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Smoothing of sandpile surfaces after intermittent and continuous avalanches:
Three models in search of an experiment
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We present and analyze in this paper three models of coupled continuum equations all united by a common
theme: the intuitive notion that sandpile surfaces are left smoother by the propagation of avalanches across
them. Two of these concern smoothing at the “bare” interface, appropriate to intermittent avalanche flow,
while one of them models smoothing at the effective surface defined by a cloud of flowing grains across the
“bare” interface, which is appropriate to the regime where avalanches flow continuously across the sandpile.
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[. INTRODUCTION our discussions in context is that of sand in rotating cylinders
[11,12. In the case when sand is rotated slowly in a cylinder,
The dynamics of sandpiles have intrigued researchers i:mtermittent avalanching is obser_ved; thus sand accumulates
physics over recent yeafd,2] with a great deal of effort N part of the cylinder to beyond its angle of rep¢48] and
being devoted to the development of techniques involving!S then released via an avalanche process across the slope.

for instance, cellular automaf,4], continuum equations This happens intermittently, since the rotation speed is less
; . : than the characteristic time between avalanches. By contrast,
[5—7], and Monte Carlo schem¢8] to investigate this very

) . when the rotation speed exceeds the time between ava-
complex subject. However, what have often been lost sighfnches we see continuous avalanching on the sandpile sur-
of in all this complexity are some of the extremely s_|mple_face_ Though this phenomenon has been obser@Hand
phenomena that are exhibited by granular media, which stilhnalyzed physically10] in terms of avalanche statistics, we
remain unexplained. are not aware of measurements which measure the character-
One such phenomenon is that of the smoothing of a sandstics of the resulting surface in terms of its smoothness or
pile surface after the propagation of an avalanf@ It is  otherwise.
clear what happens physically: an avalanche provides a What we focus on here is precisely this aspect, and make
means of shaving off roughness from the surface of a sandtredictions that we hope will be tested experimentally. In
pile by transferring grains from bumps to available voidsorder to discuss this, we introduce first the notion that granu-
[2,4], and thus leaves in its wake a smoother surface. How!@r dynamics is well described by the competition between
ever, surprisingly, researchers have not to our knowledgfe dynamics of grains moving independently of each other
come up with models of sandpiles that have exhibited thind that of their collective motion within cluste]. A con-
behavior. venient way of representing this is via coupled continuum

In particular what has not attracted enough attention in thgquatlons with a specific coupling between mobile grains

literature is the qualitative difference between the situation and clusters on the surface of a sandp{lB]. In the regime
€q ) oo ; f intermittent avalanching, we expect that the interface will
that are obtained when sandpiles exhibit intermittent an

. lanchd40l. In thi ine both e the one defined by the “bare” surface, i.e., the one de-
continuous avalanchgd.0]. In this paper we examine both a4 by the relatively immobile clusters across which grains

of the latter situations, via distinct models of sandpile sur-q, intermittently. This then implies that the roughening
faces. , _ characteristics of thi profile should be examined. The sim-
A particular experimental paradigm that we choose to pupjest of the three models we discuss in this paperexactly
solvable model referred to hereafter as cAjas well as the
most complex onéreferred to hereafter as ca€@ treat this
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crossover between purely diffusive behavior and hyperThe scaling relations for the corresponding single Fourier
smooth behavior. In each case we present analytical resulteansforms are
pertaining to the continuum models and compare the predic-

tions so obtained with the results obtained by numerical S(k,t=0)~k *7?*(k—0) and
simulations of the corresponding discretized equations. 1y
In general, the complexity of sandpile dynamics leads us S(x=0w)~w " (0—0). ()

to equations that are coupled, nonlinear, and noisy: these ) ) )
equations present challenges to the theoretical physicist in !N particular we note that the scaling relations &k, »)
more ways than the obvious ones that pertain to their delEd- (2)] always involve the simultaneous presenceaind
tailed analysis and/or their numerical solutions. In particular/8, Whereas those corresponding $6x,») and S(k,t) in-
our analysis of cas€ reveals the presence of hidden lengthVolve these exponeniadividually. Thus, in order to evalu-
scales whose existence was suspected analytically, but ngté the double Fourier transforms, we need in each case in-
demonstrated numerically in earlier wolrk,14]. formation from t'he growing as well as the saturated interface
The normal procedure for probing temporal and spatiafthe former being necessary fg# and the latter fora)
roughening in interface problems is to determine theWhereas for the single Fourier transforms, we need only in-
asymptotic behavior of the interfacial width with respect toformation from the saturated interface f¢k,t=0) and in-
time and space, via the single Fourier transform. Here onljormation from the growing interface f@&(x=0,w). On the
one of the variables,x(t), is integrated over in Fourier Otherhand, the information that we will get out of the double
space, and appropriate scaling relations are invoked to deterourier transform will provide a more unambiguous picture
mine the critical exponents that govern this behavior. HowJn the case where multiple length scales are present, some-
ever, it turns out that this leads to ambiguities for thosething that cannot easily be obtained in every case with the
classes of problems where there is an absence of simple sc&ingle Fourier transform. _
ing, or to be more specific, where multiple length scales ex- N Secs. II, lll, and IV we present, analyze, and discuss
ist. In such cases we demonstrate that the double Fouriéhe results of cases, B, andC, respectively. Finally, in
transform (where both time and space are integrated over Sec. V, we reflect on the unifying features of these models,
yields insights that are harder to obtain via the single FourieRnd make some educated guesses on the dynamical behavior
transform. of real sandpile surfaces.
This point is illustrated by cas@, an exactly solvable
model that we introduce; we then use it to understand caseIl. CASE A: THE EDWARDS-WILKINSON EQUATION
C, a nonlinear model where our analytical results are clearly WITH FLOW
only approximations to the truth. ' . . .
In order to make some of these ideas more concrete, we Our first model mvplves a par of linear cqupled equa-
now review some general facts about rough interfdd&s t|f)ns, r,/'here_ ther:equaltlon lgov?rnlr:jg thi evolution Iclnfkclusters
Three critical exponentsy, 8, andz, characterize the spatial ( jtuc d gra.'lﬂ.s) IS close y(;e lateG tol: € very well-known
and temporal scaling behavior of a rough interface. They arg wards-Wilkinson(EW) model[16]. The equations are
conveniently defined by considering tiieonnected two- ah(x,t)
point correlation function of the heights :

