic hype
smooth behavior. Our claim for continuous avalanching is
follows: the flowing grains play the major dynamical role
all exchange betweenh andr takes place only in the pres
ence ofr. These flowing grains therefore distribute them
selves over the surface filling in voids in proportion both
their local density as well as to the depth of the local voi
it is this distribution process that leads in the end to
strongly smoothed profile inr. Additionally, since in the
regime of continuous avalanches, the effective interface
defined by the profile of theflowing grains, it is this profile
that will be measured experimentally for, say, a rotating c
inder with high velocity of rotation.

IV. ANOMALOUS SMOOTHING: THE CASE OF TILT
AND BOUNDARY-LAYER EXCHANGE „CASE C…

The last case we discuss in this paper involves a m
complex coupling between the stuck grainsh and the flowing
grainsr as follows:

]h~x,t !

]t
5Dh¹2h~x,t !2T1h~x,t !, ~21a!

]r~x,t !

]t
5Dr¹2r~x,t !1T, ~21b!

T~h,r!52n~¹h!22lr~¹h!1 ~21c!
s
in
le

ters

i-

-
s

-

;
a

is

-

re

with h(x,t) representing white noise as usual.
Here,

z15H z for z.0

0 otherwise,
~22a!

z25H z for z,0

0 otherwise.
~22b!

This equation was also presented in earlier work@5# in the
context of the surface dynamics of an evolving sandpile. T
two terms in the transfer termT represent two different
physical effects which we will discuss in turn. The first ter
represents the effect of tilt, in that it models the transfer
particles from the boundary layer at the ‘‘stuck’’ interface
the flowing species whenever the local slope is steeper
some threshold~in this case zero, so that negative slopes
penalized!. The second term is restorative in its effect, in th
in the presence of ‘‘dips’’ in the interface~regions where the
slope is shallower, i.e., more positive than the zero thresh
used in these equations!, the flowing grains have a chance
resettle on the surface and replenish the boundary layer@2#.
We notice that because one of the terms inT is independent
of r we are no longer restricted to a coupling that exists o
in the presence of flowing grains: i.e., this model is app
cable to intermittent avalanches whenr may or may not
always exist on the surface. In the following we examine
effect of this interaction on the profiles ofh andr, respec-
tively.

The complexity of the transfer term with its discontinuo
functions precludes any attempts to solve this model al
the lines of the earlier ones. We make some remarks h
however, on the likely critical behavior of this model.

We observe that the transfer term

T52lr~¹h!12n~¹h!2

can be thought of as a formal infinite series by invoking
suitable representation for the Heaviside step functions
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Eq. ~23!. We are then led to consider the following mo
general structure for the transfer termT,

T52lr~¹h!2n~¹h!2 (
n51

`

nn~¹h!n11

2r (
n51

`

ln~¹h!n11. ~23!

Note, however, that this is not a very well-defined expans
because the coefficients in the infinite series could well
very large, if not infinite. However, given this disclaimer, w
can still make the following comments in the spirit of se
consistency, i.e., subject to numerical verification.

If lr(¹h) were the only nonlinearity, as in caseB, we
would have zh51. Using h;xah and r;xar, we see
lr(¹h) is a more relevant nonlinearity thann1(¹h)2, the
leading nonlinear term in the expansion of (¹h)2 , and is
likely to be the controlling nonlinearity for the extreme lon
wavelength behavior. Figure 14 shows that thel vertex
never renormalizes in the presence of the KPZ te
n1(¹h)2, so thatzh is always fixed at unity. However, th
KPZ vertex corresponding ton1(¹h)2 has distinct behavior
in different wave vector ranges. In the range where the v
tex renormalizes, we cannot say much about the behavio
ah ; however, in the range where it doesnot renormalize, we
might imagine that normal KPZ hyperscalingah1zh52
would be restored. This, withzh51, would giveah51.

If zh51, we can write the scaling relationSh(k,v50) for
the double Fourier transform at zero frequency as

Sh~k,v50!;k2222ah,

FIG. 14. One-loop corrections to~a! the KPZ vertex, and~b! the
l vertex for the coupled equations of caseC @Eqs.~21!#.
n
e

r-
of

which, in the regime where the KPZ hyperscaling hold
should look likeSh(k,v50);k24.

We now try to obtain additional insights into the behavi
of these equations using the Hartree-Fock approximat
The spirit of the Hartree-Fock approximation is to repla
nonlinear terms by linear ones with coefficients that are g
erally determined self-consistently. To undertake that he
we note that the step functions@Eq. ~23!# give rise to non-
linearities and hence the simplest thing to do is to repl
them by an expectation value~the argument of the step func
tion is a random variable and hence this is an accepta
approximation!. We represent this expectation value by
numberc with 0,c,1. The equations of motion thus rea

]h

]t
5Dh¹2h2l8r¹h2n8¹h1hh~x,t !, ~24a!

