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Ultrashort pulsed Gaussian light beams

Miguel A. Porra3
Departamento de Fisica Aplicada, Escuela de Ingenieros de Minas, Universidaddh@aede Madrid,
Rios Rosas 21, E-28003 Madrid, Spain
(Received 3 December 1997

We find a family of solutions of the paraxial wave equation that represents ultrashort pulsed light beams
propagating in free space. These pulsed beams have an arbitrary temporal form and a nearly Gaussian cross
section, while modeling for the pulses emitted by mode-locked lasers with stable two-mirror resonators. We
also study the effects arising from their spatiotemporal coupled behavior, such as pulse time delay, distortion,
and a frequency shift toward the beam periphery. Time-varying diffragtiétin diffraction reduction at the
first instants of arrival of the pulsed beam at a given distpand the dependence of the spatial distribution of
energy on the pulse form are also described. These effects become important for pulsed beams with a few
optical oscillations within the pulse envelog&1063-651X98)02007-§

PACS numbgs): 42.65.Tg, 42.60.Jf, 42.60.Fc, 42.2%

I. INTRODUCTION backs render the use of the PGB of Ref] problematic.
In this paper, we find a PGB as a family of solutions for

Due to rapid advances in the generation of femtoseconthe paraxial wave equation in free spa@ec. I), and de-
laser pulse§l], the study of their spatiotemporal behavior on Scribe a method, based on the use of the analytical signal
propagation in free spad@—7] and optical systemg8—10]  complex representation of polychromatic light5], by
has become a subject of interest. It is nowadays well estatwhich the PGB’s can represent pulsed bed8ec. 1I)). We
lished [11,12 that the propagation of femtosecond laserdo not restrict ourselves to the PGB with a Gaussian pulse
pulses cannot be assimilated to that of longgwasimono- shape, but draw general conclusions about the spatiotempo-
chromatid pulses, but the spatial and temporal characteristal couplings in a PGB with an arbitrary pulse shdfec.
tics interact with each other during propagation. In freelV), pointing out the peculiar form the couplings adopt for
space, spatiotemporal couplings such as pulse time delaglifferent pulse shapeSec. V).
pulse broadening, and frequency lessening toward the beam
periphery have been reported in several papers for different; pERIVATION OF THE PGB FAMILY OF SOLUTIONS
initial conditions. In Refs[5,7], the couplings arose in the FOR THE PARAXIAL WAVE EQUATION
propagation of an initial uncoupleffactorized condition
with Gaussian form in space and time; in Réfk2—14, the We start with the wave equatiohE — (1/c?)#°E/3t*=0
spatiotemporal coupling came from the propagation througtior @ complex scalar fieléE, Re E giving the real field. In-
a lens, but not from the free propagation beyond. troducing the ansatE= ¢(X,y,z,t)exfiwg(t—2/c)], where

Very recently[2], a model of an ultrashort pulsed Gauss- wo=27/Ty is a carrier frequency ant, the period, we find
ian beam(PGB) was described, nearly Gaussian in time and
space and propagating in free space, and incorporating some Cwo Y wo Yy 1 Py
of the sp_atiotemporal couplings reporteql _previous_ly. These Ay=2i C oz gt 2 1)
PGB'’s arise from the coherent superposition of axial modes
in a confocal resonator, and provide a model for the radiation . .
from mode-locked lasers with such resonai{@}s However, and, with the new variables =t—z/c, z=z,
the authors of this reference overlooked the fact that this
PGB model is not a well-behaved “beam;” the transversal
amplitude distribution is described by a function which, after
a central region of beamlike behavior, becomes boundless
with the transversal coordinateas exp(*), as is clear from where A, = 521 9x%+ 3% ay? and ko= w/c. In Eq. (2) we
Egs.(12) and(13) of Ref.[2]. As a consequence, the energy haye dropped, at the last stepy/dz? to perform the
in the beam is infinit¢see Eq(25) of Ref.[2]]. Apparently,  yaraxial approximatiofl6]. Equation(2) governs the propa-
this PGB could be used to model light beam_s with Othergation of pulsed paraxial light beams in free spd. Such
pulse shapepsee Eq.(10) of Ref. [2]]. When doing so for = 5 1sed beam will have a characteristic variation time of the
some standard pulses, such as a super-Gaussian ofrorderqger of the magnitude of the pulse duratibrior a smooth

or for Lo.rentzian'pulses, similar difficulties are fogtﬁdn pulse shape. With the dimensionless variable=t'/T, Eq.
exponential growing exp{") in the first case, and singular (2) may be written as
points in the transversal profile in the secgntihese draw-
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For pulses whose duration is much longer than the oscillatiowhere a,, R(z)=2z[1+(kea3/22)?] and a?(z)=a3[1
period, To/T<1, the second term in the square brackets of+ (2z/k,a3)?] are, respectively, the waist width, the radius
Eqg. (3) may be neglected, as is the case for optical pulses ajf curvature of the wave fronts, and the Gaussian width at
several tens of femtoseconds or longer. Then the solutions @fach cross section=const of the cw Gaussian bedml-

