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Ultrashort pulsed Gaussian light beams

Miguel A. Porras*
Departamento de Fisica Aplicada, Escuela de Ingenieros de Minas, Universidad Polite´cnica de Madrid,

Rios Rosas 21, E-28003 Madrid, Spain
~Received 3 December 1997!

We find a family of solutions of the paraxial wave equation that represents ultrashort pulsed light beams
propagating in free space. These pulsed beams have an arbitrary temporal form and a nearly Gaussian cross
section, while modeling for the pulses emitted by mode-locked lasers with stable two-mirror resonators. We
also study the effects arising from their spatiotemporal coupled behavior, such as pulse time delay, distortion,
and a frequency shift toward the beam periphery. Time-varying diffraction~with diffraction reduction at the
first instants of arrival of the pulsed beam at a given distance! and the dependence of the spatial distribution of
energy on the pulse form are also described. These effects become important for pulsed beams with a few
optical oscillations within the pulse envelope.@S1063-651X~98!02007-8#

PACS number~s!: 42.65.Tg, 42.60.Jf, 42.60.Fc, 42.25.2p
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I. INTRODUCTION

Due to rapid advances in the generation of femtosec
laser pulses@1#, the study of their spatiotemporal behavior o
propagation in free space@2–7# and optical systems@8–10#
has become a subject of interest. It is nowadays well es
lished @11,12# that the propagation of femtosecond las
pulses cannot be assimilated to that of longer~quasimono-
chromatic! pulses, but the spatial and temporal characte
tics interact with each other during propagation. In fr
space, spatiotemporal couplings such as pulse time de
pulse broadening, and frequency lessening toward the b
periphery have been reported in several papers for diffe
initial conditions. In Refs.@5,7#, the couplings arose in th
propagation of an initial uncoupled~factorized! condition
with Gaussian form in space and time; in Refs.@12–14#, the
spatiotemporal coupling came from the propagation thro
a lens, but not from the free propagation beyond.

Very recently@2#, a model of an ultrashort pulsed Gaus
ian beam~PGB! was described, nearly Gaussian in time a
space and propagating in free space, and incorporating s
of the spatiotemporal couplings reported previously. Th
PGB’s arise from the coherent superposition of axial mo
in a confocal resonator, and provide a model for the radia
from mode-locked lasers with such resonators@2#. However,
the authors of this reference overlooked the fact that
PGB model is not a well-behaved ‘‘beam;’’ the transver
amplitude distribution is described by a function which, af
a central region of beamlike behavior, becomes bound
with the transversal coordinater as exp(r4), as is clear from
Eqs.~12! and~13! of Ref. @2#. As a consequence, the ener
in the beam is infinite@see Eq.~25! of Ref. @2##. Apparently,
this PGB could be used to model light beams with oth
pulse shapes@see Eq.~10! of Ref. @2##. When doing so for
some standard pulses, such as a super-Gaussian of ordn,
or for Lorentzian pulses, similar difficulties are found@an
exponential growing exp(r2n) in the first case, and singula
points in the transversal profile in the second#. These draw-
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backs render the use of the PGB of Ref.@2# problematic.
In this paper, we find a PGB as a family of solutions f

the paraxial wave equation in free space~Sec. II!, and de-
scribe a method, based on the use of the analytical sig
complex representation of polychromatic light@15#, by
which the PGB’s can represent pulsed beams~Sec. III!. We
do not restrict ourselves to the PGB with a Gaussian pu
shape, but draw general conclusions about the spatiotem
ral couplings in a PGB with an arbitrary pulse shape~Sec.
IV !, pointing out the peculiar form the couplings adopt f
different pulse shapes~Sec. V!.

II. DERIVATION OF THE PGB FAMILY OF SOLUTIONS
FOR THE PARAXIAL WAVE EQUATION

We start with the wave equationDE2(1/c2)]2E/]t250
for a complex scalar fieldE, ReE giving the real field. In-
troducing the ansatzE5c(x,y,z,t)exp@iv0(t2z/c)#, where
v052p/T0 is a carrier frequency andT0 the period, we find

Dc22i
v0

c

]c

]z
22i

v0

c2

]c

]t
2

1

c2

]2c

]t2
50, ~1!

and, with the new variablest85t2z/c, z5z,

Dx,yc22ik0

]c

]z
5

2

c

]2c

]z]t8
, ~2!