]r

]t
5Dr¹2r1l8r¹h1n8¹h, ~24b!

with l85cl andn85(12c)n and are identical to the one
studied by Bouchaudet al. @7#. We expect at least in som
regime of Eqs.~21! to reproduce the mean-field results a
propriate to Eqs.~24a! and ~24b!.

1. Results for the single Fourier transforms

The single Fourier transformsSh(k,t50) ~Fig. 15! and
Sh(x50,v) ~Fig. 16! show power-law behavior correspond
ing to

Sh~k,t50!;k22.5660.060,

Sh~x50,v!;v21.6860.011,

which implies that the roughness and the growth expone
are given respectively byah50.7860.030 andbh50.34
60.005. This suggestszh5ah /bh'2, contradicting the pre-
diction of zh51 by perturbative methods and suggesting t
the mean-field approach outlined in the above might be m
appropriate. We discuss this further in what follows.

However, the smallk limit of Sh(k,t50) indicates a
downward curvature and thus a deviation from the line
behavior at higherk ~Fig. 15!. This curvature, which had als
been observed in previous work@5#, indicates a smaller
roughness exponentah there, i.e., an asymptoticsmoothing.

2. Results for the double Fourier transforms

The double Fourier transformsSh(k,v50) ~Fig. 17! and
Sh(k50,v) ~Fig. 18! show power-law behavior correspond
ing to

Sh~k50,v!;v21.8060.007,

Sh~k,v50!;H k24.5460.081 for large wave vectors

const for small wave vectors.

The double Fourier transformSh(k50,v) shows the
usualv22 behavior that we have seen before in Eqs.~5! and
~20!, which we have already discussed earlier.

The structure factorSh(k,v50) signals a dramatic be
havior of the roughening exponentah , which crosses over
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FIG. 15. Log-log plot of the single Fourier transformShk,t 50! vs k for caseC obtained from Eqs.~21!. The slope of the fitted line is
given by2122ah522.5660.060. The parameters used in the simulation aren510, l51.0, Dh5Dr51.0, Dh

251.0.
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from ~i! a value of 1.3 indicating anomalously large roug
ening at intermediate wave vectors, to~ii ! a value of about
21 for small wave vectors indicating asymptotic hype
smoothing.

The anomalous rougheningah51 seen here is consisten
with that observed via the single Fourier transform~Fig. 15!
and suggests, via the perturbative arguments given pr
ously, thatzh51. However, if we assumezh52 according to
the results of the single Fourier transforms given above,
would lead to anah of about 0.8, in agreement with th
values obtained both via single Fourier transforms in
present paper, and in@5#. In either case, our values ofah
~either 1.3 or 0.8! suggest anomalous roughening of the
terface at moderately large wave vectors.

The anomalous smoothing obtained here (ah;21 if zh
;1, andah;21.5 in the event thatzh is taken to be 2! is
-

vi-

is

e

-

also consistent with the downward curvature in the sin
Fourier transformSh(k,t50), as both imply a negativeah ;
we mention also that the wave vector regime where t
smoothing is manifested is almost identical in both Figs.
and 17.

Since we expect that the anomalous smoothing res
from a failure of the expansion of the step functions alo
the lines of Eq.~23!, this underlines our expectation that th
mean-field solution of Eqs.~24a! and~24b! would capture at
least some of the flavor of this regime. We have theref
solved the mean-field equations@Eqs. ~24a! and ~24b!# nu-
merically, and from Fig. 19 and Fig. 20 we find that there
a crossover inSh(k,t50) ~Fig. 19! from a diffusive behavior
(zh52) at high wave vectors to a smoothing behavior at l
wave vectors.

This behavior is reflected in our results for caseC. At low
f
FIG. 16. Log-log plot of the single Fourier transformh(x50,v) vs v obtained from Eqs.~21! ~caseC). The best fit has a slope o
2122bh521.6860.011 with parametersn510, l51.0,Dh5Dr51.0, Dh

251.0.



