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Kinetics of a mixed Ising ferrimagnetic system
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We present a study, within a mean-field approach, of the kinetics of a classical mixed Ising ferrimagnetic
model on a square lattice, in which the two interpenetrating square sublattices have spinss561/2 andS5

61,0. The kinetics is described by a Glauber-type stochastic dynamics in the presence of a time-dependent
oscillating external field and a crystal field interaction. We can identify two types of solutions: a symmetric
one, where the total magnetizationM oscillates around zero, and an antisymmetric one whereM oscillates
around a finite value different from zero. There are regions of the phase space where both solutions coexist.
The dynamical transition from one regime to the other can be of first or second order depending on the region
in the phase diagram. Depending on the value of the crystal field we found up to two dynamical tricritical
points where the transition changes from continuous to discontinuous. Also, we perform a similar study on the
Blume-Capel (S561,0) model and find strong differences between its behavior and the one of the mixed
model.@S1063-651X~98!05107-1#

PACS number~s!: 05.50.1q, 75.10.Hk
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I. INTRODUCTION

The time evolution of metastable states of a mixed Is
ferrimagnetic model is studied by establishing a Glaub
type dynamic@1# that drives the system between two equiv
lent ordered phases. This approach provides a simple wa
introduce a nonequilibrium kinetics into models such as
Ising and the Ising mixed systems, that do not have a de
ministic dynamics. Numerous studies indicate that stocha
dynamics, despite its simplicity, can describe in a qual
tively correct way nonequilibrium phenomena and dynam
cal phase transitions found in real systems@2#. A kinetic
Ising model has been applied successfully to model mag
tization switching in nanoscale ferromagnets@3#.

The model to be studied is a mixed Ising ferrimagne
system on a square lattice in which the two interpenetra
sublattices have spins one-half (61/2) and spins one
(61,0). This system is relevant for understanding bimeta
molecular ferrimagnets that are currently being synthesi
by several experimental groups in search of stable, crys
line materials, with spontaneous magnetic moments at ro
temperature@4#. The magnetic properties of the mixed Isin
models have been studied by high-temperature series ex
sions @5#, renormalization group@6#, mean field@7#, Monte
Carlo simulations, and numerical transfer matrix calculatio
@8#, but always at equilibrium conditions.

In this work we are going to study, within a mean-fie
approach, the kinetics of the model in the presence of a ti
dependent oscillating external field. We found that there
three regimes: a paramagnetic one where the total mag
zation follows the field, a ferromagnetic one where the to
PRE 581063-651X/98/58~2!/1260~6!/$15.00
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magnetization does not follow the field and oscillates arou
a value different from zero, and a region where both so
tions coexist. The transition between regimes can be cont
ous or discontinuous, depending on the temperature and
external field. Depending on the parameters of the Ham
tonian this system can have up to two dynamical
critical points.

II. THE MODEL

We consider a kinetic mixed Ising ferrimagnetic system
a square lattice described by the Hamiltonian

H52J (
^NN&

Sis j2D(
i

Si
22HS (

i
Si1(

j
s j D , ~1!

where theSi take the values61 or 0 and are located in
alternating sites with spinss j561/2. Each spinS has only
s spins as nearest neighbors and vice versa. The sum(^NN&
is carried out over all nearest-neighbor pairs. The sums( i
and ( j run over all the sites of theS and s sublattices,
respectively.J is the exchange parameter,D is the crystal
field interaction, andH is a time-dependent external ma
netic field given by

H~ t !5H0cos~vt !, ~2!

all in energy units. We chooseJ to be negative, so the cou
pling between the NN spins is antiferromagnetic.

The system evolves according to a Glauber-type stoch
tic dynamics at a rate of 1/t transitions per unit time. Leav
ing the S spins fixed, we defineP8(s1 , . . . ,sN ;t) as the
1260 © 1998 The American Physical Society
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PRE 58 1261KINETICS OF A MIXED ISING FERRIMAGNETIC SYSTEM
probability that the system has thes-spin configuration,
s1 , . . . ,sN , at timet, also, by leaving thes spins fixed, we
define P9(S1 , . . . ,SN ;t) as the probability that the system
has theS-spin configuration,S1 , . . . ,SN , at time t. Then,
we calculatewj (s j ) and Wi(Si→Si8), the probabilities per
unit time that thej th s spin changes froms j to 2s j and the
i th S spin changes fromSi to Si8 , respectively.

A. Calculation of wj„s j…

We write the time derivative ofP8(s1 , . . . ,sN ;t) as

d

dt
P8~s1 , . . . ,sN ;t !

52S (
j

wj~s j ! D P8~s1 , . . . ,s j , . . . ,sN ;t !