2 =DaVPh(xD+eVh(x D +7(x0), (43

S(x—x,t—t")=(h(x,t)h(x’,t"))— (h(x,t) }{(h(x",t")).
(1) dp(x,t)
at

=D,V?p(x,t)—cVh(x,t), (4b)
We have

where the first of the equations describes the hdigkit) of

~|x|2« __1+128
S(x.0~[x] (Ix|—e)  and S(0)~|t] (tl =), the sandpile surface ax ) measured from some meéh),

and more generally and is precisely the EW equation in the presence of the flow
term cVh. The second equation describes the evolution of
S(x,t)=|x|2*F(|t|/]|x|?) flowing grains, wherep(x,t) is the local density of such

grains at any pointx,t). As usual, the noise(x,t) is taken
in the whole long-distance scaling regime &ndt large. to be Gaussian so that
The scaling functiorF is universal in the usual sense;and
z=al B are respectively referred to as the roughness expo- (p(x,t) (X" t"))=A25(x—x")8(t—1"),
nent and the dynamical exponent of the problem. In addition,
we have for the full structure factor, which is the doublewith A the strength of the noise. Her¢,--) refers to an

Fourier transforns(k, »), average over space as well as over noise.
-1, -1-2a
S(k,w)~ o~ k™12 D (w/k?), A. Analysis of the decoupled equation irh
which gives in the limit of smalk and w, For the purposes of analysis, we focus on the first of the

two coupled equationfEg. (4a)] presented above,
S(k,w=0)~k *72¢"%(k—0) and

ah
_ 2
S(kzo’w)Nw—l—ZB—llz (0—0). ) ot D,V°h+cVh+ 5(x,t)
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FIG. 1. The correlation functiorS,(k;,») againstw for three different wave vector&;=0.02 (¢), k,=0.08 (+), and kj
=0.12 @) with parametersc=2.0, D,,=1.0, and A?>=1.0. The positions of the peaks are given by=0.04, w,=0.16, and
w3=0.24 as expected from E¢p).

noting that this equation is essentially decoupled from theover givingw ~? [cf. Eq.(A2) in the Appendi}. As k=0 for
second.(This statement is, however, not true in reversethe purposes of calculation of this structure factor, it is al-
which has implications to be discussed Iatékle note that ways the high frequency behavior that dominates, leading to
this is entirely equivalent to the Edwards-Wilkinson equationthe ubiquity ofw 2 whenever it is measured.

[16] in a frame moving with velocity, It is obvious from Eq.(5) that S,(k,») does not show
be verified by naive single Fourier transform analysis of Eq.

simple scaling. More explicitly, if we write
T
(4@ which yields these exponents via HS).
Equation (48 can be solved exactly as follows. The with ko=c/D;,, andwy,=c?/D},, we see that there are two

x'=x+ct, t'=t,

2 k

and we would on these grounds expect to find only the well- 2( k 1
+
k ko

_ Wo
known EW exponenta=0.5 andB=0.25[16]. This would Sy Hk,w=0)= A2\ ko

propagatoiG(k, ) is limiting cases :
Gn(k,®)=(—iw+Duk?+ikc) L. (i) for k>ko, S;'(k,0=0)~k* using againS;*(k
=0,w)~ w?, we obtaina,=1/2 andB,=1/4, z,=2
This can be used to evaluate the structure factor via Egs.(2).
(i)  for k<kg, S, '(k,w=0)~k?; using the fact that the
S, (K,o) = (h(k,®)h(k",w")) limit S;,'(k=0,w) is always w?, this is consistent
' Sk+k)dw+w')' with the set of exponents,=0, 8,=0, andz,=1
via Egs.(2).

which is the Fourier transform of the full correlation function
Sp(x—x',t—t") defined by Eg.(1). The solution for

S (k,) so obtained is The first of these contains no surprises, being the normal

EW fixed point[16], while the second represents a new,

2 “smoothing” fixed point.
Sh(k,w)= ———————. (5 We now explain this smoothing fixed point via a simple
' (w—ck)?+ Dﬁk4 physical picture. The competition between the two terms in

Eq. (48 determines the nature of the fixed point observed:

This is illustrated in Fig. 1 while representative graphs forwhen the diffusive term dominates the flow term, the canoni-
Sh(k,w=0) andS;(k=0,w) are presented in Figs. 2 and 3, cal EW fixed point is obtained, in the limit of large wave
respectively. Before proceeding further, we make the follow-vectorsk. On the contrary, when the flow term predominates,
ing observation about the double Fourier transformthe effect of diffusion is suppressed by that of a traveling
Sh(k=0,0); this shows anw ™2 behavior coming from Eq. wave whose net result is to penalize large slopes; this leads
(5), which we will also see later. We mention here that theto the smoothing fixed point obtained in the case of small
ubiquity of this w2 arises from the form of the scaling wave vectorsk. We emphasize, however, that this is a toy
relation Eq.(2), which is relevant for frequencies < w, model of smoothing, which will be used to illuminate the
~k*, whereas foiw> w. the high frequency behavior takes discussion of model8 andC below.
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FIG. 2. The double Fourier transforrg,(k,»=0) obtained from Eq(4) (Case A, plotted on a log-log scale to show the crossover from
k2 at low wave vectors té& * at high wave vectors. The different markers in the figure correspond to different gridisizessample
distinct regions ok space; thus the markerfs and[] correspond to decreasing grid sizes and increasing wave-vector ranges. The parameters
used in the calculation ae=D,=A?=1.0 and the characteristic wave vectokjs= c/D,,=1.0. The dashed line is a plot of the theoretical
Si(k,w=0) for Case A with appropriate parameters, to serve as a guide to the eye.

B. Coupled equations: A model of smoothing that the incursions ofp) into negative values are limited to

We realize from the above that the interfate is relatively small values, suggesting that the addition of a con-
smoothed because of the action of the flow term, which peStant background ob exceeding this negative value would
nalizes the sustenance of finite gradiefts in Eq. (4a). render the coupled system meaningful, at least to a first ap-
However, Eq.(4a) is effectively decoupled from Eq4b), proximation. In order to ensure that this average does not
while Eq.(4b) is manifestly coupled to Ed4a). In order for  involve wild fluctuations, we examine the fluctuationspin
the coupled Eqs(4) to qualify as a valid model of sandpile viz., V{p?) —(p)? [Fig. 4b)]. The trends in that figure indi-
dynamics, we would need to ensure that no instabilities areate that this quantity appears to saturate, at least up to com-
generated in either of these by the coupling tex¥ih. putationally accessible times. Finally we look at théni-

In this spirit, we look first at the value gf averaged over mumandmaximumnvalue ofp at any point in the pile over a
the sandpile, as a function of tiMi&ig. 4(@]. We observe large range of time§Fig. 4(c)]; this appears to be bounded
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FIG. 3. The double Fourier transfori,(k=0,0) vs o obtained from Eq.4) (Case A plotted on a log-log scale. The different
markers in the figure correspond to different grid sia¢so sample distinct regions @ space, as in Fig. 2. The solid line is a plot of the
theoreticalS,(k=0,0)~ » 2 for case A with appropriate parameters, to serve as a guide to the eye. The parameter® greA2=1.0.



