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Transverse localization of directed waves in random media

Gregory Samelsoffnand Reuven Mazar
Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
(Received 18 November 1997

In this work we consider the propagation of directed waves in random media with a finite correlation scale
in the longitudinal direction. The problem is described by a standard parabolic equation of the same type as the
nonstationary Schoinger equation describing the motion of a quantum particle in a dynamically varying
random potential. Applying the path integral approach, we study perturbatively the mean intensity distribution
of a pointlike source located in a random medium with inhomogeneities stretched along the propagation
direction. We show that in this case the intensity is enhanced on the axis and reduced on the edges of the beam,
which can be related to the phenomenon of transverse localization. The dependence of the transverse local-
ization length on the geometry of the problem in different propagation regimes is examined. Though the
language of classical waves is used, the results are valid for the quantum case as well.
[S1063-651%98)02307-1

PACS numbeps): 03.40.Kf, 05.40+j, 42.25—p

I. INTRODUCTION which describes the motion of a quantum particle in a ran-
dom time-dependent potent(r,t). The analog of time for
The propagation of classical waves in random media haslassical waves is the range coordinate and the random po-
been the subject of investigation in various areas of physictential corresponds to the spatial fluctuations of the refractive
for several decaddd—3]. Among different propagation re- index. This correspondence is defined by the substitutions
gimes there is a special one when the inhomogeneities of the
medium are sufficiently weak, smooth, and large scale as zot, kemlt, e(r,m)—(—2mV(r,t). (1.3
compared to the radiation wavelength. In this case the propa-
gation process is localized mainly in the forward direction o special property of the parabolic equation, in either clas-
(the so-called small-angle scatterjrand the backscattering gjca| or quantum wave form, is the unitarity, i.e., the norm
can be fully neglected1,2]. The propagation of such di- fdr|y(r,t)|? is prescribed at all times.
rected waves can be described to a good approximation by |; should be mentioned that this problem can be consid-
the standard parabolic equation for the complex amplitudgreq in a wider framework including other formulations,
u(r,2), which are similar in form. In particular, the imaginary-time
version of Eq.(1.2) describes the problem of directed poly-
2ikdu+ V2u+kZ(r,z)u(r,z)=0, (1.1  mers in a random mediufd]. When, in addition, the poten-
tial V(r,t) is also imaginary, the model is relevant to quan-
tum tunneling of a strongly localized electron under a
Nandom barrief5].
The original real time model, in both classical and quan-
tum mechanical formulations, was used mainly to study the
scaling behavior of the wave motion at largdf the poten-

wherez is the range coordinate along the main propagatio
direction andr is the two-dimensional vector in the trans-
verse plangcross-range coordingteThe conditions of ap-

plicability of this equation in the case of sufficiently strong

disorder can be satisfied for anisotropic inhomogeneitie%aI varies very quickly in time, then the problem of finding

whep the scatter_lng potential varies very slowly In fnd]- the statistical characteristics of the wave amplituie,t)
rection. The typical examples are the irregularities in the

) A . can be solved by applying thé&correlation (Markov) ap-
ionosphere usually stretched along the magnetic field lines Oﬁroximation [2]. This method has been employed to study
horizontally elongated internal waves in the ocean. In add '

H . ;
tion, highly anisotropic structures, such as fiber—reinforcec}he wandering of laser beams in a turbulent atmospffre
composites, have become very important in modern tec