whereDx,y5]2/]x21]2/]y2 and k05v0 /c. In Eq. ~2! we
have dropped, at the last step,]2c/]z2 to perform the
paraxial approximation@16#. Equation~2! governs the propa-
gation of pulsed paraxial light beams in free space@12#. Such
a pulsed beam will have a characteristic variation time of
order of the magnitude of the pulse durationT for a smooth
pulse shape. With the dimensionless variablet85t8/T, Eq.
~2! may be written as

Dx,yc22ik0

]

]zFc1
1

2p i S T0

T D ]c

]t8
G50. ~3!
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PRE 58 1087ULTRASHORT PULSED GAUSSIAN LIGHT BEAMS
For pulses whose duration is much longer than the oscilla
period,T0 /T!1, the second term in the square brackets
Eq. ~3! may be neglected, as is the case for optical pulse
several tens of femtoseconds or longer. Then the solution
Eq. ~2!, where time derivatives do not appear explicitly, d
pend parametrically on time. In particular, factorized so
tions of the formc5cp(t8)cc(x,y,z) exist. This means tha
the pulse experiences only a global complex amplitu
changecc from point to point in space, but its form is in
variant, and conversely, that the transverse amplitude pr
only changes by a global complex amplitudecp with time,
but its form is unaltered.

If, however, the pulse comprises only a few optical pe
ods (T0 /T&1), the crossed derivative in Eq.~2! must be
kept, coupling the spatial and temporal behaviors of
pulsed beam in a complicated way. A family of solutions
Eq. ~2!, where these couplings become explicit, can be fou
as follows.

The pulsed spherical waveE5(1/r)cp(t2r/c)exp@iv0(t
2r/c)#, with r25x21y21z2 and cp(t) an arbitrary func-
tion, satisfies the wave equation. Its paraxial version is
tained by approachingr.z1r 2/2z, with r 25x21y2, both in
the exponential and in the argument ofcp , while approach-
ing 1/r.1/z. After these approximations, and extracting
factor exp@iv0(t2z/c)#, we find c5(1/z)cp@ t8
2r 2/2cz#exp@2ik0r

2/2z#, which can be seen to satisfy th
paraxial wave equation~2!. New solutions of Eq.~2!, the
PGB’s, are obtained from this paraxial pulsed spherical w
by using the well-known procedure@17# of shifting z by an
imaginary constant,z→q(z)5z1 izR , with zR.0:

c~r ,z,t8!5cpS t82
r 2

2cq~z! D izR

q~z!
expF2 ik0r 2

2q~z! G , ~4!

where we have also introduced a factorizR for convenience.
The complete fieldE(r ,z,t8)5c(r ,z,t8)exp(iv0t8) can be
written

E~r ,z,t8!5
izR

q~z!
cp~ tc8!exp~ iv0tc8!, ~5!

where

tc85t82
r 2

2cq~z!
~6!

is the complex timetc8 of Ref. @2#, which emerges here as
consequence of the more familiar complex spatial s
z→z1 izR . The PGB@Eq. ~5!# appears as a cw Gaussia
beam @ izR /q(z)#exp(iv0tc8) of frequencyv0 modulated in
space and time by the functioncp(tc8), which is, in principle,
arbitrary.

The quantityq(z) is the so-called complex beam param
eter, andzR is the Rayleigh range of cw Gaussian beams.
a cw Gaussian beam of frequencyv0, the parameters ar
usually written in the formzR5k0a0

2/2, and

1

q~z!
5

1

R~z!
2

2i

k0a2~z!
, ~7!
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where a0, R(z)5z@11(k0a0
2/2z)2# and a2(z)5a0

2@1
1(2z/k0a0

2)2# are, respectively, the waist width, the radiu
of curvature of the wave fronts, and the Gaussian width
each cross sectionz5const of the cw Gaussian beam@al-
though they lose such meanings for the pulsed beam re
sented by Eq.~5!#. It is important to note that, according t
Eqs. ~7! and ~6!, the imaginary part of complex time i
Im tc85r 2/a2(z)v0>0.

