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We present a study, within a mean-field approach, of the kinetics of a classical mixed Ising ferrimagnetic
model on a square lattice, in which the two interpenetrating square sublattices have spink2 andS=
+1,0. The kinetics is described by a Glauber-type stochastic dynamics in the presence of a time-dependent
oscillating external field and a crystal field interaction. We can identify two types of solutions: a symmetric
one, where the total magnetizatidh oscillates around zero, and an antisymmetric one whérescillates
around a finite value different from zero. There are regions of the phase space where both solutions coexist.
The dynamical transition from one regime to the other can be of first or second order depending on the region
in the phase diagram. Depending on the value of the crystal field we found up to two dynamical tricritical
points where the transition changes from continuous to discontinuous. Also, we perform a similar study on the
Blume-Capel 6= =*1,0) model and find strong differences between its behavior and the one of the mixed
model.[S1063-651X98)05107-1

PACS numbs(s): 05.50+q, 75.10.Hk

I. INTRODUCTION magnetization does not follow the field and oscillates around
a value different from zero, and a region where both solu-
The time evolution of metastable states of a mixed Isingiions coexist. The transition between regimes can be continu-
ferrimagnetic model is studied by establishing a Glauberous or discontinuous, depending on the temperature and the
type dynamid 1] that drives the system between two equiva-€xternal field. Depending on the parameters of the Hamil-
lent ordered phases. This approach provides a simple way #nian this system can have up to two dynamical tri-
introduce a nonequilibrium kinetics into models such as thesfitical points.
Ising and the Ising mixed systems, that do not have a deter-
ministic dynamics. Numerous studies indicate that stochastic Il. THE MODEL

dynamics, despite its simplicity, can describe in & qualita- e consider a kinetic mixed Ising ferrimagnetic system in

tively correct way nonequilibrium phenomena and dynami- square lattice described by the Hamiltonian

cal phase transitions found in real systef@$ A kinetic

Ising model has been applied successfully to model magne-

tizagon switching in nan%gcale ferromagn)é%'gi ) H=-32, Si"j_Dz S."'—H(E Si+2. ‘TJ)’ @
The model to be studied is a mixed Ising ferrimagnetic (NN ' ' .

system on a square lattice in which the two interpenetratingyhere theS take the valuest1 or 0 and are located in

sublattices have spins one-halt:(/2) and spins one ajternating sites with spins;=*1/2. Each spir§ has only

(£1,0). This system is relevant for understanding bimetallic; spins as nearest neighbors and vice versa. TheZum

molecular ferrimagnets that are currently being synthesizets carried out over all nearest-neighbor pairs. The siims

by several experimental groups in search of stable, crystahng 3, run over all the sites of th& and o sublattices,

line materials, with spontaneous magnetic moments at rooffegpectively.J is the exchange parametdd, is the crystal

temperaturg4]. The magnetic properties of the mixed Ising field interaction, ancH is a time-dependent external mag-
models have been studied by high-temperature series expaatic field given by

sions[5], renormalization group6], mean field[7], Monte
Carlo simulations, and numerical transfer matrix calculations H(t)=Hycoq wt), 2
[8], but always at equilibrium conditions.

In this work we are going to study, within a mean-field all in energy units. We chooskto be negative, so the cou-
approach, the kinetics of the model in the presence of a timepling between the NN spins is antiferromagnetic.
dependent oscillating external field. We found that there are The system evolves according to a Glauber-type stochas-
three regimes: a paramagnetic one where the total magnetic dynamics at a rate of /transitions per unit time. Leav-
zation follows the field, a ferromagnetic one where the totaing the S spins fixed, we defind®’(oq, . ..,0y;t) as the
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probability that the system has the-spin configuration,
oy, ...,0yN, attimet, also, by leaving ther spins fixed, we
define P"(S;, ... ,Sy;t) as the probability that the system
has theS-spin configurationS,, . . ., Sy, at timet. Then,
we calculatew;(o;) and W;(S§—S/), the probabilities per
unit time that thgth o spin changes fronr; to — o and the
ith S spin changes fron$; to S/, respectively.