and diffusion of a quantum particle in dynamically disor-
nologies dered systems for both latti¢&,8] arjd continuunj9] mod-
The pérabolic equatiofiL.1) coincides with the nonsta- els. In recent wo.rk$10714]. the main eﬁo_rts were foqused
tionary Schidinger equatioﬁ on thg r_1umer|cal investigation of _the spapal and Klnetlc char-
acteristics of a quantum particle in a rapidly varying random
potential.
ihdp+ (A212m)V2—V(r,t)g(r,t)=0, (1.2 Another limiting case is the time-independent potential. In
this case the constructive interference of multiple-scattering
waves leads to the wave localization phenomelg&nwhen
*Electronic address: gregory@newton.bgu.ac.il the wave is trapped within a finite region of space as in a
TElectronic address: mazar@bguee.bgu.ac.il random resonator. Since the parabolic equation, describing
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the propagation of classical waves, coincides with the Schrofunction that is defined in Sec. Ill. Representing the un-
dinger equation in two spatial dimensions, we may expecknown solution as a perturbative sum of a leading term plus
the transition to strong localization for any degree of disor-a correction, we obtain an asymptotic expression for the nor-
der. This has been demonstrated by using direct numeric&nalized coherence function. The calculation procedure is de-
calculations in the work of De Raedt, Lagendijk, and described in Appendix. Further, in Sec. IV we analyze the
Vries [15], where this effect was called transverse localiza-Wave correction to the mean intensity of a point source. To
tion. It has been shown that the wave beam propagating igx€mplify the results we evaluate the correction for a Gauss-
the z direction and having some initial width expands until 1an correlation function. Finally, Sec. V contains a summary

the beam diameter approaches the transverse localizatiGiid Some principal concluding remarks.

length. From then on, the beam does not spread in the trans-

verse direction beyond this localization length and propa- Il. PATH INTEGRAL FORMULATION

gates without further expansion as in a random waveguide.
A qualitative analysis of the motion of a particle in the

intermediate case of finite correlation time has been per- V2G+kY1+7(R)]G(R|Rg)=—8(R—Ry), (2.1

formed by Bouchaufl16]. It was found that for a correlation

time larger than the time needed for the particle to achieve ahich describes the propagation of a scalar time-harmonic

localization radius, the diffusion of the particle is definedwave in a spatially inhomogeneous medium. The ve&or

entirely by the time evolution of the scattering potential anddenotes the positiotk, is the wave number in a homogeneous

by the localization radius in a time-independent potentialmedium, ands(R)=1+7¢(R) is the permittivity distribu-

Obviously, for zero correlation time the localization is absenttion, in whichg(R) is the random perturbation. Assuming

because the particle has no time to achieve some static locehat the propagation process takes place mainly in the for-

tion. ward direction, we denote the reduced wave function
An attempt to analytically obtain the corrections to theg(r,z|r,,z,) by extracting the main phase term

Markov approximation has been made by Klyatskin and Ta-

tarskii [17] for the mean field and second-order coherence G(R|Ry)=exdik(z—zy)]1g(r,z|rg,20). (2.2

function and later by Zavorotnyil8] for the higher statisti-

cal moments of the field. In particular, in the latter work a Neglecting the second range derivative, we transfer from Eq.

path integral representation for the field was used and th&2.1 to the standard parabolic equation

Markov approximation served as a leading term of a pertur- ) ) o~

bative expansion. Evaluation of the next term allowed the 2ika,g+Vrg+kZe(r,2)g(r,zro,20)=0, (2.3a

applicability limits of the Markov approximation to be con-

sidered, but, as inl17], only for the incident plane wave.

However, this model leads to the translational invariance of _

the results in the transverse plane and, consequently, cannot 9(r.Zolro,20) = &(r—ro). (2.3

demonstrate any localization behavior. Some related resulig s \orth noting that this equation is also valid for electro-
can be found also in the review paper by DasfE9]. The  agnetic waves because the polarization does not change

We start with the Helmholtz equation

with the initial condition

mean field(averaged one-particle Green's funcliaif a di-  egsentially in the process of small-angle scattering.
rected wave prop'agatlng in a medium with a time- Using the analogy with the Schiimger equation, we
independent potential was studied|R0]. resent the solution of Eq2.3) in a Feynman path integral