III. DETERMINATION OF SOLUTIONS OF PULSE
AND BEAM FORM

We shall now determinecp(t8), and then a particular
PGB, by prescribing a real pulse form atr 5z50, namely,

p~ t8!5A~ t8!cos@v0t81F~ t8!#, ~8!

whereA(t8)>0 is the pulse envelope andF(t8) its associ-
ated phase factor. Ifp(t8) is square integrable, it may b
represented as a Fourier spectrum of the form

p~ t8!5
1

2pE2`

`

@ f ~v2v0!1 f * ~2v2v0!#exp~ ivt8!dv,

~9!

wheref (a) is one half the Fourier transform of the comple
envelopeA(t8)exp@iF(t8)#, i.e.,

f ~a!5 1
2 E

2`

`

A~ t8!exp@ iF~ t8!#exp~2 iat8!dt8. ~10!

The function f (v2v0) takes significant values within a
interval ~bandwidth! V;5/T @assuming full widths at half
maximum ~FWHM’s! V and T for u f u and A# around the
carrier frequencyv0. For a pulse with a few oscillations,T
*T0, the bandwidth satisfiesV&0.8v0. Then f (v2v0)
will be generally small but not necessarily zero aroundv
50.

The analytic signal@15# complex representationP(t8) of
p(t8) @Re P(t8)5p(t8)# is

P~ t8!5
1

pE0

`

@ f ~v2v0!1 f * ~2v2v0!#exp~ ivt8!dv,

~11!

which does not contain spectral components of negative
quency. As a function of a complex variabletc8 , P(tc8) is @15#
nonsingular in the upper half Imtc8>0 of the complex plane
tc8 , and approaches zero for Imtc8→1`.

In order to have a PGB with the prescribed pulse form~8!
at r 5z50, we equate the PGB complex fieldE(0,0,t8)
5cp(t8)exp(iv0t8) and the analytic signalP(t8),

cp~ t8!exp~ iv0t8!5
1

pE0

`

@ f ~v2v0!1 f * ~2v2v0!#

3exp~ ivt8!dv, ~12!

and, by the changev85v2v0, we find
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1088 PRE 58MIGUEL A. PORRAS
cp~ t8!5
1

pE2v0

`

@ f ~v8!1 f * ~2v822v0!#exp~ iv8t8!dv8,

~13!

which determinescp(t8). The fact thatcp(t8)exp(iv0t8) is
an analytic signal ensures that the PGB@Eq. ~5!#
@ izR /q(z)#cp(tc8)exp(iv0tc8) has no singularities, and tends
zero for larger .

The necessity of using the analytic signal complex rep
sentation originates in the peculiar form of the PGB solutio
of the paraxial wave equation. The PGB’s have been deri
by the substitutionz→z1 izR in a paraxial pulsed spherica
wave, which leads to replacing the real timet8 with the
complex time tc8 , with a positive imaginary part, in
cp(t8)exp(ivt8). This function must therefore have an a
equate behavior in the upper half of the complex planetc8 ,
which is achieved by the use of its analytic signal. Oth
solutions of the paraxial wave equation will not require,
general, the use of the analytic signal.

For many standard models of pulses@for instance, the
Gaussian onep(t8)5exp(2t82/T2)cos(v0t8) used in Ref.@2##,
f (v2v0) does not vanish inv<0, but takes small values
In such cases it is customary to neglect the contribution off *
in Eq. ~12! @or Eq. ~13!#, and further extend the lower limi
of the integral to2`. One then writes, on comparison o
Eqs. ~13! and ~10!, that cp(t8)5A(t8)exp@iF(t8)#, i.e.,
cp(t8) is simply the complex envelope ofp(t8). This ap-
proximation underlies Ref.@2#. However, because of th
negative frequencies introduced in Eq.~12! in making this
approximation,cp(t8)exp(iv0t8) is no longer the analytic
signal ofp(t8), but another complex representation. The o
tained PGB@ izR /q(z)#cp(tc8)exp(iv0tc8) is still a solution of
Eq. ~2! with the desired pulse formp(t8) at r 5z50, but it
may have singularities at Imtc8.0 ~i.e., rÞ0), or else tend
to infinity for Im tc8→1` (r→`), which is just the problem
with the PGB of Ref.@2#. The reason of this growth is tha
the amplitudes of the spectral components with negative
quency exp@i(2v)t8# introduced in Eq.~12!, however small
they are, grow exponentially as exp(v Im tc8) in Im tc8.0
(rÞ0). In conclusion, we cannot perform the above appro
mation when dealing with a complex time.

We observe, however, that the PGB can be expres
from Eqs.~5!, ~6!, and~12!, as the superposition

E~r ,z,t8!5
izR

q~z!