1270 BISWAS, MAJUMDAR, MEHTA, AND BHATTACHARJEE
2.0e-06 T T T T
1.0e-06 | 1
. Jw.
§ 0.0e+00 AWMWMMWAFWMWh "‘-‘V
v
-1.0e-06 |- B
-2.0e-06 L L L L
0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06
( a) Time (t)
10 T T T
2
ke
ES) 1} & 4
k] &
&
3 Ooo"
£ o
o
°
01 1 1 1
100 1000 10000 100000 1e+06
(b) Time(t)
1 - -
H
£
‘C-::I
0
g
£
.gl
-1
0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06
(c) me(t)

PRE 58

FIG. 4. (@ The behavior of(p(t)) as a function of timet. Here (p(t)) is the average over the sandpile surface of 100 sample
configurations. The grid siz&t=0.005 andc=A2=D,=1.0. (b) The root mean square widih,Jt) = ({p?)—(p)?)Y? against time over
100 sample configurations with parametersA2= D,=D,=1.0.(c) The variation ofppa(t) andppin(t) with time t. ppa(t) andpmin(t) are
respectively the maximum and minimum valuespofor a given configuration of the sandpile at timeAgain, c:Dh=Dp=A2= 1.0.
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by a modestnegative value of “bare” p. Our conclusions and the noise is present only in the equation of motiorhfor
are thus that the fluctuations jnsaturate at computationally This singularity, the so-called infrared divergence, largely
accessible times and that the negativity of the fluctuations iontrols the dynamics and produces unexpected exponents.
p can always be handled by starting with a constegta

constant “background” of flowing grains, which is more A. Theoretical analysis

positive than the largest negative fluctuation. , . .
Physically, then, the above implies that at least in the We carry out first the theoretical analysis of E@®. An

presence of a constant large dengigyof flowing grains, it is examination of the aboye equations revea_ls the presence of
possible to induce the level of smoothing corresponding t Wo likely [ength scales in each, one associated with the dif-
the fixed pointa= 8=0. This model is thus one of the sim- usive motion, and the other with the so-called transfer term
plest possible ways in which one can obtain a representatio (h.p), representing the coupling betyveep the two Species.
of the smoothing of the “bare surface” that is frequently " these circumstances, a renormalization group analysis

observed in experiments on real sandpiles after intermitten‘lf{OUId clear'ly be inappropriate due to the breakdowp of
avalanche propagatidi®] simple scaling. In recent years, however, a self-consistent

mode coupling analysis used hitherto in dynamic critical
phenomend19] has been used to look at, in particular, the

. CAV?/FTﬁ :Cg '\jg\f_';';(ECFOOI\?SNIIE OSE(':\]%UEF;LING’ Kardar-Parisi-ZhangKPZ) equation[17,2( and we extend
Q its use to the case of the coupled equations presented here.
Our model equations, first presented [, involve a In this method we set up equatiofte one-loop orderfor

simple coupling between the speciesand p, where the the correlation functions, and self-energies in terms of the
transfer between the species occurs only in the presence Bfll Green's functions, correlation functions, and vertices us-
the flowing grains and is therefore relevant to the regime ofng assumed scaling forms for each. The critical exponents
continuous avalanching when the duration of the avalanche3nd § defined above are obtained from the self-consistent
is large compared to the time between them. The equation§olutions of these equations usibg=D , .

are Focusing on theh variable to start with, we define the
Green’s functions and the correlation functions of thand
ah(x,t) ) p variables
p =DpV°h(x,t) =T(h,p) + 7n(X,1), (6a)
Sh(k,w) 1
Gh(k,w)= - - ,
ap(x,t) ) on(k’, Q)| 8(k+k’')S(w+Q)
—— =D, V2p(x)+T(h,p)+ ,(x 1), (6D)
op(k, 1
G (k)= | 22K ,
T(h,p)=—pup(Vh), (60) on(k', Q) [ o(k+k")d(w+Q)
where the termsp,(x,t) and »,(x,t) represent Gaussian S (k)= (h(k,w)h(k’,Q))
white noise as usual: '@ 5(k+k’)5(w+ﬂ)’
PRI\ — A2 ’ ’
(X ) 7r(X 1)) =ARA(X—Xx") S(t—t"), (p(k,w)p(k’,Q))
S,(k,w)=

(7,0 (X' 1)) =A28(x—x) &(t—1'), Skt k) S+ )

) The analysis of these functions will be in terms of a weak

and(---) stands for average over space as well as noise. gcaling hypothesis, which states
A simple physical picture of the coupling or “transfer”

term T(h,p) betweenh and p is the following: flowing ©
grains are added in proportion to their local density to re- Gh(k,w):k‘zhfh(—z,—z),
gions of the interface that are at less than the critical slope, ke k
and vice versaprovided that the local density of flowing
grains is always nonzercdrhis form of interaction becomes
zero in the absence of a finite density of flowing grains
(when the equations become decoupladd is thus the sim-

lanching in sandpiles. We analyze in the following the pro-gcgje, ie.z,=2z,. As we show below, this cannot be the

files of h andp consequent on this form. case here. The absence of strong scaling implies that the
It turns out that a singularity discovered by Edwalti8]  oughness exponents, and«, may become functions .

three decades ago in the context of fluid turbulence is present \ye consider the full Green’s functiad@; (K, ), which is

in models with a particular form of the transfer tefim the iven via the well-known Dyson equatid@1],

above is one example, while another example is the modeq

due to Bouchauet al. (BCRE) [7], where Gp Yk, 0)=G Yk, 0)+ 3k, ).

_ w
Gp(k,a))=k prp(ﬁ’ﬁ).

T=—vVh—pup(Vh) Here, the zeroth order Green'’s function is
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Glk,w)=(—iw+k?) L

1
Sn(k, )~ - :
The scaling forms of the functior@;,(k, ») andS,(k,w) are ktF2en= 2| 0?4+ k%
given by, in the limitw—0,
1 Similar scaling relations hold for the species
Gh(K,w)~ ——————, To one-loop order, the self-enerdy,(k) is given by[Fig.
i w+ K2+ K2 5(b)]
Sk —ZqufdQGk 0)S,(q,Q)k(k 7
(k@) =p? | 5—| 5—Gn(k—g,0—0)S,(q,.2)k(k—0) (7a
2 dg [de) L kk-a)f 2%,@0) | 7
27) 27| i(0—Q)+32h(k—q,0— Q) qtt2e QZ+|2p(q19)|2

where the second line follows from the first in the limit of dq
small 0. We note that due to the presence of the term Eh(k)z,uzkzzh(k)*lcpf —
g~ 172, the integral is dominated by the singularity in the 2
integrand atg—0. This “infrared divergence,” which re-

sults from the divergence of theternal momentaqg, is very

different from the usual divergences encountered in critica
phenomena where the latter occur for small wave number
and are associated with long wavelength instabilities in the

1
q1+2ap ’

We now have to evaluate the integral by cutting off the mo-
nentum integration aty<<1, i.e., we follow the first of the
rocedures given above to handle the infrared divergence.
his gives, after some simplification,

external momenta. In this case due to the infrared divergence k=290
in the above equation in the internal momegtdhe integral Eﬁ(k)z,uzkz 0 L
divergesfor any value of the external momentado long as dma,
a,>0.