In order to consider the transverse localization of directegq [23]
waves in a random medium with finite correlation in the
propagation directioffinite time correlation we perform an r(z)=r
asymptotic analysis of the mean intensity distribution of a g(r,z|r0,zo)=f Dr(g)
pointlike source. The procedure used is similar to that devel- f(z0=ro
oped in[19] and has been employed in our recent papers k [z . _
[21,27, devoted to the analysis of propagation and localiza- Xexp{i > J d[HO1P+2( (), 0},
tion of classical waves in multiple-scattering random media, %
without paraxial restriction. As a leading term of the corre- (2.9
sponding expansion, we use the straight-line approximation
to the path integral solution and estimate the correction perwhere the integratiorf Dr(¢) in the continuum of possible
turbatively. Evaluating the second statistical moment of therajectories is interpreted as a sum of contributions of arbi-
field (average two-particle Green’s functipnve have found trary paths over which the wave propagates from pojrin
that the normalized mean intensity in non-Markovian mediathe planez, to pointr in the planez. Next, we present the
differs from unity: The mean intensity is enhanced on thevirtual trajectory as a sum
axis of the wave beam and is reduced on its edges, which, _
obviously, can be treated as a direct manifestation of the r()=r(g)+a(d), 2.9
localization phenomenon. i
The outline of this work is as follows. First, in Sec. Il, we Where the first term
introduce the parabolic equation and present its solution in a _ B
path integral form. The phenomenon of stochastic localiza- ()= 274 + {2 r (2.6)
tion is related to the behavior of the second-order coherence Z— 7 Z— 7
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is a straight line connecting the end poingsandr, andq(¢) n=73(LIK)(L/L)(1=Z/L) (3.59
is a two-dimensional curved path that is equal to zerd at
=z, andz. As a result, the path integral can be presented aand
a product of two factors
7=3(LIK)(LIL)(1-2¢' L), (3.5b
9(r,2|r0,20) =9o(r,2|r0,20)9,(",2|r 0, 20), 2.7
) ) where!’ and ¢ are the sum and difference longitudinal co-
wheregy is the free-space Green’s function ordinates
k ik(r—rg)? P 1 _
Gotr 20,200~ 55— exp[ ZEZ_ZZ)) 28 U=30+ ), =h-b (36

Performing spectral expansion with respect to zheoordi-

and the inhomogeneous factgy is given by the expression pate

9.(r,z]rg,20) = 3(; Dq(?)

FE(S,Z)=f dp explizp)®,(s,p), (3.7

we can present the result in terms of the three-dimensional
spectrum ®,(s,p). In &correlated (Markovian media
D, (s,p)=d(s,0) and the two spectra used above are re-

lated by
in which the circular integral is used to underline the fact that

all the related trajectories are closed in the transverse plane.

k(2o
xexp[| 5 LO dgs(r(§)+q(§),§)’,

(2.9

F.(s2)=278(2)®,(s,0). (3.8

In this case the correction vanishes and the leading term

o . coincides exactly with the solution of a small-angle approxi-
The effects related to Iocql|zat!0n are described by thenation of the radiative transfer equatif®]. Therefore, the

second-order coherence functi@r, in quantum mechanical value of y describes purely wave nature properties of the

Ill. COHERENCE FUNCTION

language, by the two-particle Green'’s funcliodVe define
the normalized coherence function

¥2(r2.Fo2;L)=(9e(r1,20+ L[ro1,20)9% (12,20t L|ro2,20)),

propagation process and can be treated as a {epantum
correction.

IV. MEAN INTENSITY

(3.2

which is equal to unity in a homogeneous medium. Hereaftef
the angular brackets denote an ensemble averagenand
=1,2,...n. To simplify the averaging procedure, we assum
that the random perturbatiorfR) are Gaussian. Then the

We will exemplify the nontrivial properties of the solution
3.2) in non-Markovian media by analyzing the normalized
mean intensity(r,L) of a pointlike source in a statistically

omogeneous random medium. We can consider the source
. of the directed beam as a point source when its spatial extent
98 much smaller than the transverse correlation scale, e.g., the
size of the first Fresnel zorlg= \L/k in the regime of weak
intensity fluctuations. In this case the value.6f,L) can be
obtained fromy,(ryrosL) by settingrg;=0 andrj=r,
which leads to