A. Calculation of w;(o)

We write the time derivative oP' (o4, ... ,o\;t) as
d !
ap (0-11 CRE) !O-N;t)
=—(2 W](O'J))P (o1, -+ Tjy s on;t)
+§J: Wj(_O’j)P’(O'l,...,_O'], ,O'N,t) (3)
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d
apl,(sl ..... SN,t)
-> ( > wi<siaa’>)P"<sl,...,SN:t>
] S(;&Si
+2> ( > Wi(S—S)P"(Sy, ..., ....Sub ]|
! S¢S
@®)

Each spin can change from the valBeto the valueS/ with
probability per unit time

1 exl-BAE(S—S))]

T S ext— BAE"(S—S))]

!
S

Wi(S—S)=

C)

whereESir is the sum over the three possible valuesspf
*1, 0, and

If the system is in contact with a heat bath at temperature

T, each spins can flip with probability per unit time given
by the Boltzmann factof9]

1 exp— ,G'AE) B
W=7 T 1+exp— BAE]) p=lhksT &
where
AEJ’=20j<JE S+H )
)

gives the change in the energy of the system when the

aj-spin flips.

AE,/(SiHSI,):_(SII S/Z S)D

(10

—Si)(JZ o +H| -
a0

gives the change in the energy of the system when the
S;-spin changes. The probabilities satisfy the detailed bal-
ance condition

Wi(S—S) _
Wi(S/—S)

PL{S, . .. Sv)
PL{S, - .. Su)

and, substituting the possible values®f we get

exp(— BD)
2costa+exp—BD)’

S ...
S, ...

(11)

Wi(1—-0)=W;(-1-0)=

From the master equation associated to the stochastic pro-

cess itis simple to prove that the averdge(t)) satisfies the
equation[10]
> (6)

that, within a mean-field approad¢i 1] and for an external
field defined by Eq(2), takes the form

d
(o= (O'J)+<ltan}‘{ (JE S+H

d 1 1
ra<a)=—<a)+ Etanrb—ﬁ[JZ(S)JrHocos{wt)] , (D

where(o) and(S) are theo-spin andS-spin sublattice mag-
netizations, respectively, aitl=4 is the coordination num-
ber for this model.

B. Calculation of W;(§;— /)

In a similar way, the time derivative of
P"(S;, ..., Sy;t) can be written as

the

exp(—a)
2coshka+exp(—BD)’
(12

expa)
2costa+exp(—BD)’

Wi(0—-1)=Wi(-1-1)=

where a=B(JZj,0;+H). Notice that, sinceW;(S—S)
does not depend o8 , we can writeW;(S—S/)=W;(S),
and the master equation becomes

_P"(Sl, P ,SN,t)
:_E ( 2 WI(SiI) P”(Slv YSNIt)
'o\si#s
+> wi<sa>( > PS8, .. Suh .
' S#S

(13
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FIG. 1. Solutions for different initial conditions witfi=0.05, FIG. 2. Types of solutions: antisymmetric whe oscillates

h=0.5, 1/2r=1.0, andD =20. As we see, after the transient re- 5yoynd a finite value different from zero, and symmetric whdre
gime, some different initial conditions give the same solutions.  gcillates around zero. F6F=0.05, h=0.5, Q/27=1.0, andD

=20.
Since the sum of probabilities is normalized to one, by
multiplying both sides of Eq(13) by S, and taking the av- transient regime until the solution becomes stationary. In
erage, we obtain Fig. 1, we show the solutions of the total magnetizatigh,
=my+my, for different initial conditions. We found that the
following combinations of initial conditions:

2sinh6(32 o +H
m

d
T3S0 =—(So+ my(£=0)=1, my(£=0)=0.5, 17
+exp(—BD)

14

ZCOSI’ﬁ(JE o, +H
)

m;(§=0)=0, my(£=0)=0 (18

give all the possible different stationary solutions. As ex-
or, in terms of a mean-field approach pected, the sublattice magnetizations,, m,, and the total
magnetizatiorM are periodic functions of with period 2.