We thus need either to evaluate the integral with a |owe|FroZm the above equation with the scaling relatBp(k)
cutoff k, or to introduce a suitable regulator. We follow the ~ K™ we find, on equating powers &
first of these procedures for the above equation, and the sec-
ond of the procedures to do with the corresponding quantity,
Sp(k, @), for p. We note here that the presence of the t@i%h could in
We then proceed to evaluate the self-energy at zero EXteBrincipIe cause the vertex to renormalize, leading to a

nal frequency, i.eXp(k,0=0) from Eq.(78. ASq—0 We  correction toz,. In these circumstances, the expression for
can approximat&n(k—q,— ) by the self-energy.,(k,w=0) is given by

thl.

Gy (K, — Q) =i Q-+ K2+ S (K, — O dqdo
ho( ) h ) Eh(k,w=0)=/1«2f ﬁf 7, Faka.k=a)

where the second line follows from the fact that we are lookyyhere we have introduced a three-point vertex function

ing at thqu:O limit of the intgrnal frequgncﬁjqzh. As I's(k,q,k—q) in Eq. (7a. Assuming that ag—0, we can
2 p(k,0)~k*, the smalk behavior ofGp(k) is dominated by  yyrite the asymptotic form for the three-point vertex as
(k) for z,<2, i.e.,

~k*+31(k,0),

I'3(k,0,k—q)~k* €)
Gy "(k)~Zp(k). _
we find
The integral in Eq(7a becomes in the limit of zero external X
frequencies zy=1+ ?"
212
Eh(k):& ﬂ @S (q,Q). In the event that numerical results suggest1 we will
Snk)) 2m) 27T have to incorporate this new renormalized vertex into our
calculations.
Using the scaling form for the single Fourier transfdiiy. Next we examine the correlation function foy S, (k, »),

(3)] we find which to one-loop order is given Hyig. 6(a)]
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M = upWVh vertex
k-q "~y
o-Q
(©)

FIG. 5. One-loop diagrams fde) X ,(k,w), the self-energy in

p, (b) 2,(k,w), the self-energy irh for the coupled equations of

caseB [Eq. (6)]. (c) The glossary for the diagrams shown(a and
(b) and Fig. 6. For example, the propagators for lthand p vari-

ables are represented by solid and dashed lines, respectively, with a
right arrow. Additionally there are diagrammatic definitions for the

vertex and for the correlation functions for theand p variables.

dq [ dQ
2 23 22 _Al2
tr f277 2 k=g

kw)=——"——1
Snik.w) w2+|2h(k,w)|2

xsh(k—q,w—fz)sp(q,m} (10a
1 dq [ dQ
~_ @@ 2 1 =
w2+|2h(k,w)|2 T f27T 27
k—ql2 1 25,(q,9) )
|k_q|l+2ah q1+2ap Qz+|2p(q,ﬂ)|2
23 (k—q,0—Q
x( 2h(k—q,0—Q) ) (100
(0—0)%+|2p(k—q,0—Q)|?
0%+ Sk w)|? 2m gt
k_
22p<q>+zh( qQ) 2)] (108
0+, () +2n(k—Qq))

The frequency-dependent self-ene@jy(k,w) in the above
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k—q, 0—Q —q,0—Q
(a)
q,Q o q,Q2
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FIG. 6. One-loop diagrams f@a) S,(k, ), theh—h correlation
function, (b) S,(k,w), thep— p correlation function for the coupled
equations of casB [Eq. (6)].

is given by evaluating the integral over the internal fre-
qguency(} in Eq. (7b). This leads to

dq k(k—q) A
~p2 2
Eh(k,w) M JZ?T q1+2ap —iw+2p(Q)+2h(k_q)
(11a
L. (11b
TH 4ma, —iw+T gk
I'3k?
T otk e

where Fo=,ukg'1"\/A/47ra , and the second line in the
above follows from taking a—0 limit and introducing a

cutoff wave vectoik, in the integral on the first line. Intro-
ducing this expression f&(k,») in Eg. (10b and recog-

nizing that the divergence due tp ! 722 dominates the

integral we find

-1

I'gk?
k,w = w2+ — Y+ =
Sn(k.w) w2+ng2
2 2
x| 14+ 4 C0 2w, K Lok |
47-;-ap 0 k1+2an w2+1"gk2

(12

On integrating with respect t@ we can write the structure
factor S,(k,t=0) as
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k,t=0 —f oy 2 _Po Bo g4 s (ko)-— [
Sh( yt_ )= Sh( 1(1))277_ k + k1+2ah' ( ) P( ,(1))— (w2+kZZP) 2
. . dQ
Recognizing that the scaling form of5,(k,t=0) xf—z (k—q)zsh(k—q,w—Q)Sp(q,Q).
an

~k~ 172 we notice thata,, cannot in general be deter-
mined from Eq.(13). This is because the second term on the
right-hand side of Eq(13) dominates at small momenta
provided a,>0, indicating thata;, is indeterminate to this
order of calculation. Sy(k—q,0—Q)=S,(k,»).

We turn now to the critical exponents jm The single
loop self-energys (k,w) is given as shown in Fig.(® by ~ Then using the scaling relation E() we have

The above integral will now be evaluated in the limit
—0 and since) ~g* for S, we can replace

1 dq
dq [ dQ _ -H )
5, (o=0)=—p? [ 52 [ 526, (k-a,-0)5,(a,0)a" Sptkw) (w2+k22p)f 2m gz, @) (153
(14
_ ZCP k B -
Inse_rting the expressions f@,(k—q,0—{2) and S,(q,) _(w2+k2zp) Shk,@) 27 gl+2e,
we find (15b
dg [ dQ 1 C k2% K1-2antz,
Ep(k,w=0>=—u2f—q —ﬁ} = ,
27) 27 |Q+|k—Q| P 477-ap (0)2+ kZZP)(w2+ kZZh)
(150
2
2q* a where the last step follows from introducing a lower cutoff
02%+qg%n q1+2ah' ko in the momentum integration ovey.
Using Eq.(3) we have after integrating EG15¢) over w
This gives, on performing the integral over internal fre- L~ 2an
quency(), S,(k,t=0)~k (*2e) o ———— (16)
kZo(k#n+ k)
dg ¢’ 1 Finally usingz,~0 we h
S (Ko=0)=—u?| — _ inally usingz,~0 we have
P 2T q1+2ah |k—Q|ZP+qZh ,
an+ "1 forlargek (173
In order to discuss this further in the contextzyf, we need a,= 2
to make a statement aboat, andz,. We have already ob- ap—1 for smallk. (17b

tainedz,=1 in the foregoing and will now quote our nu-

merical result foray,, viz., a,=0.5. For smallk the self-  Given our numerical result ok, =0.5, the above predicts a
energy can then be written as negativea,,, at smallk. This is consistent with, and validates
our assumption of, a cutoff, that arises naturally as the
wave vector separating the region ®f<0 (no infrared di-