1(
j

wj~2s j !P8~s1 , . . . ,2s j , . . . ,sN ;t !. ~3!

If the system is in contact with a heat bath at temperat
T, each spins can flip with probability per unit time given
by the Boltzmann factor@9#

wj~s j !5
1

t

exp~2bDEj8!

11exp~2bDEj8!
, b51/kBT ~4!

where

DEj852s j S J(̂
i &

Si1H D ~5!

gives the change in the energy of the system when
s j -spin flips.

From the master equation associated to the stochastic
cess it is simple to prove that the average^s j (t)& satisfies the
equation@10#

t
d

dt
^s j&52^s j&1K 1

2
tanhF1

2
bS J(̂

i &
Si1H D G L , ~6!

that, within a mean-field approach@11# and for an externa
field defined by Eq.~2!, takes the form

t
d

dt
^s&52^s&1

1

2
tanh

1

2
b@JZ^S&1H0cos~vt !# , ~7!

where^s& and^S& are thes-spin andS-spin sublattice mag-
netizations, respectively, andZ54 is the coordination num
ber for this model.

B. Calculation of Wi„Si˜Si8…

In a similar way, the time derivative of th
P9(S1 , . . . ,SN ;t) can be written as
e

e

ro-

d

dt
P9~S1 , . . . ,SN ;t !

52(
i S (

Si8ÞSi

Wi~Si→Si8!D P9~S1 , . . . ,SN ;t !

1(
i S (

Si8ÞSi

Wi~Si8→Si !P9~S1 , . . . ,Si8 , . . . ,SN ;t !D .

~8!

Each spin can change from the valueSi to the valueSi8 with
probability per unit time

Wi~Si→Si8!5
1

t

exp@2bDE9~Si→Si8!#

(
Si8

exp@2bDE9~Si→Si8!#

, ~9!

where(S
i8

is the sum over the three possible values ofSi8 ,

61, 0, and

DE9~Si→Si8!52~Si82Si !S J(̂
j &

s j1H D 2~Si8
22Si

2!D

~10!

gives the change in the energy of the system when
Si-spin changes. The probabilities satisfy the detailed b
ance condition

Wi~Si→Si8!

Wi~Si8→Si !
5

Peq9 ~S1 , . . . ,Si8 , . . . ,SN!

Peq9 ~S1 , . . . ,Si , . . . ,SN!
~11!

and, substituting the possible values ofSi , we get

Wi~1→0!5Wi~21→0!5
exp~2bD !

2cosha1exp~2bD !
,

Wi~1→21!5Wi~0→21!5
exp~2a!

2cosha1exp~2bD !
,

~12!

Wi~0→1!5Wi~21→1!5
exp~a!

2cosha1exp~2bD !
,

where a5b(J(^ j &s j1H). Notice that, sinceWi(Si→Si8)
does not depend onSi , we can writeWi(Si→Si8)5Wi(Si8),
and the master equation becomes

d

dt
P9~S1 , . . . ,SN ;t !

52(
i S (

Si8ÞSi

Wi~Si8!D P9~S1 , . . . ,SN ;t !

1(
i

Wi~Si !S (
Si8ÞSi

P9~S1 , . . . ,Si8 , . . . ,SN ;t !D .

~13!
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Since the sum of probabilities is normalized to one,
multiplying both sides of Eq.~13! by Sk and taking the av-
erage, we obtain

t
d

dt
^Sk&52^Sk&1

2sinhbS J(̂
j &

s j1H D
2coshbS J(̂

j &
s j1H D 1exp~2bD !

~14!

or, in terms of a mean-field approach

t
d

dt
^S&52^S&

1
2sinhb@JZ^s&1H0cos~vt !#

2coshb@JZ^s&1H0cos~vt !#1exp~2bD !
.

~15!

III. RESULTS

The system evolves according to the set of coupled
ferential equations given by Eqs.~7! and ~15!, that can be
written in the form

V
d

dj
m152m11

sinh~1/T!~m21hcosj!

cosh~1/T!~m21hcosj!1 1
2 exp~2bD !

,

~16!

V
d

dj
m252m21

1

2
tanh

1

2T
~m11hcosj!,

where m15^S& and m25^s&, V5tv, j5vt, T
5(bJZ)21, andh5H0 /JZ. We fix J521. We are going to
study the stationary solutions of this system and its dep
dence with the parameters.