PRE 58 1281SMOOTHING OF SANDPILE SURFACES AFTER . . .
FIG. 17. Log-log plot of the double Fourier transformSh(k,v 50! vs k obtained from Eqs.~21! ~caseC). The best fit for high wave
vector has a slope of2(112ah1zh)524.5460.081. Ask→0 we observe a crossover to slope of zero. Other parameters areDh5Dr

51.0, Dh
251.0, n510, andl51.0.
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frequencies the region of anomalous smoothing can be
derstood by comparison with the corresponding region in
mean-field equations Eqs.~24a! and~24b!, which also mani-
fest this. At largek, Sh(k,t50) and Sh(k,v50) indicate
anomalous roughening withah'zh'1, which is consistent
with the infrared divergence discussed in the previous s
tion. However, as in caseA, Sh(x50,v) is dominated by the
diffusive zh52 arising from the presence ofd(v2n8k) in
the mean-field solution of caseC. This behavior is corrobo-
rated by an evaluation of the full structure factorS(ki ,v)
~Fig. 21! which shows a distinct peak at anv i given byv i
5n8ki ; this is reminiscent of the Lorentzian obtained in ca
A ~Fig. 1!. In fact, to leading order,Sh(k,v) can be fitted to
a Lorentzian; however, as we reduce the relative strengt
n(¹h)2 with respect tolr(¹h)1 the Lorentzian peaks dis
n-
e

c-

e

of

appear, and we begin to see a ‘‘shoulder’’ reminiscent, a
should be, of the behavior observed in caseB ~Fig. 9!. This
suggests that the present model is an integrated versio
the earlier two, reducing to their behavior in different wa
vector regimes; we speculate therefore that there aretwo dy-
namical exponents (zh51 andzh52) in the problem.

V. DISCUSSION AND CONCLUSIONS

We have presented in the above a discussion of th
models of sandpiles, all of which manifest asympto
smoothing: casesA andC manifest this in the speciesh of
stuck grains, while caseB manifests this in the speciesr of
flowing grains. We reiterate that the fundamental physi
FIG. 18. Log-log plot of the double Fourier transformSh(k50,v) vs v obtained from Eqs.~21! ~caseC). The best fitted line shown in
the figure has a slope of2(112bh11/zh)521.8060.007. Other parameters areDh5Dr51.0, Dh

251.0, n510, andl51.0.
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FIG. 19. Log-log plot of the single Fourier transformSh(k,t 50! vs k obtained from the mean-field Eqs.~24a! and ~24b!. The high-k
region is fitted with a line of slope2122ah522.0560.017. The low-k region is fitted with a line of slope2122ah520.9360.024.
Note the crossover fromah50.5 at largek to zero at smallk. Other parameters aren8510, l852.0, Dh5Dr51.0, Dh

250.1.
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reason for this is the following: casesA andC both contain
couplings that are independent of the densityr of flowing
grains, and are thus applicable, for instance, to the dynam
regime of intermittent avalanching in sandpiles, when gra
occasionally but not always flow across the ‘‘bare’’ surfac
In caseB, by contrast, the equations are coupled only wh
there is continuous avalanching, i.e., in the presence o
finite densityr of flowing grains.

The analysis of caseA is straightforward, and was unde
taken really only to explain features of the more comp
caseC; that of caseB shows satisfactory agreement betwe
perturbative analysis and simulations. Anomalies pers
however, when such a comparison is made in caseC, be-
cause the discontinuous nature of the transfer term mak
analytically intractable. These are removed when the an
al
s
.
n
a

x

t,

it
y-

sis includes a mean-field solution that is able to reprodu
the asymptotic smoothing observed.

We suggest therefore an experiment where the criti
roughening exponents of a sandpile surface are measure

~1! a rapidly rotated cylinder, in which the time betwee
avalanches is much less than the avalanche duration.
results predict that for small system sizes we will s
only diffusive smoothing, but that for large enough sy
tems, we will see extremely smooth surfaces.

~2! a slowly rotated cylinder where the time between av
lanches is much more than the avalanche duration.
this regime, the results of caseC make a fascinating
prediction: anomalously large spatial roughening f
moderate system sizes crossing over to an anomalo
large spatial smoothing for large systems.
FIG. 20. Log-log plot of the single Fourier transformSh(x50,v) vs v for the mean-field Eqs.~24a! and~24b!. The best fit has a slope
of 2122bh521.9460.001 with parametersn8510, l852.0, Dh5Dr51.0, Dh

250.1.
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FIG. 21. The double Fourier transformSh(ki ,v) vs v obtained from Eqs.~21! ~caseC) evaluated at three different wave vectorsk1

50.2 (L), k250.4 (1), andk350.8 (h) with parametersDh5Dr51.0,Dh
251.0,n55, andl51.0. The peaks correspond to frequenc

v151.0, v252.0, v54.0.
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Finally we make some speculations in this context c
cerning natural phenomena. The qualitative behavior
blown sand dunes@23# is in accord with the results of cas
B, because sand moves swiftly and virtually continuou
across their surface in the presence of wind. By contrast
the surface of a glacier, we might expect the sluggish mo
of boulders to result in intermittent flow across the surfa
making the results of caseC more applicable to this situa
tion. It would be interesting to see if the predictions
anomalous roughening at moderate, and anomalous smo
ing at large, length scales is applicable here.
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APPENDIX