S (Kw)=—u? ﬂ 1 vergencg¢ anda,>0 (infrared divergence prevalenn Egs.
g 27 (q+q%) (7b) and (100).
More importantly, this nontrivial result for,, indicates
vy j d_q 1 that should we see numerical evidence of a negatiydor
P 2w (q+qP)(q+g?) | small wave vectors, we will have verified the existence of an

asymptotic hypersmoothing in our model equations, which
has an important bearing on sandpile surfaces in the continu-
ous avalanching regime. This is discussed further in our con-
cluding section.

We see from the above tha,(k,0), the relaxation rate fq
fluctuations, is negative and finite &s~0, and we need to
add a positive constank,, to the self-energy3,>|% ,(k
—0)|] for regulatory purposes. This divergence in the relax-
ation rate, needing regulation, is reflected in the divergence
we have encountered in our numerical investigations below; We focus now on our numerical results for c&eThe
we have there followed an analogous procedure by introducsoupled equations in this section and the following one were
ing a numerical regulator that replaces divergent values ofiumerically integrated by using the method of finite differ-
the transfer term by suitably defined cutoffs. The result- ences[22]. Our grids in time and space were kept as fine
ing constancy o, implies z,~0 for the regulated equa- grained as computational constraints allowed so that our grid
tions and will be used in the following. size in spaceAx was chosen to be in the range.1,0.5

The correlation functiors,(k, ) is given by[Fig. 6(b)] whereas that in time was in the rangg (0.001, 0.00h

B. Numerical analysis
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FIG. 7. Log-log plot of the single Fourier transforB(k,t=0) vsk obtained from Eqs(6) (caseB). The best fit has a slope 6f1
—2a,=—2.03+ +0.014. Other parameters gie=Dy=D,=Af=A2=1.0.

Thus the instabilities associated with the discretization ofwork [5], a regulator was introduced that replaced the func-
nonlinear continuum equations were avoided and convertion wpVh by the following:

gence was checked by keepiag) small enough such that the
quantities under investigation were independent of further +1 for wp(Vh)>1
discretization. Our results were also checked for finite size T=1< up(Vh) for —1<sup(Vh)<1l
effects. In the calculations of this section we chd3g 1 for wp(Vh)<—1
=D,=1.0 andu = 1 and our results were averaged over Kp ’
several independent configurations. We have calculated the o ) ] ]
exponentse and 8 and the corresponding error bars using!n addition in this paper, we ha_ve introduced noise reduction
the linear least square fit so that(1+28) and —(1 to the r_egulated equatl_o_ns, which has led to a more accurate
+2a) are given by slopes of the fitted straight lines. evaluation of all our critical exponents. . .

On discretizing Egs(6) we found once again the diver- ~ The Fourier transforng,(k,t=0) (Fig. 7) is consistent
gences that were previously observed[&]. These diver- With & spatial roughening exponent,~0.501+0.007 via
gences are in our view a direct representation of the infrare@Ur observation of
divergence mentioned above, and we follow here a parallel

course in regulating these via an explicit regulator. In earlier Sh(k,t=0)~k 2030014
12 T T T T T T
© Data o
b Best fit ----
10 | <> 4
.
.
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8 I ~, < .
<,
T e,
? 6%
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@ P
=
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FIG. 8. Log-log plot of the single Fourier transfoif(x=0,0) vs w for caseB obtained from Eqs(6). The best fit shown in the figure
has a slope of-1—2a,=1.93+0.017. Againu=D,=D,=Af=A2=1.0.
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FIG. 9. The double Fourier transfor8y(k; ,w) vs w (caseB) calculated at two different wave vectdes=0.1 (¢ ), 0.2(+). The curves
[solid (1) and dashed?) lines| shown in the figure are plots of E¢L8) with I'y=0.4 and 0.5for k; andk,, respectively, to serve as a
guide to the eye. Other parameters are2, A7=A2=0.1, D,=D,=1.0.

and the Fourier transforrg,(x=0,w) (Fig. 8 is consistent S (k,w=0)~k 2. (19
with a temporal roughening exponefit~0.465+0.008 via
our observation of Realizing that our computed,< 1, we obtain from Eq(12)

S(X=0,0)~ @~ 19350017 the prediction

Hencez,~1.07, and thus the exponext=0 [Eq. (9)], in- Sh(k=0,0)~w 2. (20
dicating that theu vertex does not renormalize.
Using a,~0.5 in Eq.(12) we can write the structure fac-  The full structure factoiS,(k,w) has been calculated at

tor S(k,w) as two differentk points and Fig. 9 displays our results fitted to
Eq. (18). The solid and the dashed line in Fig. 9 are the plots
~ 1 [1+0% 1 of Eq. (18) for k=0.1 andk=0.2 with [,=0.4 and 0.5,
Sk, @)= 1+Qz(1+92){ T 2K2 + Tok3|’ (18) respectively. The spatial structure fac@y(k,o=0) shows

a power-law behavio(Fig. 10 given by
whereQ = /T gk. We find from the above that the expected

form of S;,(k,w=0) in the limit of small wave vectors is Sh(k,w=0)~k 3405029
16 T T T T T T T T T
Data ©
. Best fit ---—-—
14 4
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.
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FIG. 10. Log-log plot of the double Fourier transfoi®y(k,o =0) vsk (caseB) obtained from Eqs(6). The best fit has a slope of
—(1+2ap+2,)=—3.40£0.029. Again,u=1.0, D,=D,=1.0, Af=A2=0.5.
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FIG. 11. Log-log plot of the double Fourier transfoi®(k=0,0) Vs w obtained from Eqs(6) (caseB). The best fit displayed in the
figure has a slope of (1+ 28+ 1/z;) = —1.91+0.017. Other parameters aue=1.0,D,=D,=1.0,Af=A2=0.5.

in qualitative accord with Eq(19), and the temporal struc-

ture factorS,,(k=0,0) shows a power-law behavidgFig. 11)
given by

Sh(k: 0,w)~ w*l.9]i.017

in accord with Eq.(20).