1

pE0

`

@ f ~v2v0!1 f * ~2v2v0!#

3expF 2 ivr 2

2cq~z!Gexp~ ivt8!dv ~14!

of cw Gaussian beams with different frequenciesv, ampli-
tudes, and phases determined byf (v2v0), all with the
same Rayleigh rangezR and waist position. The PGB the
serves as a model for the pulsed beams from mode-loc
lasers with stable resonators, in whichzR and the waist po-
sition are common parameters for all the locked Gauss
axial modes@18#, as noted in Ref.@2#. Moreover, we point
out that f (v2v0) is limited to positive values ofv by the
laser line shape and mode gain, and, in the last analysis
the resonator geometry~e.g.,vmin5pc/L in a confocal reso-
-
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d

r

-
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n

by

nator of lengthL). Therefore, we have that, without appea
ing to any approximation,cp(t8) is the complex envelope o
p(t8), i.e.,

cp~ t8!5A~ t8!exp@ iF~ t8!#. ~15!

As f (v2v0)exp@2ivr2/2cq(z)# in Eq. ~14! is similarly lim-
ited to positive values ofv, c(r ,z,t8) given by Eq.~4! can
justly be said to be the temporal complex envelope of
PGB at any spatial position (r ,z).

Nevertheless, we still may wish to use pulse mod
p(t8), with f (v2v0) different from zero forv<0. Then
cp(t8) should be calculated from Eq.~13!. The result is not
the complex envelopeA(t8)exp@iF(t8)#, but a certain func-
tion lacking a clear physical meaning. The same can be
for c(r ,z,t8). It is more meaningful in this case to calcula
and handle directly the complex fieldE from Eqs.~12! and
~5!. Later we shall see some examples of the different sit
tions.

In the following discussion, we consider a PGB from
mode-locked laser. The formulas displayed below, howev
are written so that they apply in the general case.

IV. TEMPORAL AND SPATIAL BEHAVIOR OF THE PGB

Let us now analyze the temporal behavior of the PGB
each point of space. According to Eq.~4!, the pulse envelope
c(0,z,t8) maintains its form along the beam axis (r 50,z
Þ0), acquiring only a global complex amplitudeizR /q(z)
@i.e., a global amplitudea0 /a(z) and phase tan21(z/zR)#. If
we move toward the beam periphery (rÞ0,zÞ0), the pulse
envelopec(r ,z,t8) becomes shifted in time and changes
form, as Fig. 1~a! illustrates: at a point of space (r ,z), the
functioncp(tc8) is shifted in the complex plane by the qua
tity r 2/2cq(z), which lies in the circle of diameter}r 2, as
shown in Fig. 1~a!. The cut along the real axis of the shifte
function gives„after multiplication by the global complex
amplitudeizR /q(z)exp@2ik0r

2/2q(z)#… the pulse envelope a
(r ,z).

The real partr 2/2cR(z) of the complex shift amounts to
pulse temporal shift~delay forz.0 and advancement forz
,0). At the timet5z/c of arrival of the pulse at the planez,
the temporal shift entails a spatial pulse shiftDz5
2r 2/2R(z) equal to the departure of the spherical wave fro
from the planez. We thus have that the pulse fronts mat
the spherical wave fronts of the monochromatic Gauss
beam of the carrier frequencyv0, as illustrated in Fig. 1~b!.

The imaginary partr 2/a2(z)v0 of the complex shift re-
sults, in general, in a change in the shape of the enve
~broadening or narrowing in simple cases, and distorting
general!, determined by the quotientr 2/a2(z). The points
r 2/a2(z)5const are the hyperbolic ray
r 2(z)5r 0

2@11(2z/k0a0
2)2# of the energy flow @16# of a

monochromatic Gaussian beam of frequencyv0; the pulse
envelope is therefore invariant along these rays, as show
Fig. 1~b!.

These aspects and others are more clearly seen from
Fourier spectrumÊ(r ,z,v) of E(r ,z,t8) at each point in
space. From Eqs.~14! and ~7!, it follows that
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Ê~r ,z,v!52u~v!@ f ~v2v0!1 f * ~2v2v0!#
izR

q~z!