(structure function of the permittivity fluctuations, as is pre-
sented in the Appendix, Eq§A1)—(A6). Next we extract a
straight-line approximatiory,(r,,ro,;L) [Eq. (A8)] and ex-
pand the coherence function in a series

Yo(r2:Fo2i L) = va(ra Fogi L{1+ x+---}, (3.2 o(r,L)=1+y+---, (4.1
here the first tioy is gi b
where the first correcliony IS given by and the correctiory reduces to the form
k2 (L L
X:_f dglf d@f d?s Fo(s,41—¢o) k? (L L
2 )94, =5 | de[ e[ os Fsa-o
x{texp(ivy-s)[1—exp(—ins? ~
tzexiva L exp(~175°)] X cogr-s({;~ {p)/L][cog7s?) — cod 7).
+zexplivy- 9)[1—expli 7s?)] 4.2
— -~. - _-~ 2
exp(iv-s)[1—exp(—izs)]}. @3 Performing integration over the sum coordingteand as-
Here we have denoted the vectersand¥V as suming that the medium is statistically isotropic in the trans-
B B o B verse plane, we get
Vi=ri(8)—ri(L2), V=r1(41)—To(L2) (3.4

L o0
— 12
and we have introduced also a two-dimensional spectral den- ~ X=K fo df(L=9) fo ds s F(s,£)Jo(rsd/L)
sity F,(s,z) of the random structure in the transverse plane;
see Eq(A12). The coefficientsy and7 are given by

X[(5s?)~* sin( #s®) —cog s?)], (4.3
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whereJy(2z) is the Bessel function. In some practically im-
portant situations this formula can be essentially simplified.
If all spatial frequencies in the spectrumy(s,z) satisfy the
conditionslz<1 (geometric optics approximatipnthen we

can expand the trigonometric functions in a series and keep

on

only the two first terms, which leads to ‘é
Q
T L 1,'3
X== L3f dg(g/L)3(1—-¢/L)3 S
6 0 g
- Z
xf ds SJo(rs¢/L)F.(s,{). (4.9
0
In addition, for the longitudinal scale of the mediug<L V2 ey, T
we extend the upper limit in the integral ovérto infinity /1
and approximate the correction by G

FIG. 1. Normalized wave correction in the geometric optics re-

X= K wadg ngwds §Jo(rs§/L)F (s,{). (4.5 gime as a function of the normalized transverse coordindtefor
6 0 0 ¢ /=2, 4, and 8. The dashed line corresponds to the time-

independent potential/(=0).

As an example we will estimate the correction for the
anisotropic Gaussian correlation function of the form e 1 o
x=ko[ df(L=¢) [ d§| ds s F(s,{)Jo(rsd/L)
2 2112 52)12 0 0 0
B.(r,z)=0o% exp(—r/l;—z13). (4.6)

X[cog £7s?) —cog 5s?)], (4.10

which seems to be more suitable for numerical calculations.

For the Gaussian spectru(.?) the correction depends on
the dimensionless parametér=1/I, and is given by

This function corresponds to the spectrum
F.(s,2)=(4m) t0?l? exp(—12s%14—22/12). (4.7

Then the integral in Eq4.5 is calculated exactly and we 1 1

have XzaikZszo dtf0 deé(1—t)exp — 72 [f(t,6)—f(t,1)],

x=2\73) 2 (131IHL. (4.9 413
where

As is natural, the correction increases with the longitudinal

scalel,. However, for isotropic spectruim=1, and the cor- f(t,£)=(1+a? " exp(—b)[codab) +a sin(ab)]