Eq. (2), where time derivatives do not appear explicitly, de-though they lose such meanings for the pulsed beam repre-
pend parametrically on time. In particular, factorized solu-sented by Eq(5)]. It is important to note that, according to

tions of the formy= ,(t") c(X,y,2) exist. This means that Egs. (7) and (6), the imaginary part of complex time is
the pulse experiences only a global complex amplitudgm t.=r?%/a’(z) wy=0.

changedy. from point to point in space, but its form is in-
variant, and conversely, that the transverse amplitude profile
only changes by a global complex amplitugg with time,
but its form is unaltered.

If, however, the pulse comprises only a few optical peri- we shall now determinaj,(t'), and then a particular

ods (To/T=1), the crossed derivative in E€2) must be PGB, by prescribing a real pulse formmtz=0, namely,
kept, coupling the spatial and temporal behaviors of the

pulsed beam in a complicated way. A family of solutions of p(t")=A(t")cod wot’ + P (t")], (8)
Eq. (2), where these couplings become explicit, can be found

as follows. _ B _ whereA(t')=0 is the pulse envelope arBi(t’) its associ-
The pulsed spherical wavg= (1/p) §,(t—p/c)exdioot  ated phase factor. Ip(t') is square integrable, it may be

—pl0)], with p?=x?+y?+2? and y;,(t) an arbitrary func-  epresented as a Fourier spectrum of the form
tion, satisfies the wave equation. Its paraxial version is ob-

tained by approaching=z-+r?/2z, with r’=x2+y?, both in 1 (=

the exponential and in the argumentsf, while approach-  p(t')= Z—J [f(o—wp)+*(—w—wp)]expliot’)dw,

ing llp=1/z. After these approximations, and extracting a T =

factor  expiogt—2c)], we find  g=(1/2) g [t’ )
—r2/2cz]exf —ikqr?/2z], which can be seen to satisfy the _ ,

paraxial wave equatiof2). New solutions of Eq(2), the wheref(a) |s/; one _halflthe_Founer transform of the complex
PGB's, are obtained from this paraxial pulsed spherical wav&nVelopeA(t’)exfid ()], ie.,

by using the well-known procedufd?] of shifting z by an

IIl. DETERMINATION OF SOLUTIONS OF PULSE
AND BEAM FORM

imaginary constanz—q(z) =z+izg, with zg>0: f(a):%f A(t)exdi®(t ) Jexp(—iat )dt’. (10)
o , r2 \izg —ikqr?
Yz t) =gl V' = 2cq(2)/q(2) ex 2q(2) |’ (4) The functionf(w—wg) takes significant values within an

interval (bandwidth Q~5/T [assuming full widths at half

where we have also introduced a facimg for convenience. maximum (FWHM's) Q and T for |f[ and A] around the
The complete fieldE(r,z,t')=(r,z,t")explwt’) can be carrier frequencyw,. For a pulse with a few oscillations,

written =T,, the bandwidth satisfie§)=<0.8w,. Then f(w— wq)
will be generally small but not necessarily zero around
’ iZR ’ . ' =0.
E(r,zt')= ﬁ‘pp(tc)equwotc)! 5 The analytic signaJ15] complex representatioR(t’) of

p(t’) [ReP(t')=p(t")] is
where e
r2 P(t,):;fo [f(w—wg)+T*(—w—wp)lexpliwt’)dw,

ti=t'— 200(2) (6) 11

which does not contain spectral components of negative fre-
guency. As a function of a complex varialtfe P(t;) is[15]
nonsingular in the upper half I{=0 of the complex plane
t., and approaches zero for Ith— + .

In order to have a PGB with the prescribed pulse f¢&n
at r=z=0, we equate the PGB complex fiekd(0,0t")
= p(t")explwot’) and the analytic signab(t’),

is the complex timet, of Ref.[2], which emerges here as a
consequence of the more familiar complex spatial shif
z—z+izg. The PGBJ[Eq. (5)] appears as a cw Gaussian
beam[izg/q(z)]explwgty) of frequencywy modulated in
space and time by the functiaf,(t;), which is, in principle,
arbitrary.