3expF 2 ivr 2

2cR~z!G
3expF2

v

v0

r 2

a2~z!
G , ~16!

whereu( ) is the Heaviside step function. The phase fac
exp(2ivr2/2cR) in Eq. ~16! leads to the mentioned tempor
shift. The amplitude exp(2vr2/v0a

2), exponential inv, de-
forms the on-axis spectrum, leading to a subsequent cha
in the form of the pulse envelope. Furthermore, this decay
exponential removes high frequency spectral compon
from the on-axis spectrum, which may cause a pulse
quency shift toward lower frequencies, i.e., an increase of
oscillation period. The frequency shift increases toward
beam periphery, remaining constant in each hyperbolic
r 2/a2(z)5const.

The spatial behavior of the PGB shows a great vari
with cp(t8), since the spatial coordinates enter its argume
In general, both the distribution of amplitude,uE(r ,z,t)u
~only for long pulses can its square be identified with t
average intensity over a few optical cycles!, and of energy,
W(r ,z)5*@Re E(r ,z,t8)#2dt85 1

2 * uE(r ,z,t)u2dt8, are non-
Gaussian at cross sectionsz5cte.

The energy distribution can be written, from Eq.~4!, as

FIG. 1. ~a! Displacement in the complex planetc8 of cp(tc8) to
obtain the pulse envelope as the cut along the real axis.~b! Sche-
matic drawing of the PGB, showing the pulse time delay and bro
ening.
r

ge
g
ts
-
e
e
y

y
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W~r ,z!5F a0

a~z!G
2

expF2
2r 2

a2~z!
G

3E
2`

`

dt9UcpS t91 i
r 2

v0a2~z!
D U2

5F a0

a~z!G
2

expF2
2r 2

a2~z!
GgF r 2

a2~z!
G , ~17!

wheret95t82r 2/2cR(z). The form of this expression indi
cates that the energy distribution of the PGB has an invar
transverse pattern during propagation, determined by
pulse form throughg(r 2/a2), whose width and axial ampli-
tude change at the same rate as the continuous Gau
beam of the carrier frequency. The value ofz of the narrow-
est W(r ,z) ~the waist or focus of the PGB! is then z50.
From the spectrum@Eq. ~16!#, we have thatuÊ(r ,z,v)u2

,uÊ(0,z,v)u2; integrating inv and using the Parseval iden
tity, we find W(r ,z),W(0,z), i.e., the transversal pattern o
energy distribution for any PGB is a strictly decreasing fun
tion of r .

Additional regularities forW(r ,z) and uE(r ,z,t8)u can be
drawn from the approximate expression for the PGB, va
for r 2/a2(z)!2pT/T0,

E~r ,z,t8!.
izR

q~z!
expF2 ik0r 2

2q~z! GFcpS t82
r 2

2cR~z! D
1

]cp

]t8
U t82~r 2/2cR!

ir 2

v0a2~z!
Gexp~ iv0t8!,

~18!

which follows by power expandingcp@ t82r 2/2cR(z)
1 ir 2/a2(z)v0] in Eq. ~4! aroundt82r 2/2cR(z), and retain-
ing up to the first order term. The amplitude distribution
then approximated by

uE~r ,z,t8!u.
a0

a~z!
expF2

r 2

a2~z!
GUcpS t82

r 2

2cR~z! D U
3F12

r 2

a2~z!v0
S ] arg cp

]t8
D

t82r 2/~2cR!

G ,

~19!

which, in the case of an on-axis pulse with negligible pha
modulation, reduces to

uE~r ,z,t8!u.
a0

a~z!
expF2

r 2

a2~z!
GUcpF t82

r 2

2cR~z!GU.
~20!

Squaring and integrating, we find that, in this case and wit
this approximation,W(r ,z) is Gaussian, of the same widt
(1/e2 decay! as that of the cw Gaussian beama(z). The
amplitude uE(r ,0,t8)u at the waist (z50) is also Gaussian
@since 1/R(0)50#, of width (1/e decay! independent of time
a0. To visualize the behavior ofuE(r ,z,t8)u for z.0, as-

-



.