rection behaves ag~o?L/l,, i.e., it is greater for smaller (4.12

inhomogenetities. and

Performing integration in Eq4.4) for the same Gaussian

spectrum leads to a=2A%t(1-t)¢, b=(1+a?) (r/l,)%2%. (4.13

If A<1 we reproduce the results of geometric optics ap-
proximation. Moreover, as we can show by direct numerical
calculations, this result is also practically exact urti=1.
X exp(— /%t?) 1F1(3,1;—(r/1,)%t?), (4.9  For A>1 the characteristic scale of the transverse intensity
distribution is of the order off. The normalized value of
where/=L/l, is the normalized distance ané,(a,b;z) is  for /=0 (time-independent potentjahs a function ofr /¢
the hypergeometric function. The results of calculations offor various values of\ is shown in Fig. 2. The localization
the normalized value of as a function of the normalized length increases with, i.e., it is larger for smaller scales of
displacement of the observation point from the beam axisnhomogeneities in the transverse plane. The same depen-
r/l, for several values of” are shown in Fig. 1. In forward dence for a fixed value ok =5 and various values of is
direction the correction is positive, and therefore the intenpresented in Fig. 3. The variations of the potential in time
sity is enhanced, while it is reduced in other directions. Theallow the particle to move a distance of the orderl oin
point where the correction passes through zero can serve aach time interval, and consequently the localization length
an estimate of the “transverse localization length.” Thisincreases. Finally, in Fig. 4 we present the dependenge of
value increases with the decrease of the time correldtion for a finite value of/” normalized to the value of for the
in accordance with the qualitative picture presentefil. time-independent potentiak(=0). We see that for largek
In the general case, instead of £4.3) we use an equiva- the correction is less sensitive to the “temporal” variations
lent representation of the potential.

1
X=%0§(L/Ir)4J dt t3(1—1)3
0
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FIG. 2. Normalized wave correction as a function of the nor-
malized transverse coordinaté  for the time-independent poten-
tial (I=0) andA =2, 4, and 8.

It is worth noting that, in contrast to the visual impression
from the data presented in Figs. 1-3, the negative tail, whil
being very small, is able to compensate for the intensity en
hancement in the forward direction. In fact, it is easy to
verify that

f d?r x(r)=0 (4.14

and the condition of energy conservatidaonitarity) is
satisfied.

V. SUMMARY
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FIG. 4. Normalized wave correction calculated on the beam axis
(r=0) as a function of for A=2, 4, and 8. The dashed line
corresponds to the geometric optics regime<(1).

been shown that in such a medium there is a redistribution of

&he intensity pattern as compared to that in a Markovian

medium. In this case the intensity is enhanced on the axis
and reduced on the edges of the beam, which can be related
to the phenomenon of transverse localization. We have
shown, in particular, that the localization length increases
with the parameter\, i.e., is larger for smaller scales of
inhomogeneities in the transverse plane. For laryethe
correction is also less sensitive to the temporal variations of
the potential.

On the one hand, the smallness of the correction obtained,
i.e., the conditiony<1, can serve as a good test for the
applicability of the Markov approximation. For the opposite

In this work we have implemented the path integral ap-casex>1 we may expect a strong transverse localization
proach for the analysis of transverse localization of directedhat has not only a statistical, but also a dynamic nature, i.e.,
waves. To this end we have studied the wave correction tthe localization will be observed for almost all realizations of
the mean intensity of a pointlike source located in a mediunthe random medium except for the realizations with measure

with finite correlation along the propagation direction. It has

1.0

0.8

0.6
10
0.4

20
0.2

Normalized correction

0.0

-0.2

10
v/l
F

FIG. 3. Normalized wave correction as a function of the nor-
malized transverse coordinatd  for A=5 and/ =5, 10, and 20.
The dashed line corresponds to the time-independent potertial (
=0).

zero. It is this effect that has been observed i8] for a
single realization of the scattering potential. Such an aniso-
tropic random medium can channel the radiation even in the
absence of a deterministic background and can be treated as
a random waveguide, a counterpart of a random calaty
random resonatpifor nondirected waves scattered in isotro-
pic media[3,22]. Our results are valid in the intermediate
regime, from smally up to y~1, and consequently describe
the transition to the strong localization behavior. In this case,
which can be called a weak transverse localization, the effect
is of a stochastic character, but, as always for the localization
phenomena, is related to the constructive interference of
multiply scattered waves.