Given our values ofx,=0.5 andz,=1, Eqgs.(179 and
(17b) predict a crossover i, from O at largek to —0.5 as
k—0. The single Fourier transforr§,(k,t=0) (Fig. 12
shows a crossover behavior from

— —2.12+0.017
S,(k,t=0)~k
for large wave vectors to

S,(k,t=0)~const

ask—0. In Fig. 12 we find a crossover from 0.56 at laige

to —0.5 ask— 0, which shows the same trend as the predic-
tion above. Note, however, that the simulations also mani-
fest, in addition to the theoretical predictions, the normal
diffusive behavior represented hby,=0.56 at large wave
vectors. The single Fourier transform in ting(x=0,w)
(Fig. 13 shows a power-law behavior:

— —1.81+0.017
S,(x=0,0)~ .

While the range of wave vectors in Fig. 12 over which
crossover inS,(k,t=0) is observed was restricted by our
computational constraints, the form of the crossover appears
conclusive. Checkéwith fewer averagesover larger system
sizes revealed the same trend; additionally our theoretical
calculations support the observed crossover via EGg.
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FIG. 12. Log-log plot of the single Fourier transfor§)(k,t=0) vsk (caseB) showing a crossover from a slope 6fLl—2a,=0 at
smallk to —2.12+0.017 at largek. Other parameters age=1.0, D,=D,=1.0, A;=A2=0.5,
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FIG. 13. Log-log plot of the single Fourier transfor@)(x=0,w) Vs w obtained from Eqs(6) (caseB). The best fit has a slope of
—1-2p,=—1.81x0.017. Again,u=1.0, D,=D,=1.0, Af=A2=0.5.

C. Homing in on the physics: A discussion of smoothing with 7(x,t) representing white noise as usual.

We focus in this section on the physics of the equations Here,

and our results. In the regime of continuous avalanching in 7 forz>0

sandpiles, the major dynamical mechanism is that of mobile z+=[ . (229
grainsp present in avalanches flowing into voids in the 0 otherwise,

landscape as well as the converse process of unstable clusters

(a surfeit of Vh above some critical vallidoecoming desta- ]z for z<0 298
bilized and adding to the avalanches. Our results for the criti- “l0 otherwise. (22D

cal exponents i indicate no further spatial smoothing be-

yond the diffusive; however, those in the spegigadicate a This equation was also presented in earlier wiéikin the
crossover from purely diffusive to an asymptotic hyper-context of the surface dynamics of an evolving sandpile. The
smooth behavior. Our claim for continuous avalanching is agwo terms in the transfer terri represent two different
follows: the flowing grains play the major dynamical role as physical effects which we will discuss in turn. The first term
all exchange betweeh and p takes place only in the pres- represents the effect of tilt, in that it models the transfer of
ence ofp. These flowing grains therefore distribute them- particles from the boundary layer at the “stuck” interface to
selves over the surface filling in voids in proportion both tothe flowing species whenever the local slope is steeper than
their local density as well as to the depth of the local voids;some thresholdin this case zero, so that negative slopes are
it is this distribution process that leads in the end to apenalizedl The second term is restorative in its effect, in that
strongly smoothed profile ip. Additionally, since in the inthe presence of “dips” in the interfadgegions where the
regime of continuous avalanches, the effective interface islope is shallower, i.e., more positive than the zero threshold
defined by the profile of thélowing grains, it is this profile used in these equationshe flowing grains have a chance to
that will be measured experimentally for, say, a rotating cyl-resettle on the surface and replenish the boundary [&jer

inder with high velocity of rotation. We notice that because one of the termJiis independent
of p we are no longer restricted to a coupling that exists only
IV. ANOMALOUS SMOOTHING: THE CASE OF TILT in the presence of flowing grains: i.e., this model is appli-
AND BOUNDARY-LAYER EXCHANGE (CASE C) cable to intermittent avalanches whenmay or may not

always exist on the surface. In the following we examine the
The last case we discuss in this paper involves a morgffect of this interaction on the profiles bfand p, respec-
complex coupling between the stuck graimand the flowing tively.
grainsp as follows: The complexity of the transfer term with its discontinuous
functions precludes any attempts to solve this model along

dh(x,t) 2 the lines of the earlier ones. We make some remarks here,
ot DaVhOt) =T+ 7(x,0), (213 however, on the likely critical behavior of this model.
We observe that the transfer term
dp(x,t) )
7 =D, Vop(x,t)+T, (21b T=—Ap(Vh),—»(Vh)_

can be thought of as a formal infinite series by invoking a
T(h,p)=—=v(Vh)_=\p(Vh), (210  suitable representation for the Heaviside step functions in
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which, in the regime where the KPZ hyperscaling holds,
should look likeS;,(k,w=0)~k 4.

We now try to obtain additional insights into the behavior
of these equations using the Hartree-Fock approximation.
The spirit of the Hartree-Fock approximation is to replace
nonlinear terms by linear ones with coefficients that are gen-
erally determined self-consistently. To undertake that here,

® = Dressed KPZ vertex we note that the step funct_iorﬁEq. (23_)] give risc_e to non-
B linearities and hence the simplest thing to do is to replace
® = Bare KPZ vertex them by an expectation valithe argument of the step func-
tion is a random variable and hence this is an acceptable
(@ approximation. We represent this expectation value by a

numberc with 0<c<1. The equations of motion thus read

oh
E=DhV2h—)\’pVh— v'Vh+g,(x,1), (243

(9[) 2 ’ ’
P E:DPV p+N pVh+v'Vh, (24b

with \"=c\ andv'=(1—c)v and are identical to the ones
B studied by Bouchaueét al. [7]. We expect at least in some
> = Bare Ap@h) vertex regime of Eqs(21) to reproduce the mean-field results ap-
propriate to Eqs(24a and(24b).

v

Dressed \pN h) vertex

(b)
) 1. Results for the single Fourier transforms
FIG. 14. One-loop corrections ta) the KPZ vertex, andb) the ] ] )
\ vertex for the coupled equations of ca8gEgs. (21)]. The single Fourier transform§;(k,t=0) (Fig. 19 and
S, (x=0,0w) (Fig. 16 show power-law behavior correspond-
Eq. (23). We are then led to consider the following more INg to

general structure for the transfer tefim S, (K,t=0)~ k~256:0.060

[’

T=—Ap(Vh)—»(Vh)— 2, v,(Vh)"?

n=1

Sh(XZO (1))"\’ w*l.GSt0.0ll

which implies that the roughness and the growth exponents
are given respectively byy,=0.78+0.030 andB,=0.34
_Pnzl Nn(VH)" (23 +0.005. This suggestg,= a,/ By~ 2, contradicting the pre-
diction of z,=1 by perturbative methods and suggesting that
Note, however, that this is not a very well-defined expansiorin® mean-field approach outlined in the above might be more

because the coefficients in the infinite series could well b&PPropriate. We discuss this further in what follows.

very large, if not infinite. However, given this disclaimer, we  However, the smalk limit of Sy(k,t=0) indicates a
can still make the following comments in the spirit of self- downward curvature and thus a deviation from the linear

behavior at highek (Fig. 15. This curvature, which had also
been observed in previous wofl6], indicates a smaller
roughness exponerat, there, i.e., an asymptot&moothing

oo

consistency, i.e., subject to numerical verification.