are
-

of

ri-

1090 PRE 58MIGUEL A. PORRAS
FIG. 2. ~a! Pulse forms of the PGB of Eq
~22! for variable r . a050.5 mm, T051.65 fs
(v053.8 fs21), T5T0, and z5zR51.583103

mm. ~b! Power spectra of the pulses of~a!. ~c!
Energy distribution of the PGB of Eq.~22! at
several cross sections. The beam parameters
the same as in~a!. The dashed lines are the en
ergy distributions of the cw Gaussian beam
v0. ~d! Amplitude distribution atz5zR of the
PGB of Eq.~22! at the time instantst8522, 0,
and 2 fs. The dashed line is the amplitude dist
bution of a cw Gaussian beam ofv0.
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sume, for simplicity, thatucp(t8)u is a bell-shaped function
aroundt850. Thenucp(t82r 2/2cR)u is a decreasing func
tion of r in the leading partt8,0 of the pulse, and, accord
ing to Eq.~20!, uE(t,z,t8)u will be narrower than the Gauss
ian distribution of widtha(z) at these instants. Conversel
in the trailing edget8.0 of the pulse, the amplitude distr
bution will be broader than the Gaussian distribution
width a(z). In short, we might say that, at eachz.0, dif-
fraction spreading builds up with time.

V. EXAMPLES

Let the pulse be

p~ t8!5
Dt

At821Dt2
cos@v01tan21~ t8/Dt !#, ~21!

Dt.0 ~the FWHM duration isT52A3Dt), of complex en-
velope A(t8)exp@iF(t8)#5iDt/(t81iDt). From Eq.~10!, f (v
2v0)5pDt exp@2Dt(v2v0)#u(v2v0) contains only posi-
tive frequencies, so that we can writecp(t8)5 iDt/(t8
1 iDt). The PGB complex envelope for this pulse form
r 5z50 is, from Eq.~4!,

c~r ,z,t8!5
iDt

@ t82r 2/2cR~z!#1 i @Dt1r 2/a2~z!v0#

3
izR

q~z!
expF2 ik0r 2

2q~z! G , ~22!

which is nonsingular, tends to zero forr→`, and explicitly
shows the time delayr 2/2cR(z) and a pulse broadenin
f

t

r 2/a2(z)v0 increasing withr . The pulse formsuRe Eu for
severalr are shown in Fig. 2~a! for the parametersa050.5
mm, T051.65 fs (v053.8 fs21), and Dt50.48 (T/T0.1
optical cycle within the envelope!, and at fixed z5zR

5k0a0
2/251.583103 mm. ~It should be noted that the verti

cal scales are different for the different pulses in this figu
Actually, the pulse amplitude diminishes for increasingr .! In
this example, the change in the pulse form consists of
envelope broadening, whereas the frequency shift is ne
gible. The broadening causes the pulse to approach a m
chromatic wave of frequencyv0 for larger . These facts are
clearer from Fig. 2~b!, which shows the power spectr
uÊ(r ,z,v)u2 of the pulses of Fig. 2~a!. As r increases, fre-
quencies larger thanv0 are gradually filtered, narrowing th
spectrum~broadening the pulse! but maintaining the expo-
nential decaying shape and the maximum amplitude atv0.
The energy distribution

W~r ,z!5
p

2 S a0

a~z! D
2 Dt2

Dt1r 2/a2~z!v0

expF2
2r 2

a2~z!
G

~23!

is depicted in Fig. 2~c! for several values ofz. It is apprecia-
bly narrower than the energy distribution of the cw Gauss
beam, also shown this figure. This difference may be att
uted to the phase modulation inp(t8). W(r ,z) only ap-
proaches the Gaussian form of widtha(z) for large pulse
duration (Dt→`). Figure 2~d! shows the transversal ampl
tude distributionuE(r ,z,t8)u at z5zR at the instants of time
t8522, 0, and 2 fs. The narrower amplitude distributio
occurs att850 instead of negativet8.

Now consider the pulse
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FIG. 3. ~a! Pulse forms of the
PGB of Eq. ~25! for variable r .
a050.5 mm, T051.65 fs (v0

53.8 fs21), Dt53 fs, and z
5zR . ~b! Power spectra of the
pulses of~a!. ~c! Energy distribu-
tion of the PGB of Eq.~25! at sev-
eral cross sections. The beam p
rameters are the same as in~a!.
The dashed lines are the energ
distributions of the cw Gaussian
beam ofv0. ~d! Amplitude distri-
bution atz50 of the PGB of Eq.
~25! at the time instantst8521,
0, and 11 fs, at z50, and atz
53zR . The dashed lines are th
amplitude distributions of a cw
Gaussian beam ofv0.
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p~ t8!5sincS 2t8

Dt D cos~v0t8!, ~24!

