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Large fluctuation of thermodynamic quantities in a coupled Bernoulli map lattice

Hidetsugu Sakaguchi
Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences,
Kyushu University, Kasuga, Fukuoka 816-8580, Japan
(Received 14 January 1998

The two-dimensional Ising model is studied with a coupled Bernoulli map lattice model. The large fluctua-
tion of some thermodynamic quantities such as energy, the Kolmogorov-Sinai entropy, and magnetization is
calculated with the characteristic function. The average value of energy and magnetization at different coupling
constants can be estimated from the large fluctuation of the thermodynamic quantities at a fixed coupling
constant[S1063-651X98)08307-X]

PACS numbegps): 05.40:+j, 05.45+b, 05.50:+q

Coupled map lattice models have been used to study cha- We construct a two-dimensional coupled map lattice com-
otic spatio-temporal patterfd—5]. We proposed a coupled posed of the Bernoulli shift,
map lattice that exhibits a statistical-mechanical phase tran-
sition[6,7]. Using the coupled map lattice, we can perform a i i i
simulation for the phase transition of the two-dimensional ~ Xn+1= +aiyj(xn’ +1)-1 for —1<X;'<ay,
Ising model, in which several thermodynamic quantities are n
exactly expressefB]. ) (3]
On the other hand, the large deviation thef@}has been i i WPRVIN
applied to the multifractal10], statistical properties of tur- X”“_l_ainyj Xy’ =D+1 for af<X<l,
bulence[11] or chaog12,13. We also calculated the large
fluctuation of the Ising model with mean-field coupling using where 1<i<L and 1<j<L denote the lattice points in the
the Renyi entropy. Then, we discussed a relation between thex | square lattice. The paramet@ﬁ is a time dependent
large fluctuation of some thermodynamic quantities at a fixed/ariable expressed as
temperature and average values of the thermodynamic quan-

tities at different temperaturfed 4]. . i K |+11 , J+1

In this Brief Report, we calculate the large fluctuation of =tanh 7-(s,- +s PSS i 9
some thermodynamic quantities for the two-dimensional
Ising model with the coupled Bernoulli map lattice. whereK is a coupling constant.

Each elemental map IS the Bernoulli Sh|ft, As shown in a prev|ous paper the probab“nm{m' J})

5 that the spin configuratiofs:'} takes{m"-} at timen obeys
Xni1= 77Xt —1 for —1<X;<a, a master equation,
()

2 pa{m" I} =2 ppa(fm M Hw({m M —{m' i}, (4)
Xn+1=m(xn—1)+1 for a<X,<1, o

_ o _ The transition probabilityv({m’"/} —{m"}) is expressed as
wherea is a parameter satisfying 1<a<<1. The Bernoulli

shift has a uniform invariant measupgX)=1/2 over —1

<X<1. A spin variables, is defined ass,=sgn(X; . w=]] 3[1+tanK(K/9)m"]

—X,); thatis,s,=1 for X,<a ands,=—1 for X,>a. The "

mean value ofs, is a and its time correlation igs,Sy,) X(mHHpm =t m ity mrii=ing o (5)

=8, m- Thatis, the Bernoulli shiftl) can work as a random

number generator. As in a previous paper, we consider the checkerboard type

updating rule for the coupled map lattice; that is, the updat-
ing is performed alternatively for even lattice points where
*Electronic address: sakagu@rc.kyushu-u.ac.jp i+ is even and odd lattice points. In this case a detailed
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FIG. 1. The generalized entrof3(e) for the energy. The solid FIG. 2. The generalized entro@(h) for the KS entropy. The
line is obtained by the characteristic function and the dotted line isolid line is obtained by the characteristic function and the dotted
the logarithm of the histogram & line is the logarithm of the histogram of

balance condition is satisfied for the Markov procésgsand  displays the generalized entropy for the eneegyE/N per

the equilibrium distributiorp, is obtained as site, which is calculated from the characteristic function and
the logarithm of the histogram of the probability distribution

i i for E/N which is directly obtained from the simulation. Ak
|Oec1({m'"})OCGXD{(K/8)izyj m") is larger, the estimate of the characteristic function at the
maximum point becomes better, however, the occurrence of
the large deviation of the thermodynamic quantity becomes

very rare. So the simulation at moderate dizés suitable.

Our dynamical system is chaotic, and a quantity which
which is equivalent to the equilibrium distribution of the characterizes the dynamical chaos is the KS entropy. In our
two-dimensional Ising model. The Ising system exhibits amodel the KS entropy is represented as
phase transition at =2 In(1++/2) for L—oo.

The thermodynamic quantities such as the enefyy - _1 NP i
——(K/8)S; ;8 )(s " H+s Mgt irgi Y and  the Hks IEJ (—2(1+ay)in{3(1+ay")}
magnetizatiorM =X, ;s"! are quantities oO(N) whereN . - .
=L XL and the probabitp(Q) that a thermodynamic quan- —z(1-ayh)In{z(1-a"}), 8
tity takesQ which is deviated from the average value be- .
haves ap(Q)~ expNP(q)], whereP(q) is an exponent that which is the thermal average of the sum of the local Li-

denotes the decrease rate of the probability of the large déPunov exponent at each site. This quantity is equivalent to

viation as the system sizd and q is the thermodynamic
guantity per spirg=Q/N. The quantity— P(q) corresponds Hys= — Z Z peq({m"'j})w({m"'j}
to the free energy in the statistical mechanics and it is called m'bd i

a rate function in the large deviation theory. We da{h) a
generalized entropy in this paper. The generalized entropy
can be calculated from a characteristic functigw)
=(expQ)), where(- - -) denotes the average with respect
to the equilibrium distribution. IN is large enough, the char-