If Ap(Vh) were the only nonlinearity, as in cag& we
would have z,=1. Using h~x% and p~Xx%, we see
Ap(Vh) is a more relevant nonlinearity than(Vh)?2, the
leading nonlinear term in the expansion &f)_, and is
likely to be the controlling nonlinearity for the extreme long  The double Fourier transforng,(k,w=0) (Fig. 17 and
wavelength behavior. Figure 14 shows that thevertex S,(k=0,w) (Fig. 18 show power-law behavior correspond-
never renormalizes in the presence of the KPZ terning to
v1(Vh)?2, so thatz, is always fixed at unity. However, the
KPZ vertex corresponding te;(Vh)? has distinct behavior
in different wave vector ranges. In the range where the ver-
tex renormalizes, we cannot say much about the behavior of S, (K, w=0)~

2. Results for the double Fourier transforms

Sh(k= 0 a))~ w71.80t0.007

k= 4540081 for |arge wave vectors

ayp,; however, in the range where it doest renormalize, we const for small wave vectors.

might imagine that normal KPZ hyperscaling,+z,=2

would be restored. This, witk,=1, would givea,=1. The double Fourier transforns,(k=0,0) shows the
If z,=1, we can write the scaling relati@,(k, o= 0) for usualw ~ 2 behavior that we have seen before in E&.and

the double Fourier transform at zero frequency as (20), which we have already discussed earlier.

The structure factofS,(k,wo=0) signals a dramatic be-
Sh(k,w=0)~k 272, havior of the roughening exponent,, which crosses over
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FIG. 15. Log-log plot of the single Fourier transfoiggk,t =0) vs k for caseC obtained from Eqgs(21). The slope of the fitted line is
given by —1—2a,=—2.56=0.060. The parameters used in the simulationia#el0, A=1.0, D,=D,=1.0, Aﬁzl.o.

from (i) a value of 1.3 indicating anomalously large rough-also consistent with the downward curvature in the single
ening at intermediate wave vectors, (i a value of about  Fourier transfornts,(k,t=0), as both imply a negativey, ;
—1 for small wave vectors indicating asymptotic hyper-we mention also that the wave vector regime where this

smoothing. smoothing is manifested is almost identical in both Figs. 15
The anomalous roughening,=1 seen here is consistent and 17.
with that observed via the single Fourier transfaiffig. 15 Since we expect that the anomalous smoothing results

and suggests, via the perturbative arguments given previrom a failure of the expansion of the step functions along
ously, thatz,=1. However, if we assumg,= 2 according to  the lines of Eq(23), this underlines our expectation that the
the results of the single Fourier transforms given above, thisnean-field solution of Eqg243 and(24b) would capture at
would lead to anw,, of about 0.8, in agreement with the least some of the flavor of this regime. We have therefore
values obtained both via single Fourier transforms in thesolved the mean-field equatiofi&gs. (248 and (24b)] nu-
present paper, and if5]. In either case, our values af,  merically, and from Fig. 19 and Fig. 20 we find that there is
(either 1.3 or 0.Bsuggest anomalous roughening of the in-a crossover it8,(k,t=0) (Fig. 19 from a diffusive behavior

terface at moderately large wave vectors. (z,=2) at high wave vectors to a smoothing behavior at low
The anomalous smoothing obtained heeg —1 if z,  wave vectors.
~1, anda,~ —1.5 in the event that, is taken to be Ris This behavior is reflected in our results for c&seAt low
14 T T T T T
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FIG. 16. Log-log plot of the single Fourier transforx=00) vs o obtained from Eqs(21) (caseC). The best fit has a slope of
—1-2p,=—1.68+0.011 with parameters=10, \=1.0D,=D,=1.0, A7=1.0.
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FIG. 17. Log-log plot of the double Fourier transfo®i(k,» =0) vs k obtained from Eqgs(21) (caseC). The best fit for high wave
vector has a slope of (1+2ay,+2,)=—4.54+0.081. Ask—0 we observe a crossover to slope of zero. Other paramete3;a® ,
=1.0, A?=1.0, =10, and\ =1.0.

frequencies the region of anomalous smoothing can be urappear, and we begin to see a “shoulder” reminiscent, as it
derstood by comparison with the corresponding region in th&hould be, of the behavior observed in c&é€Fig. 9). This
mean-field equations Eq&4g and(24b), which also mani-  suggests that the present model is an integrated version of
fest this. At largek, S,(k,t=0) and S,(k,w=0) indicate the earlier two, reducing to their behavior in different wave

anomalous roughening with,~z,~1, which is consistent vector regimes; we speculate therefore that thereveoely-
with the infrared divergence discussed in the previous secamical exponentsz{,=1 andz,=2) in the problem.

tion. However, as in cask, S,(x=0,w) is dominated by the
diffusive z,=2 arising from the presence &{w—v»'k) in

the mean-field soluti_on of cage. This behavior is corrobo- V. DISCUSSION AND CONCLUSIONS
rated by an evaluation of the full structure fac®(k;,w)
(Fig. 21 which shows a distinct peak at a# given by w; We have presented in the above a discussion of three

=7'k;; this is reminiscent of the Lorentzian obtained in casemodels of sandpiles, all of which manifest asymptotic
A (Fig. D). In fact, to leading ordei$;,(k,w) can be fitted to  smoothing: caseé and C manifest this in the specids of
a Lorentzian; however, as we reduce the relative strength aftuck grains, while casB manifests this in the specigsof
v(Vh) _ with respect ta\ p(Vh) , the Lorentzian peaks dis- flowing grains. We reiterate that the fundamental physical
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FIG. 18. Log-log plot of the double Fourier transfo®j(k=0,0) vs w obtained from Eqs(21) (caseC). The best fitted line shown in
the figure has a slope of (1+ 28+ 1/z,)= —1.80+0.007. Other parameters abg,=D,=1.0, Aﬁ: 1.0, »=10, and\=1.0.
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FIG. 19. Log-log plot of the single Fourier transfoi(k,t =0) vs k obtained from the mean-field EqR4a and (24b). The highk
region is fitted with a line of slope-1—2a,=—2.05£0.017. The lowk region is fitted with a line of slope-1—2«a,=—0.93+0.024.
Note the crossover fromr,=0.5 at largek to zero at smalk. Other parameters ang =10,\'=2.0,D,=D,=1.0, Aﬁ:O.l.

reason for this is the following: casésandC both contain  sis includes a mean-field solution that is able to reproduce
couplings that are independent of the dengitpf flowing  the asymptotic smoothing observed.