In general, the solutions of the system depend on the
tial conditionsm1(j50) andm2(j50). For a given set of
parameters and initial conditions the system passes throu

FIG. 1. Solutions for different initial conditions withT50.05,
h50.5, V/2p51.0, andD520. As we see, after the transient r
gime, some different initial conditions give the same solutions.
y

f-

n-

i-

h a

transient regime until the solution becomes stationary.
Fig. 1, we show the solutions of the total magnetization,M
5m11m2, for different initial conditions. We found that th
following combinations of initial conditions:

m1~j50!51, m2~j50!50.5, ~17!

m1~j50!50, m2~j50!50 ~18!

give all the possible different stationary solutions. As e
pected, the sublattice magnetizations,m1, m2, and the total
magnetizationM are periodic functions ofj with period 2p.

By choosing as the dynamical parameter the average
magnetization in a period

Q5
1

2pE0

2p

M ~j!dj ~19!

we can identify two types of solutions: a symmetric o
whereM (j) follow the field, oscillating around zero giving
Q50, and an antisymmetric one whereM (j) does not fol-
low the field and oscillates around a finite value differe
from zero, such thatQÞ0. Examples of both types of solu
tions are shown in Fig. 2. The first type of solution is call
paramagnetic~P! and the second type ferromagnetic~F!. The
dynamical phase transition is located in the boundary
tween both solutions, and depending on the region of
phase diagram, can be of first or second order. For the
order phase transition the order parameterQ is discontinu-
ous, and jumps abruptly from zero to a nonzero value.
the second order phase transition, the order parameter
creases continuously to zero, but its first derivative is disc
tinuous. If we fix the values ofD andV for each value ofh,
we get that the dynamical phase transition occurs at temp
tureTc . In the thermodynamical plane, (T,h), we can define
a critical line Tc5Tc(h), the point on the critical line at
which the transition changes from first order to second or
is denominated dynamical tricritical point.

As it is shown in Fig. 3, forD large and positive, we
recover the phase diagram of the standard Ising model@11#.

FIG. 2. Types of solutions: antisymmetric whereM oscillates
around a finite value different from zero, and symmetric whereM
oscillates around zero. ForT50.05, h50.5, V/2p51.0, andD
520.



d
b

re

itic
iti
i-

n
is

g

a

e
io

are

ded
c-
in

er
ond
. 7.

the
and

lues

e

t.
al-
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At high temperatures the solutions are paramagnetic an
low temperatures they are ferromagnetic. The boundary
tween both regions, F→ P, is given by the critical line, and
indicates a continuous phase transition. At low temperatu
there is a range of values ofh for which the ferromagnetic
and paramagnetic solutions coexist and two separated cr
lines appear, one that indicates the discontinuous trans
between the F and the P1F regions, and the other that ind
cates the discontinuous transition between the P1F and the P
regions. The point where both lines merge signals the cha
from a first order to a second order phase transition and
dynamical tricritical point.

When D becomes negative, we found that in the ran
22.037 60<D,20.118 25 ~for V/2p51) and low tem-
peratures, a new first order critical line appears that separ
a new region where both solutions coexist F1P from the F
region. A phase diagram corresponding to a value ofD in
this interval is shown in Fig. 4. This new critical line is du
to the fact that, in this region, the sublattice magnetizat

FIG. 3. Phase diagram in the (T,h) plane forV/2p51.0 and
D520.0. The paramagnetic~P! and the ferromagnetic~F! solutions
overlap in the region indicated by P1F. The s symbol indicates
the dynamical tricritical point.

FIG. 4. Phase diagram in the plane (T,h) for V/2p51.0 and
D521.5. Thes symbol indicates the dynamical tricritical poin
Notice the appearance of a new critical line at lowT.
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m1 is very small, almost zero, such that both sublattices
practically uncoupled, leavingm2 free to oscillate with the
external field giving a paramagnetic-type response,Q50, as
seen in Fig. 5. WhenD<22.037 60 the phase diagram
changes dramatically. The paramagnetic region is exten
over the lowh regions, new critical lines appear, and a se
ond dynamical tricritical point emerges. Phase diagrams
this interval can be observed in Fig. 6. The two first ord
transitions that occur at low temperature and the two sec
order transitions at higher temperature are shown in Fig
In all cases we found that, as the crystalline fieldD becomes
larger but negative, the region of the phase space where
system behaves ferromagnetically becomes narrower
shifts toward higher values ofh. This effect, shown in the
inset of Fig. 6, is somewhat expected since, for these va
of D, higher values ofh are needed to keepm1(j) different
from zero such that the order parameterQ can also be dif-
ferent from zero. IfD is large enough and negative, th
system behaves in almost all the plane (T,h) as a paramag-
net.

FIG. 5. Behavior ofm1(j) and m2(j) for T50.05, h50.2,
V/2p51.0, andD521.5.