In this appendix we discuss some of the technical po
related with the double Fourier transform. We have fou
that the crossover that we have seen in the Eq.~5! would not
have been observed had we been using the single Fo
transformsSh(k,t50) and Sh(x50,v) for numerical pur-
poses. We illustrate this by writing explicitly the expressio
for the relevant quantities:
FIG. 22. Log-log plot of the single Fourier transformSh(k,t 50! vs k obtained from Eq.~4a! ~caseA) with parametersc5Dh5D2

51.0. The best fitted line shown in the figure is given by a slope of2122ah521.9060.016. The characteristic wave vectork0 is given
by k05c/Dh51.0.
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FIG. 23. ~a! Log-log plot of the single Fourier transformSh(x50,v) vs v obtained from Eq.~4a! showing a slow crossover. Lines 1 an
2 in the figure are the best fits in the low and highv regions with slopes2122bh521.8760.003 and2122bh521.52560.006,
respectively.~b! Log-log plot of the single Fourier transformSh(x50,v) vs v for two different values ofc; c510 andc55 for data sets
1 and 2, respectively. Note the increase in oscillation for increasing values ofc. The other parameters areDh5D251.0.
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Sh~k,t50!;k22 ~A1a!

Sh~x50,v!;H v22 for v small ~A1b!

v21.5 for v large. ~A1c!

The examination ofSh(k,t50) ~Fig. 22! on its own yields
no indication of the crossover to the smoothing fixed po
although there is a crossover in theSh(x50,v) graph@Fig.
23~a!# from v21.5 to v22, the analysis below shows tha
bothregimes reflect diffusive behavior, so that the smooth
fixed point (ah50,bh50,zh51) is entirely suppressed.

The single Fourier transformSh(x,v) is defined by
;

g

Sh~x50,v!5E
2`

` dk

2p
Sh~k,v!

5E
2`

` dk

2p

1

Dhkzh
F Dhkzh

~v2ck!21Dh
2k2zh

G .

In the limit v→ck the term in the square brackets behav
like a d function and thus

Sh~x50,v!5E
2`

` dk

2p

1

Dhkzh
d~v2ck!'

1

vzh
. ~A2!

This is the origin of ballistic behavior in the flow term and
responsible for two anomalies.
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~1! Firstly, we notice from the above that thed function
causesSh(x50,v) to behave likev2zh. Comparing with Eq.
~A1b! this leads tozh52. However a simple-minded appl
cation of Eqs.~3! would have led to thewrongconclusion of
bh50.5. Even if the correct scaling relation Eq.~A2! were
employed, the ballistic nature of the flow term picks o
misleadingly, thehigh frequency~diffusive! dynamical expo-
nent in thelow frequency regime ofSh(x50,v) @Eq. ~A1b!#.
The low wave vector, low-frequency smoothing behavior
thus entirely suppressed.

~2! Secondly, spurious oscillations are observed@Fig.
23~b!# in the graph forSh(x50,v) as a function of grid size
A consideration of the form of the structure factorSh(x
50,v) makes it clear the crossover from small to largev
should not involve any imaginary quantities, and theref
strictly speaking we should not see any oscillatory behav
in the structure factor in this limit. However, the full form o
the structure factorSh(x,v) for finite x doescontain imagi-
nary portions, which are responsible for the oscillations. T
characteristic length and time scales in our problem are g
by

t05Dh /c2, x05Dh /c.

Whenever grid sizes in time or space are comparable to t
characteristic lengths, the profile fluctuates across these
tervals, which is then aggravated by the shock fronts ass
y
g.

ss
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.
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ci-

ated with the flow term. This results in oscillatory behavi
arising from thenonzerointervals inx associated with the
sampling of the profile to generate the Fourier transfor
Sh(x50,v), which introduce a flavor ofSh(x,v) for finite x.
These become increasingly violent asc increases because o
the increased fluctuations associated with the ballistic fl
term over the grids. In order to avoid these oscillations, o
should choose grid sizesDx andDt in such a way that they
are always less than the characteristic scales in the prob
i.e.,

Dx!x0 and Dt!t0 .

In view of the above, it is necessary to use the double Fou
transform to obtain an unambiguous picture of the struct
factor and to pick out the asymptotic smoothing although t
strategy might on first appearance seem to be a comp
tional overkill. The overwhelming advantage is that, by sca
ning the structure factor as a function of frequencyv for a
fixed k, one immediately sets two frequency scalesck and
Dhk2, thus making it possible to pick up the relevance
these scales inSh(k,v). We also mention that our discussio
is equally applicable to the Kardar-Parisi-Zhang equat
@17# with the addition of a flow term. Here too, the use of t
double Fourier transform reveals the presence of
‘‘smoothing’’ fixed point due to the flow term.
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