The quantityq(z) is the so-called complex beam param-
eter, andzy is the Rayleigh range of cw Gaussian beams. For 1 (e
a cw Gaussian beam of frequenay, the parameters are / - =_J' _ x(_
usually written in the foran=koa§/2, and Vplt))expiwol’) mJo [Ho=wo)+ (= 0= wy)]

X iot’)dw, 12
1 1 i expliot’)dw (12

= - , 7
a(z2) R(2) kya?(z) @ and, by the change’=w— w,, we find
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o _ nator of lengthL). Therefore, we have that, without appeal-
Pp(t')= = [flo)+f*(—o' 2wy ]expio’'t")dw’, ing to any approximationy,(t') is the complex envelope of
0 13 p(t),i.e.,
which determines/,(t'). The fact thaty,(t')expfwet’) is ot = At )exdid(t)]. (15)

an analytic signal ensures that the PGHEq. (5)]

[izr/0(2) 1¢p(te) explwgte) has no singularities, and tends to _ _ o _

zero for larger. As f(w— wo)exd —iwr?2cq(z)] in Eq. (14) is similarly lim-
The necessity of using the analytic signal complex repreited to positive values ob, ¢(r,zt’) given by Eq.(4) can

sentation originates in the peculiar form of the PGB solutiongdustly be said to be the temporal complex envelope of the

of the paraxial wave equation. The PGB’s have been derive®GB at any spatial positiorr (z).

by the substitutiorz—z+izg in a paraxial pulsed spherical ~ Nevertheless, we still may wish to use pulse models

wave, which leads to replacing the real tirme with the ~ P(t'), With f(o—w,) different from zero foro<0. Then

complex time t;, with a positive imaginary part, in #p(t’) should be calculated from E(L3). The result is not

Wo(t")explat’). This function must therefore have an ad- the complex envelop&(t’)exdid(t’)], but a certain func-

equate behavior in the upper half of the complex plgne tion Iackmg a cI_ear physical meaning. T.he same can be said

which is achieved by the use of its analytic signal. Other®r #(r,Z,t"). It is more meaningful in this case to calculate

solutions of the paraxial wave equation will not require, in@nd handle directly the complex fiekl from Egs.(12) and
general, the use of the analytic signal. (5). Later we shall see some examples of the different situa-

For many standard models of pulsfir instance, the tONS: o _ ,
Gaussian ong(t') = exp(—t'3T)cos@t’) used in Ref[2]], In the following discussion, we _con3|der a PGB from a
f(w—w,) does not vanish im=0, but takes small values. mode-!ocked laser. The formu!as displayed below, however,
In such cases it is customary to neglect the contributioitof '€ Written so that they apply in the general case.
in Eqg. (12) [or Eqg.(13)], and further extend the lower limit
of the integral to—«~. One then writes, on comparison of
Egs. (13 and (10), that #,(t")=A(t")exdi®(t')], ie.,
(") is simply the complex envelope q@f(t’). This ap- Let us now analyze the temporal behavior of the PGB at
proximation underlies Ref[2]. However, because of the each point of space. According to Eg), the pulse envelope
negative frequencies introduced in EG2) in making this  #(0,z,t’) maintains its form along the beam axis=0,z
approximation, ¢r,(t")expfwot’) is no longer the analytic +#0), acquiring only a global complex amplitudeg/q(z)
signal ofp(t’), but another complex representation. The obi.e., a global amplitude,/a(z) and phase tant(z/zg)]. If
tained PGHizr/q(2)]#y(tc)explwty) is still a solution of ~ we move toward the beam peripheny#0,z#0), the pulse
Eq. (2) with the desired pulse form(t’) atr=z=0, butit envelopey(r,zt') becomes shifted in time and changes its
may have singularities at I} >0 (i.e.,r #0), or else tend form, as Fig. 1a) illustrates: at a point of space ), the
to infinity for Im t,— -+ (r—), which is just the problem function p(te) is shifted in the complex plane by the quan-
with the PGB of Ref[2]. The reason of this growth is that tity r’/2cq(z), which lies in the circle of diameterr?, as
the amplitudes of the spectral components with negative freshown in Fig. 1a). The cut along the real axis of the shifted
quency exfi(—w)t'] introduced in Eq(12), however small function gives(after multiplication by the global complex
they are, grow exponentially as explm t/) in Imt,>0  amplitudeizg/q(z)exd —ikor%/2q(2)]) the pulse envelope at
(r+0). In conclusion, we cannot perform the above approxir2)-