E (S)=—(S) By choosing as the dynamical parameter the average total
A\ magnetization in a period
2sinkB[IZ( o)+ Hycoq wt)] 1 (2=
2c0SIB[IZ(0) + Hocog wt) |+ exp— BD) Q‘Efo M(£)d¢ (19
(15

we can identify two types of solutions: a symmetric one
whereM (&) follow the field, oscillating around zero giving
Ill. RESULTS Q=0, and an antisymmetric one whelg(£) does not fol-

The system evolves according to the set of coupled dif_low the field and oscillates around a finite value different

ferential equations given by Eqé7) and (15), that can be 10m zero, such thaQ+0. Examples of both types of solu-
written in the form tions are shown in Fig. 2. The first type of solution is called

paramagneti¢P) and the second type ferromagne#g. The

d sinh(1/T)(m,+ hcost) dynamical phase transition is located in the boundary be-
Qd—gmlz— 1 , tween both solutions, and depending on the region of the
cosh1/T)(m,+hcost) + 5 exp(— BD) phase diagram, can be of first or second order. For the first

(16) order phase transition the order paramépers discontinu-
ous, and jumps abruptly from zero to a nonzero value. For
Qim —m +Etan 1 my +hcost) the second order phase transition, the order parameter de-
de 2 ?2'2 Mo (M <) creases continuously to zero, but its first derivative is discon-
tinuous. If we fix the values dd and() for each value oh,
where m;=(S) and m,=(o), Q=r10, &=wt, T  we getthatthe dynamical phase transition occurs at tempera-
=(BJZ) "1, andh=H,/JZ. We fixJ=—1. We are goingto  tureT.. In the thermodynamical planeT h), we can define
study the stationary solutions of this system and its depera critical line T,=T.(h), the point on the critical line at
dence with the parameters. which the transition changes from first order to second order
In general, the solutions of the system depend on the iniis denominated dynamical tricritical point.
tial conditionsm;(£=0) andm,(£=0). For a given set of As it is shown in Fig. 3, forD large and positive, we
parameters and initial conditions the system passes throughracover the phase diagram of the standard Ising middg!
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FIG. 3. Phase diagram in thd f) plane forQ)/27=1.0 and
D=20.0. The paramagnet{®) and the ferromagnetid-) solutions
overlap in the region indicated by+F. The O symbol indicates
the dynamical tricritical point.

FIG. 5. Behavior ofm;(§¢) and my(¢) for T=0.05, h=0.2,
QO/27=1.0, andD=—1.5.

m, is very small, almost zero, such that both sublattices are
practically uncoupled, leaving, free to oscillate with the
At high temperatures the solutions are paramagnetic and aiternal field giving a paramagnetic-type respofi3e,0, as
low temperatures they are ferromagnetic. The boundary beseen in Fig. 5. WherD<—2.037 60 the phase diagram
tween both regions,+ P, is given by the critical line, and changes dramatically. The paramagnetic region is extended
indicates a continuous phase transition. At low temperaturesyver the lowh regions, new critical lines appear, and a sec-
there is a range of values of for which the ferromagnetic ond dynamical tricritical point emerges. Phase diagrams in
and paramagnetic solutions coexist and two separated criticgiis interval can be observed in Fig. 6. The two first order
lines appear, one that indicates the discontinuous transitiomansitions that occur at low temperature and the two second
between the F and thetfF regions, and the other that indi- order transitions at higher temperature are shown in Fig. 7.
cates the discontinuous transition between théRand the P In all cases we found that, as the crystalline fibldbbecomes
regions. The point where both lines merge signals the chandarger but negative, the region of the phase space where the
from a first order to a second order phase transition and is system behaves ferromagnetically becomes narrower and
dynamical tricritical point. shifts toward higher values df. This effect, shown in the
When D becomes negative, we found that in the rangeinset of Fig. 6, is somewhat expected since, for these values
—2.03766<D<—0.118 25(for }/2w=1) and low tem- of D, higher values oh are needed to keam, (&) different
peratures, a new first order critical line appears that separaté®m zero such that the order paramegrcan also be dif-
a new region where both solutions coexistF from the F  ferent from zero. IfD is large enough and negative, the
region. A phase diagram corresponding to a valuéoin system behaves in almost all the plarigh) as a paramag-
this interval is shown in Fig. 4. This new critical line is due net.
to the fact that, in this region, the sublattice magnetization
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FIG. 6. Phase diagram in the plan€,lf) for Q/27=1.0 and
FIG. 4. Phase diagram in the plang,lf) for )/27=1.0 and D= —2.5. In the inset we compare the phase diagram for two val-
D=-1.5. TheO symbol indicates the dynamical tricritical point. ues ofD: D;=—2.5 andD,= —2.7. Again theO symbol indicates
Notice the appearance of a new critical line at ldw the dynamical tricritical points.
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(T,h) for Q/27r=1.0 andD = —2.5. In the inset we compare the