where sinc(x)5sin(px)/px, and Dt.0 is the full width of
the central maximum of sinc(2t8/Dt) ~FWHM T.0.52Dt).
We readily find that f (v2v0)5(p/Dv)rect@(v
2v0)/Dv#, with rect(x)51 if uxu, 1

2, 0 otherwise, and
Dv54p/Dt. The pulse is then a uniform superposition
monochromatic waves within the interval@v02Dv/2,v0
1Dv/2#. If Dv/2,v0, i.e., Dt.T0 ~the central maximum
contains at least one optical cycle!, f (v2v0) has only posi-
tive frequencies, andcp(t8) is then the complex envelope o
p(t8), i.e., cp(t8)5sinc(2t8/Dt) @in the caseDv/2.v0,
cp(t8) should be calculated from Eq.~13!#. From Eq.~4!, the
PGB complex envelope is

c~r ,z,t8!5sincF 2

DtS t82
r 2

2cq~z! D G izR

q~z!
expF2 ik0r 2

2q~z! G .
~25!

The pulse forms ReE(r ,z,t8) of the PGB@Eq. ~25!#, show-
ing the pulse time delay, broadening, and frequency shift
increasingr , can be seen in Fig. 3~a!, for the parametersa0
50.5 mm, T051.65 fs (v053.8 fs21), Dt53 fs, and z
5zR . In this case, the filtering of high frequency comp
nents @see Fig. 3~b!# has the double effect of indefinitel
r

broadening the pulse and shifting the frequency of the os
lations within the envelope up to the limitv02Dv/2. The
pulse then approaches a monochromatic pulse of freque
v02Dv/2 asr increases. The energy distribution, calculat
from Eq. ~25!, is

W~r ,z!5
p

DvF a0

a~z!G
2
sinhS Dv

v0

r 2

a2~z!
D

S Dv

v0

r 2

a2~z!
D expF2

2r 2

a2~z!
G .

~26!

This differs only slightly from the energy distribution of th
cw Gaussian beam@see Fig. 3~c!#, as predicted above by th
approximate formula~20!. At z50, the transversal amplitud
distribution uE(r ,z,t8)u, shown in Fig. 3~d! at the instantst
521, 0, and11 fs, is almost independent of time, and h
a width;a0. At z53zR , however, diffraction broadening i
sizably reduced in the leading part of the pulse, and
creased in the trailing part@see Fig. 3~d!#.

For comparison with Ref.@2#, we finally consider the
Gaussian pulsep(t8)5exp(2t82/Dt2)cos(v0t) ~the FWHM
T52Aln 2Dt.1.66Dt), for which f (v2v0)
5 1

2 ApDt exp@2Dt2(v2v0)
2/4# does not vanish at anyv.

From Eq.~12!, the analytic signal is
cp~ t8!exp~ iv0t8!5expF2
t82

Dt2G H exp~ iv0t8!2 i ImFexp~ iv0t8!erfcS Dtv0

2
1 i

t8

Dt D G J , ~27!
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FIG. 4. ~a! Pulse forms of the
Gaussian PGB for variabler . a0

50.5 mm, T051.65 fs (v053.8
fs21), Dt51.65 fs, andz5zR/2.
~b! Power spectra of the pulses o
~a!. ~c! Energy distribution of the
Gaussian PGB at several cros
sections. The beam parameters a
the same as in~a!. The dashed
lines are the energy distribution
of the cw Gaussian beam ofv0.
~d! Amplitude distribution at z
50 of the Gaussian PGB at th
time instantst8522, 0, and12
fs, at z50, and atz53zR . The
dashed lines are the amplitude di
tributions of a cw Gaussian beam
of v0.
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where erfc( ) is the complementary error function. It is cle
from this expression thatcp(t8) is not the complex envelop
A(t8)exp@iF(t8)#5exp(2t82/Dt2). The Gaussian PGB is ob
tained, according to Eq.~5!, by multiplying by izR /q(z) and
replacing t8 by tc85t82r 2/2cq(z) in Eq. ~27!. The pulse
forms ReE and corresponding spectra are shown in Fi
4~a! and 4~b! for the parametersa050.5 mm,T051.65 fs,
Dt51.65 fs (T/T051.66 cycles within the pulse!, and z
5zR/2. In this case, the filtering of high frequencies wi
increasingr does not lead, at the first values ofr , to a pulse
deformation, nor even to broadening, but solely to a f
quency shift. For larger values ofr , the spectrum reaches th
surroundings ofv50, where it distorts and narrows, givin
rise to pulse broadening. In Figs. 4~c! and 4~d!, we see the
transversal energy and amplitude distributions for sev
values ofz. As suggested by the approximate formula@Eq.
~20!# for pulses without phase modulation,W(r ,z) is almost
Gaussian, of width;a(z); at z50, uE(r ,z,t8)u is almost
time independent, of width;a0, and atz53zR diffraction
spreading increases sizeably with time.