The mechanism of transverse localization, whether strong
or weak, is universal and can play an important role in wave
propagation in many natural and artificial media. As ex-
amples, we may note the propagation of electromagnetic HF

waves in the ionosphere or UHF waves in the tropospheric

layer. The results of recent experiments by Erukhireowl.

[24], dealing with oblique chirp sounding of the ionosphere,
have revealed the guidance effect of the Pedersen mode in
disturbed ionosphere. According to the experimental data,
apart from the regular Pedersen mode, a stable ducting mode
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at lower frequenci.es has_ b_een obggrve_d and f[h.e_effect has B.(r1—r5;21—2,)=(8(r1,21)e(r,,25)) (A4)
been related to anisotropic irregularities in the vicinity of the

F-layer maximum. Some indirect indications of the existencediverges at zero. For regular statistically homogeneous me-
of random waveguides in the tropospheric layer are disdia the relation between the correlation and structure func-
cussed in[25]. In particular, there exists a frequently ob- tions has the form

served correlation between the magnitude of the signal far

beyond the horizon and the variance of turbulent fluctuations D,(r;2)=2[B,(0;0)=B,(r;2)]. (AS)

of the refractive index in the ground layer. The signal inten-F
sity increases with turbulent fluctuations, rather than decreas-
ing as for the regular refractive waveguide. The effect of rj(g)zr_j(g)+[p(§)+(—1)i*1q(§)/2], j=1,2.
transverse localization can also play a significant role in (AB)
sound propagation in the ocean, where the fluctuations of the

refractive index are caused mainly by the internal waves that The leading term of the coherence function is defined by
are usually stretched in the horizontal direction. Howeversetting p(¢)=0 and g({)=0, which corresponds to the
for the correct comparison of the theoretical results with thestraight-line approximation

experimental data we have to account for the fractal and

inally, the vectors({) in Eq. (A2) are given by

anisotropic character of the random structure in the trans- - k? (L -
p . _ vararogsl)=ex _—J’ dflj d{oF2(£1,42,0,0)|.
verse plane and we intend to present the results of appropri- 4 Jo 0
ate calculations elsewhere. (A7)
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APPENDIX K2 L L
. . . . X —
Using the representatiof2.9) and introducing the sum ex 4 fo dglfo dé

and difference vectors

PO =3O+ %(D], () =0au()—aa(0), Xﬁz@l’é“z;p(é“%q(é“)ﬂ' (A8)

we arrive at the expression for the normalized second-ord%here
coherence function

Fa(l1.42:p(£).a(0)
=F3(£1,£2;0,00 —F2(£1,42:p(),a(L)).

Ya(ralogl)

= 47 Dp({) é Da(?) (A9)
k2 (L L Assuming now the smallness of the argument of the expo-
xex;{ -7 f délf d{oF2(L1,42:p(£),a({)) |,  nential in EQ.(A8), we expand the coherence function in a
0 0 series
(A1) _
Yo(raloal)=va(rorogL){1+x+---},  (A10)
where the scattering functidR,({1,5;p(£),q({)) is given ) o
by where the first correctioly is given by
. k? (L L
F2(£1,42:p(0),a({)) X=7 fo dglfo ds, f Dp(¢) § Dq(?)

=D,(ri({1) —r2(£2),{1—¢2) N
12 XF2({1,42:p(0),a({)). (A11)
2 12‘1 D.o(rj(6)=rj(£2).&1=82)- (A2) 14 gptain a soluble quadratic Lagrangian in the path integral

we introduce the two-dimensional spectral denBitys,z) of
In this formula the random structure in the transverse plane

Da(rl_|'2?21_Zz):<[§(r1721)_§(r2122)]2> (A3)

is the structure function, which is introduced to describe,
among others, the fractal media, in particular, turbulent specthen, performing integration in EA11), we obtain for the
tra, for which the correlation function wave correctiony the final result, Eq(3.3).

Ds(r,z)zzJ' d’s[1—exp(ir-9)JF.(s2). (Al2)
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