IV. TEMPORAL AND SPATIAL BEHAVIOR OF THE PGB

mation when dealing with a complex time. The real part?/2cR(z) of the complex shift amounts to a
We observe, however, that the PGB can be expresse@uise temporal shiftdelay forz>0 and advancement far
from Egs.(5), (6), and(12), as the superposition <0). At the timet=z/c of arrival of the pulse at the plare

the temporal shift entails a spatial pulse shiftz=
izg 1 (= —r?/2R(2) equal to the departure of the spherical wave front
E(r,zt')= ﬁ;jo [f(@—wo) +F*(-w—wo)] from the planez. We thus have that the pulse fronts match
the spherical wave fronts of the monochromatic Gaussian

—ior? ] beam of the carrier frequenay,, as illustrated in Fig. (b).
xexp{m expliot’)dw (14 The imaginary part?/a(z)w, of the complex shift re-
sults, in general, in a change in the shape of the envelope
of cw Gaussian beams with different frequencigsampli- ~ (broadening or narrowing in simple caS(zas, and distorting in
tudes, and phases determined tiw—w), all with the gzengra], determined by the quotient’/a’(z). The points
same Rayleigh range; and waist position. The PGB then ' /a“(z)=const are the hyperbolic rays

serves as a model for the pulsed beams from mode-lockeid (2) =r5[1+(22/keaf)?] of the energy flow[16] of a
lasers with stable resonators, in whigk and the waist po- monochromatic Gaussian beam of frequengy the pulse
sition are common parameters for all the locked Gaussiagnvelope is therefore invariant along these rays, as shown in
axial modeg18], as noted in Ref[2]. Moreover, we point  Fig. 1(b).

out thatf(w— w) is limited to positive values ob by the These aspects and others are more clearly seen from the
laser line shape and mode gain, and, in the last analysis, Byourier spectrumE(r,z,w) of E(r,zt’) at each point in

the resonator geometfe.g.,wnn= wc/L in a confocal reso- space. From Eqg14) and (7), it follows that
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Imt' ag |? 2r?
' = — _
t' W(r,z) az) ex;{ 22
12/2cR(z) 8 ffocdt l/fp(t ! woaz(z))
7=+ \ Ret 2 2 2
_[ 20 o = 2 |g|
iFe ex;{ 22 g 22| (17)

wheret”=t’ —r?/2cR(z). The form of this expression indi-
cates that the energy distribution of the PGB has an invariant
transverse pattern during propagation, determined by the
pulse form throughy(r?/a?), whose width and axial ampli-
*/2cq(z tude change at the same rate as the continuous Gaussian
beam of the carrier frequency. The valuezaff the narrow-
estW(r,z) (the waist or focus of the PGBs thenz=0.
From the spectruniEq. (16)], we have that|E(r,z,»)|?
@ 70 <|E(0,z,w)|%; integrating inw and using the Parseval iden-
tity, we find W(r,z) <W(0,2), i.e., the transversal pattern of
energy distribution for any PGB is a strictly decreasing func-
tion of r.

Additional regularities foW(r,z) and|E(r,z,t")| can be
drawn from the approximate expression for the PGB, valid
for r2/a?(z)<2=TIT,,

rYla¥(z)w,

=z

r*/af0,

z L izg —ikor? , r?
FIG. 1. (a) Displacement in the complex plang of ,(t;) to E(r.zt)= q(2) ex 2q(z) Yol V' 2cR(2)
obtain the pulse envelope as the cut along the real &xjisSche-
matic drawing of the PGB, showing the pulse time delay and broad- Iy ir2
ening. — v —(r22er ——— | EXP(i wgt”),
o’ t’ —(r4/2cR) woaz(z) Ii 0
. iz 18
E(r,z,w)=20(w)[f(w—wo)+f*(—w—wo)](—ZR) 18
g which follows by power expandingyy[t’ —r?/2cR(2)
—iwr? +ir?/a?(z) w] in Eq. (4) aroundt’ —r?/2cR(z), and retain-
X ex 2CR(2) ing up to the first order term. The amplitude distribution is

then approximated by

, aw r2
| (I’,Z, )—ﬁex %

o r?
Xexp — —

F{ wo a’(z)
where 6( ) is the Heaviside step function. The phase factor
exp(—iwr?2cR) in Eq. (16) leads to the mentioned temporal
shift. The amplitude expfwr?wya®), exponential inw, de-
forms the on-axis spectrum, leading to a subsequent change