FIG. 7. Order paramete® as a function of the external mag- Phase diagram for two values bf. —2.5 and—3.0.

netic fieldh for Q/27=1.0 andD=—2.5; (a) for T=0.0025 and
(b) for T=0.0305. d sinh(1/T)(m+ hcost)
Q—m=—m+ ,
dé cosh 1/T)(m+ hcost) + 3exp— 8D)
An interesting question arises at this point: is the exis- (22)
tence of a second tricritical point due to the fact that our
model has a higher spin valu&=+1,0, than the Ising Wherem=(S) is the total magnetization.
model, or to the fact that th& and o-spin operators are The numerical solution of Eq21) shows that, wherD
alternated on the lattice? To address this point, we study thee0 the BC model has an Ising-type behavior: it has only one
Blume-Capel modelBC) where a spirb= +1,0 is located at  dynamical tricritical point{12]. WhenD is very small and
each site of a square lattice. The Hamiltonian of the BCnegative it behaves as our mixed Ising model: it exhibits a
model is new first order critical line for low temperatures, as can be
seen in Fig. 8. However, d3 becomes larger but negative,
the behavior of the BC model departs completely from the
H=-J E SiSJ-—DE Siz—HE S, (20 mixed model: the second order critical line disappears and,
(NN) ! ! not only a new tricritical point does not appear, but the old
one disappears, as can be seen in Fig. 9. This study indicates
whereJ, D, andH are in energy units. We choode- —1 in  that the existence of a second ftricritical point is not simply
order to compare with our model. Applying the Glauber-typedue to the fact that our model has a higher spin operator but
stochastic dynamics and the mean-field approach describéd the mixing of the two types of spins.
in Sec. Il B, we get that the time evolution of the BC model  All the results shown have been obtained with2x

is given by =1.0, however, we repeated our studies for different values
1.0 ; -0.10
Ising behavior o I ol
&
-0.115 | 1
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FIG. 8. Phase diagram of the Blume-Capel model in the plane FIG. 10. Dependence between the minimum valueDofat
(T,h) for Q/277=1.0 andD = — 1.0. Again theO symbol indicates which the system departs from the standard Ising model by the
the dynamical tricritical point. appearance of the other critical line, and the frequef¢3r.
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of /27 and obtained qualitatively the same results. Welow T that marks a discontinuous phase transition between a
found that the value ob = —2.037 60, at which the system new coexistence region+H and the F region. A® be-
starts to exhibit two dynamical tricritical points, is indepen- comes larger (and negative the ferromagnetic region
dent of the frequency, but the value Bfat which the model shrinks, the paramagnetic region also covers the tove-
departs from the standard Ising model by the appearance ofgion, new critical lines appear, and a second dynamical tri-
second critical line depends on the frecuency as shown iaritical point emerges, see Fig. 6. The minimum valugf
Fig. 10. We found that, independently of the valueldf at which the new tricritical point appears seems to be inde-
when (}—0 the region where both solutions coexistP  pendent ofQ) (for Q) +#0).
vanishes and the tricritical temperature approaches the static A similar study on the Blume-Capel modeS£ = 1,0)
critical value. reveals that the behavior of our mixed ferrimagnetic model,
in particular the appearance of two tricritical points, is inti-
V. CONCLUSIONS mately related to the mixing of the two types of spin opera-
o ] _ tors, and not only due to the fact of having a higher spin
We have analyzed within a mean-field approach the k'”eIOperator.
ics of a classical mixed Ising ferrimagnetic model in the * This mean-field study suggests that the mixed Ising ferri-
presence of a time-dependent oscillating external field. Weagnetic model has an interesting dynamical behavior, quite
use a.GIauber—type stochastic dynamics to descrlb_e the tim@fferent from the standard Ising model, and it would be
evolution of the system. We found that the behavior of theyorthwhile to further explore it with more accurate tech-

system strongly depends on the values of the crystal fielgiques such as Monte Carlo simulations or renormalization-
parameterD. For large and positive values B the system  groyp calculations.

behaves as the standard Ising mdddl|, it has a continuous

phase transition at high and lowh. As T decreases anll

increases the transition becqm_e_s discqntinuous_and the sys- ACKNOWLEDGMENTS

tem presents a dynamical tricritical point, see Fig. 3. How-
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