grains, and are thus applicable, for instance, to the dynamical We suggest therefore an experiment where the critical
regime of intermittent avalanching in sandpiles, when graingoughening exponents of a sandpile surface are measured in

occasionally but not always flow across the “bare” surface. ) 5 rapidly rotated cylinder, in which the time between
In caseB, by contrast, the equations are coupled only when — ayajanches is much less than the avalanche duration. Our
there is continuous avalanching, i.e., in the presence of a regyits predict that for small system sizes we will see
finite densityp of flowing grains. only diffusive smoothing, but that for large enough sys-
The analysis of casa is straightforward, and was under- tems, we will see extremely smooth surfaces.
taken really only to explain features of the more complex(2) a slowly rotated cylinder where the time between ava-
caseC; that of caseB shows satisfactory agreement between  |anches is much more than the avalanche duration. In
perturbative analysis and simulations. Anomalies persist, this regime, the results of case make a fascinating
however, when such a comparison is made in dasde- prediction: anomalously large spatial roughening for
cause the discontinuous nature of the transfer term makes it moderate system sizes crossing over to an anomalously
analytically intractable. These are removed when the analy- large spatial smoothing for large systems.
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FIG. 20. Log-log plot of the single Fourier transfoi®j(x=0,w) vs w for the mean-field Eq9249 and(24b). The best fit has a slope
of —1-2p,=—1.94+0.001 with parameters’ =10, A’ =2.0,D,=D,=1.0,A7=0.1.
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FIG. 21. The double Fourier transforsy(k; ,w) vs w obtained from Eqgs(21) (caseC) evaluated at three different wave vectérs
=0.2 (¢), k,=0.4 (+), andk;=0.8 () with parameter®,=D ,=1.0, Aﬁ= 1.0,»=5, and\ =1.0. The peaks correspond to frequencies
0;=1.0,w,=2.0,w=4.0.

Finally we make some speculations in this context con-assistance. Arnab Majumdar acknowledges the hospitality of
cerning natural phenomena. The qualitative behavior oENBNCBS during the course of this work. Anita Mehta ac-
blown sand dunef23] is in accord with the results of case knowledges the support of the National Science Foundation,
B, because sand moves swiftly and virtually continuouslyunder Grant No. PHY94-07194, at the Institute of Theoreti-
across their surface in the presence of wind. By contrast, ofal Physics, Santa Barbara, where part of this research was
the surface of a glacier, we might expect the sluggish motiogarried out.
of boulders to result in intermittent flow across the surface,
making the results of casé more applicable to this situa- APPENDIX
tion. It would be interesting to see if the predictions of
anomalous roughening at moderate, and anomalous smooth- In this appendix we discuss some of the technical points

ing at large, length scales is applicable here. related with the double Fourier transform. We have found
that the crossover that we have seen in the(Bqwould not
ACKNOWLEDGMENTS have been observed had we been using the single Fourier

transformsS;(k,t=0) and S;,(x=0,0) for numerical pur-
Parthapratim Biswas would like to thank the Council of poses. We illustrate this by writing explicitly the expressions
Scientific and Industrial Resear@B8SIR), India, for financial  for the relevant quantities:
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FIG. 23. (a) Log-log plot of the single Fourier transforBy(x=0,0) vs w obtained from Eq(4a showing a slow crossover. Lines 1 and
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1 and 2, respectively. Note the increase in oscillation for increasing valuesTdfe other parameters abig,=A?=1.0.

Sy(k,t=0)~k ™2 (Ala) = dk
Sh(XZO,w): Z_Sh(kiw)
— &l
0 ?  for w small (Alb) = dk 1 D, k?
Sx=00)~| 15 :f dk 1 | h |
® or w large. (Alc) W2 thzh[(w—ck)2+DﬁkZZh

In the limit ®—ck the term in the square brackets behaves
The examination of5,(k,t=0) (Fig. 22 on its own yields like a é function and thus
no indication of the crossover to the smoothing fixed point;

although there is a crossover in tBg(x=0,0) graph[Fig. _ [~ dk 1

23(@)] from o % to w2, the analysis below shows that Sh(x=0w)= 27 D ke 5("’_Ck)’“ﬁ' (A2)
bothregimes reflect diffusive behavior, so that the smoothing

fixed point (@,=0,8,=0,z,=1) is entirely suppressed. This is the origin of ballistic behavior in the flow term and is

The single Fourier transforr8,(x,w) is defined by responsible for two anomalies.
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(1) Firstly, we notice from the above that thiefunction  ated with the flow term. This results in oscillatory behavior
causesS,(x=0,w) to behave likaw~?. Comparing with Eq.  arising from thenonzerointervals inx associated with the
(Alb) this leads taz,=2. However a simple-minded appli- sampling of the profile to generate the Fourier transform,
cation of Egs(3) would have led to th&rongconclusion of  S,(x=0,w), which introduce a flavor aB,(x, w) for finite x.
Bn=0.5. Even if the correct scaling relation E#\2) were  These become increasingly violent@icreases because of
employed, the ballistic nature of the flow term picks out,the increased fluctuations associated with the ballistic flow
misleadingly, thénigh frequency(diffusive) dynamical expo- term over the grids. In order to avoid these oscillations, one
nent in thelow frequency regime o8,(x=0,w) [Eq.(Alb)].  should choose grid sizesx andAt in such a way that they
The low wave vector, low-frequency smoothing behavior isare always less than the characteristic scales in the problem,

thus entirely suppressed. i.e.,
(2) Secondly, spurious oscillations are obserjétg.
23(b)] in the graph foIS,(x=0,w) as a function of grid size. Ax<x, and At<t,.

A consideration of the form of the structure fact8(x
=0,0) makes it clear the crossover from small to large
should not involve any imaginary quantities, and therefor
strictly speaking we should not see any oscillatory behavi
in the structure factor in this limit. However, the full form of
the structure facto,(x, ) for finite x doescontain imagi-

In view of the above, it is necessary to use the double Fourier
oetransform to obtain an unambiguous picture of the structure

Factor and to pick out the asymptotic smoothing although this
strategy might on first appearance seem to be a computa-

nary portions, which are responsible for the oscillations. Th tional overkill. The overwhelming advantage is that, by scan-

- ) . . “hing the structure factor as a function of frequeneyor a
characteristic length and time scales in our problem are giveR "4k one immediately sets two frequency scatdsand

by D,k?, thus making it possible to pick up the relevance of
to=Dp/c2, xo=Dylc. these scales iB,(k,w). We also mention that our discussion
is equally applicable to the Kardar-Parisi-Zhang equation
Whenever grid sizes in time or space are comparable to the$&7] with the addition of a flow term. Here too, the use of the
characteristic lengths, the profile fluctuates across these imlouble Fourier transform reveals the presence of the
tervals, which is then aggravated by the shock fronts associ‘'smoothing” fixed point due to the flow term.
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