in the form of the pulse envelope. Furthermore, this decaying (29

exponential removes high frequency spectral components =~ ) ) o
from the on-axis spectrum, which may cause a pulse frewhich, in the case of an on-axis pulse with negligible phase

quency shift toward lower frequencies, i.e., an increase of théodulation, reduces to

r2
“/"’(t _2cR<z>)‘

r2 /,9 arg z//p) ]
2 ’ !
a (Z)wO\ at t’ —r2/(2cR)

oscillation period. The frequency shift increases toward the 5 )
beam periphery, remaining constant in each hyperbolic ray E(r2.t")|~ 8o oxl — r |t — r
r2/a®(z)=const. o a(z) a%(2)|l"P 2cR(2) ||’

The spatial behavior of the PGB shows a great variety (20)
with ¢,(t"), since the spatial coordinates enter its argument.
In general, both the distribution of amplitudgg(r,z,t)| Squaring and integrating, we find that, in this case and within
(only for long pulses can its square be identified with thethis approximationW(r,z) is Gaussian, of the same width
average intensity over a few optical cydleand of energy, (1/e? decay as that of the cw Gaussian beam(z). The
W(r,z)=[[ReE(r,z,t")]?dt' =% [|E(r,z1)|?dt’, are non- amplitude|E(r,0t’)| at the waist £=0) is also Gaussian
Gaussian at cross sections cte. [since 1R(0)=0], of width (1/ decay independent of time

The energy distribution can be written, from Hd), as a,. To visualize the behavior dfE(r,z,t’)| for z>0, as-
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(a) r=3a n (c)
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< 2 !
o B \
= 0 \
5 5|\
\c/ WWWVNVWW ~ Z_ZR\\\
= i~ N FIG. 2. (a) Pulse forms of the PGB of Eq.
° = N\ (22) for variabler. ag=0.5 mm, T,=1.65 fs
x MWNW\(M:O = S 2=32¢ (wo=3.8 fs'), T=T,, and z=2zg=1.58x1C°

S ——— mm. (b) Power spectra of the pulses @). (c)

—-15 -10 ‘5,‘, (?s) s 10 15 0.0 0.5 r1('r?1m) 1.5 2.0 Energy distribution of the PGB of Eq22) at

several cross sections. The beam parameters are
@ the same as ifa). The dashed lines are the en-
'§ (b) —~ (d)| ergy distributions of the cw Gaussian beam of
- T \ wq. (d) Amplitude distribution atz=zg of the
5 i \ PGB of Eq.(22) at the time instants’=—2, 0,
= *E- \ and 2 fs. The dashed line is the amplitude distri-
\;/ r=0 = \! bution of a cw Gaussian beam af,.
= 3
£ S| b2 \!
_g read = \\
§_ ~ =0 fs
Z %2 £ t=2 fs
& 3 =
a0 2 w4 6 _18 10 0.0 0.5 1.0 1.5 2.0
° w (fs7) r (mm)

sume, for simplicity, that'l/p(zt')| is a bell-shaped function r2/a?(z)w, increasing withr. The pulse formgRe E| for
aroundt’ =0. Then|y,(t' —r%/2cR)| is a decreasing func- severalr are shown in Fig. @) for the parametera,=0.5

tion of r in the leading part’ <0 of the pulse, and, accord- mm To=1.65 fs (wo=3.8 fs'1), and At=0.48 (T/Ty=1

ing to Eq.(20), |E(t,z,t")| will be narrower than the Gauss- gptical cycle within the envelope and at fixed z=zg

ian distribution of widtha(z) at these instants. Conversely, =kqa2/2=1.58x 10® mm. (It should be noted that the verti-

in the trailing edget’>0 of the pulse, the amplitude distri- 5| scales are different for the different pulses in this figure.
bution will be broader than the Gaussian distribution of pctally, the pulse amplitude diminishes for increasingin
width a(2). In short, we might say that, at eae»0, dif-  this example, the change in the pulse form consists of an

fraction spreading builds up with time. envelope broadening, whereas the frequency shift is negli-
gible. The broadening causes the pulse to approach a mono-
V. EXAMPLES chromatic wave of frequency, for larger. These facts are

clearer from Fig. %), which shows the power spectra

Let the pulse be - > _ ,
|E(r,z,0)|* of the pulses of Fig. @). As r increases, fre-