Figure 5 again shows the amplitude distribution of t
Gaussian PGB of this paper, along with the Gaussian PG
Ref. @2#, both for the coordinatesz50 and t850, and the
parametersa050.5 mm, T053.55 fs, and Dt52.14 fs
(T/T051). The PGB of Ref.@2# is obtained from the one o
this paper by eliminating the term with the function erfc
Eq. ~27! @this amounts to neglectingf * in Eq. ~12! and ex-
tending the integral up to2`#. This approximation cause
the beam amplitude to grow without bound in the transve
direction.
r

.

-
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of
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VI. CONCLUSION

In this paper we have provided a model for the spatiote
poral structure of pulsed light beams propagating in f
space, particularly those emitted by mode-locked lasers.
well as the monochromatic Gaussian beam, the PGB’s, h
ing nearly Gaussian spatial forms and arbitrary prescri
temporal shapes at the beam axis, are solutions of
paraxial wave equation, and are found by the same met
of shifting the axial coordinatez by an imaginary constant in
the paraxial spherical wave. The PGB is a superposition
axial Gaussian modes of a stable laser resonator rather th
single mode, and its spatial and temporal characteristics
intimately entwined if the pulse duration is of the same ord

FIG. 5. Amplitude distribution atz50 andt850 of the Gauss-
ian PGB of this paper, and that of Ref.@2#. The parameters area0

50.5 mm,T053.55 fs (v051.77 fs21), andDt52.14 fs.
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of magnitude as the optical period.
In the time domain, the spatiotemporal coupled struct

of the PGB leads, regardless of the pulse form at the be
axis, to a pulse shift and a change in the pulse shape tow
the beam periphery. Depending on the axial pulse form, s
a change may manifest itself as an envelope distor
~broadening in simple cases!, a frequency shift toward lowe
frequencies, or both. In the spatial domain, spatiotemp
coupling gives rise to time-dependent diffraction and
pulse-form-dependent spatial distribution of energy. The w
the transversal amplitude distribution varies with time
quite involved in general, but, for pulses without pha
modulation, the pattern is simpler. At the waist, the tra
verse amplitude profile is almost Gaussian, of the sa
width as that of the monochromatic Gaussian beam, and
most independent of time. At some distance from the w
in the direction of propagation, diffraction spreading is s
ably diminished when the pulse arrives, but enlarged w
the pulse surpasses that distance. The PGB has an inva
transverse pattern of energy distribution, determined by
pulse form, whose width and amplitude vary at the same
as those of the monochromatic Gaussian beam of the ca
frequency. For pulses without phase modulation, the ene
distribution is almost Gaussian, and of the same width as
of the monochromatic Gaussian beam at any propaga
distance.

Most of these effects go unnoticed in Ref.@2# due to the
fact that the authors only considered a PGB of Gauss
m
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pulse form, and the amplitude distribution at only one inst
of time (t850). More importantly, their Gaussian PGB lack
a true beam behavior because of their use of the comm
complex representationA(t8)exp@iF(t8)#exp(ivt8) of the real
pulse A(t8)cos@v0t81F(t8)#, which only approximates the
analytical signal complex representation for real time. In
present paper, transversally decaying spatial profiles
PGB’s with arbitrary pulse forms are achieved by the use
a true analytic signal complex representation.

The PGB of this paper should not be confused with
pulsed Gaussian beams studied in earlier papers@5,7#, in
which the pulsed beam is a propagated initial condition
transversal and temporal Gaussian form. By contrast,
PGB described here has a prescribed temporal form at
beam axis. Our PGB also differs from the pulsed beams
Refs.@13,14#, where the initial condition itself contains spa
tiotemporal couplings by the action of a lens of dispers
material, but the process of propagation is described by
paraxial wave equation without the crossed derivative.
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