X (MLm=t mii+ iy mibi-1) ()

—{m"Bin[w({m’"}—{m"}]. @)

The KS entropy is a thermodynamic quantity and it seems to

exhibit a singularity at the phase transition point as shown in

- ) . [15]. Figure 2 displays the generalized entropy function for

acteristic function can be estimated @é(u)~expNlud.  the KS entropy per site and the corresponding logarithmic

+P(q,)]} by the saddle point method, whetg, satisfies  pigiogram ofh=Hys/N. Good agreement is seen in Figs. 1

dP(q,)/9q=—pu. If ‘we define () ='(1/N)|nq§(,u)~,u,q” and 2 forl = 25.

+P(q,), the generalized entropy function agidobey We can also calculate more generalized entropy function

P(q,r) for the combination of the two thermodynamic quan-
j_"” =, P(q,)=¢(n)—pua,. ) _titi_es Q= Nq and R=Nr from the corresponding character-
® istic function ¢(u,v) ={expgN(ug+ur)}). In particular, we
consider the case=e=E/N. In the thermal equilibrium

If we obtainy(u) from a numerical simulation, we can con- state, the probability distribution function is written ps,

struct the generalized entrof(q) from Eq. (7). We have  ocexdN{—e/T+q,e)}], where T is the temperature and

performed a numerical simulation of the COUp|Ed Bernou”is(q’e) is the thermodynamic entropy function. The charac-

map lattice withL =25 andK=1.6. As an initial condition, teristic function B (u,v)=(expN(ug+1e)}) can be esti-

x"") are randomly distributed betweenl and 1 ands') is  mated by the saddle point method as

assumed to be 1. The total time step is 20° and we have

calculated time average instead of the thermal avetagk exgN{uq,,,+ve,,—e,,/T+S(q,,.e,,)}] (10

and further we have taken sample average of ten samples

where the initial conditions ok'! are different. Figure 1 whereq, , ande, , satisfy
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FIG. 3. Energye as a function oK. The solid line is obtained
from the characteristic function at a fixéd= 1.6, the points denote
numerically obtained values by changikg and the dotted line is
the exact solution of the energy for the infinite sytem.

) aS 1
7 U ) =~ sty 5e(Uy €0 ) =3 —r (D

The logarithm of the characteristic functioms(u,v)
=1/NIn¢(u,v) and the entropy function satisfy

P, v)=pq,,+(v—1T)e, ,+5(0,,,.8,,),

Iy
_:q ,
J MV
# (12
(91,0_
v = Cur

S(qM,,,,eM]M)=zﬁ(,u,v)—,uq%,,—(v—ll'l')e%,,.
The equationdS/de=1/T—v in Eq. (11) implies that the

entropy function gives information at different temperature

T', where 1IT'=1/T—v. That is, q,, at u=0r=1/T
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FIG. 4. Magnetizatiorm as a function oK. The solid line is
obtained from the characteristic function at a fixkd=1.6, the
points denote numerically obtained values by chandgin@nd the
dotted line is the exact solution of the magnetization for the infinite
sytem.

for the coupled Bernoulli map lattice &f=25. The dotted
line denotes the exact solution for the infinite system; that is,

e=—(K/4)coshiK/2)/sinh(K/2)(1+2/7"K7), (13

where " =2 tanlf(K/2)—1 andK; is the complete ellip-

tic integral atk =2 sinh(K/2)/cosi(K/2). The reconstructed
curve is close to the directly obtained values and the exact
solution for 1.4<K<1.8. Figure 4 displays the recon-
structed curve of the magnetiztiom=(1/N)|Z;;s"!|,
which is calculated asn(K’)= (1/N)(d/du) In{exp{N(xm
+v8)}),-0,-1-k ik, the directly obtained values, and the
exact solution for the infinite-size system:

m=0 for K<K,

(14)

1 1/8
11— for K>K..
| sinrf*(K/4)] ¢

The directly obtained values are deviated from the exact so-

—1/T" is equal to the average value of the thermodynamiqution owing to the finite-size effect; however, the recon-

guantityQ/N per site at temperatuf® . The quantityg(0,v)
is given bydyl/ou at u=0 andwv .

structed curve fits the directly obtained values fairly well for
K<1.9. We cannot reconstruct the KS entropy at different

We have reconstructed two thermodynamic quantities: thgoupling constants from the data at a fixed coupling constant,
magnetization and the energy at different coupling constantgecause the coupling constais involved in thes ; in Eg.

from the characteristic functiog(u,») at a fixed value of

(3) in a complicated manner.

K=1.6. Figure 3 displays the reconstructed value of the en- To summarize, we have applied the thermodynamic for-

ergy — (K/8N)Z; jsMi(s'FH + ¢~ 4 gh 14 6171 which
is calculated as

!

e(K')= KN 5In(exp(Nve))V=l,K,,K.

The points show the energy for several value& pfvhich is
obtained by directly changin§ and taking the average &

malism to the two-dimensional coupled Bernoulli map lattice
and characterize the large fluctuation of some thermody-
namic quantities. The coupled Bernoulli map lattice is a toy
model, however, an instructive model that connects the cha-
otic dynamics and the statistical mechanics.

The author would like to thank Professor H. Shibata for
stimulating discussions.
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