FIG. 6. Phase diagram in the plane (T,h) for V/2p51.0 and
D522.5. In the inset we compare the phase diagram for two v
ues ofD: D1522.5 andD2522.7. Again thes symbol indicates
the dynamical tricritical points.
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1264 PRE 58G. M. BUENDÍA AND E. MACHADO
An interesting question arises at this point: is the ex
tence of a second tricritical point due to the fact that o
model has a higher spin value,S561,0, than the Ising
model, or to the fact that theS- and s-spin operators are
alternated on the lattice? To address this point, we study
Blume-Capel model~BC! where a spinS561,0 is located at
each site of a square lattice. The Hamiltonian of the
model is

H52J (
^NN&

SiSj2D(
i

Si
22H(

i
Si , ~20!

whereJ, D, andH are in energy units. We chooseJ521 in
order to compare with our model. Applying the Glauber-ty
stochastic dynamics and the mean-field approach descr
in Sec. II B, we get that the time evolution of the BC mod
is given by

FIG. 7. Order parameterQ as a function of the external mag
netic field h for V/2p51.0 andD522.5; ~a! for T50.0025 and
~b! for T50.0305.

FIG. 8. Phase diagram of the Blume-Capel model in the pl
(T,h) for V/2p51.0 andD521.0. Again thes symbol indicates
the dynamical tricritical point.
-
r

he

ed
l

V
d

dj
m52m1

sinh~1/T!~m1hcosj!

cosh~1/T!~m1hcosj!1 1
2 exp~2bD !

,

~21!

wherem5^Si& is the total magnetization.
The numerical solution of Eq.~21! shows that, whenD

>0 the BC model has an Ising-type behavior: it has only o
dynamical tricritical point@12#. When D is very small and
negative it behaves as our mixed Ising model: it exhibit
new first order critical line for low temperatures, as can
seen in Fig. 8. However, asD becomes larger but negative
the behavior of the BC model departs completely from
mixed model: the second order critical line disappears a
not only a new tricritical point does not appear, but the o
one disappears, as can be seen in Fig. 9. This study indic
that the existence of a second tricritical point is not simp
due to the fact that our model has a higher spin operator
to the mixing of the two types of spins.

All the results shown have been obtained withV/2p
51.0, however, we repeated our studies for different val

e

FIG. 9. Phase diagram of the Blume-Capel model in the pl
(T,h) for V/2p51.0 andD522.5. In the inset we compare th
phase diagram for two values ofD: 22.5 and23.0.

FIG. 10. Dependence between the minimum value ofD at
which the system departs from the standard Ising model by
appearance of the other critical line, and the frequencyV/2p.
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PRE 58 1265KINETICS OF A MIXED ISING FERRIMAGNETIC SYSTEM
of V/2p and obtained qualitatively the same results. W
found that the value ofD522.037 60, at which the system
starts to exhibit two dynamical tricritical points, is indepe
dent of the frequency, but the value ofD at which the model
departs from the standard Ising model by the appearance
second critical line depends on the frecuency as show
Fig. 10. We found that, independently of the value ofD,
when V→0 the region where both solutions coexist P1F
vanishes and the tricritical temperature approaches the s
critical value.

IV. CONCLUSIONS

We have analyzed within a mean-field approach the kin
ics of a classical mixed Ising ferrimagnetic model in t
presence of a time-dependent oscillating external field.
use a Glauber-type stochastic dynamics to describe the
evolution of the system. We found that the behavior of
system strongly depends on the values of the crystal fi
parameter,D. For large and positive values ofD the system
behaves as the standard Ising model@11#, it has a continuous
phase transition at highT and lowh. As T decreases andh
increases the transition becomes discontinuous and the
tem presents a dynamical tricritical point, see Fig. 3. Ho
ever, whenD is large enough and negative the phase d
gram changes completely. First, a new critical line appear
.
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low T that marks a discontinuous phase transition betwee
new coexistence region P1F and the F region. AsD be-
comes larger ~and negative! the ferromagnetic region
shrinks, the paramagnetic region also covers the lowh re-
gion, new critical lines appear, and a second dynamical
critical point emerges, see Fig. 6. The minimum value ofuDu
at which the new tricritical point appears seems to be in
pendent ofV ~for VÞ0).

A similar study on the Blume-Capel model (S561,0)
reveals that the behavior of our mixed ferrimagnetic mod
in particular the appearance of two tricritical points, is in
mately related to the mixing of the two types of spin ope
tors, and not only due to the fact of having a higher sp
operator.

This mean-field study suggests that the mixed Ising fe
magnetic model has an interesting dynamical behavior, q
different from the standard Ising model, and it would
worthwhile to further explore it with more accurate tec
niques such as Monte Carlo simulations or renormalizati
group calculations.
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