At quencies larger than, are gradually filtered, narrowing the
p(t')= - cog wo+tan 1(t'/At)], (21 spectrum(broadening the pul$ebut maintaining the expo-
V' e+A nential decaying shape and the maximum amplitude gt

. The energy distribution
At>0 (the FWHM duration |sT=2\/§At), of complex en-

velope A(t")exdi®(t")]=iAt/(t' +iAt). From Egq.(10), f(w o
—wq) = 7At exd —At(w— wp) ]6(w—wy) contains only posi- W(r,z)= 5
tive frequencies, so that we can writg,(t')=iAt/(t’
+iAt). The PGB complex envelope for this pulse form at
r=z=0 is, from Eq.(4),

do
a(z)

2 At? 2r2
At+ r2/a2(z)woex a%(z)
(23
is depicted in Fig. &) for several values dd. It is apprecia-
. bly narrower than the energy distribution of the cw Gaussian
iAt beam, also shown this figure. This difference may be attrib-
[t —r2/2cR(z)]+i[At+r2/a%(Z) wo] uted to the phase modulation m(t’). W(r,z) only ap-
. o, proaches the Gaussian form of widd{z) for large pulse
XIZ_ReX —ikor duration At—o0). Figure Zd) shows the transversal ampli-
q(z) 2q(z) tude distribution|E(r,z,t")| at z=zy at the instants of time
t'=-2, 0, and 2 fs. The narrower amplitude distribution
which is nonsingular, tends to zero for-c0, and explicitly  occurs att’ =0 instead of negativé'.
shows the time delay?/2cR(z) and a pulse broadening Now consider the pulse

P(r,z,t')=

: (22
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r=3a

1@ w (c)
70__1 "é z=0
c >

—
:g 3 FIG. 3. (a) Pulse forms of the
'g r=a 3 PGB of Eq. (25 for variabler.
~ 2=2) a,=0.5 mm, Ty=1.65 fs (wg
L ~ =3.8 fs'1), At=3 fs, and z
K r=0 X \ =zg. (b) Power spectra of the

= N pulses of(a). (c) Energy distribu-

B tion of the PGB of Eq(25) at sev-
-16-12 -8 -—14!- 0O 4 8 12 16 0.0 0.5 1.0 1.5 2.0 eral cross sections. The beam pa-
(fs) r (mm)

rameters are the same as (i&.
The dashed lines are the energy
distributions of the cw Gaussian
beam ofwg. (d) Amplitude distri-
bution atz=0 of the PGB of Eq.
(25) at the time instant$’ =—1,

0, and+1 fs, atz=0, and atz
=3zg. The dashed lines are the
amplitude distributions of a cw
Gaussian beam ab,.

(5)

(arbitrary units)

IE(r,z,t)!

power spectrum (arbitrary units)

o

r (mm)

’

2t broadening the pulse and shifting the frequency of the oscil-
p(t’)=sin0(E) coq wot’), (24)  lations within the envelope up to the limiiy—Aw/2. The
pulse then approaches a monochromatic pulse of frequency
where Sinc(() :Sin(’JTX)/’ﬂX, and At>0 is the full width of wo—Aw/Z asr -increases. The energy distribution, calculated
the central maximum of sinc(2/At) (FWHM T=0.52At).  from Eq.(25), is

We readily find that f(o—wg)=(7/Aw)recf(w )

—wg)/Aw], with rectx)=1 if |x|<3, O otherwise, and sinr(A—w r )

Aw=4m/At. The pulse is then a uniform superposition of ag |? wo a?(z) 2r2
monochromatic waves within the intervat,— A /2,00 W(r.2)= 1 a2) > exl{—z— :
+Aw/2]. If Aw/2<wy, i.e., At>T, (the central maximum (A_w r ) a%(z)
contains at least one optical cyglé(w— wg) has only posi- wo a?(z)

tive frequencies, angr,(t') is then the complex envelope of (26)

p(t'), i.e., yp(t")=sinc(2'/At) [in the caseAw/2> w, . ) o
(1) should be calculated from EQL3)]. From Eq.(4), the This differs only slightly from the energy distribution of the

PGB complex envelope is cw Gaussian beaifsee Fig. &)], as predicted above by the
izp F{_ikorZ distribution|E(r,z,t")|, shown in Fig. &) at the instants
ex
a(2) 2q(2)
(25)

approximate formul&20). At z=0, the transversal amplitude
2 r2
l/f(r,Z,t')ZSin{E(t'— 2cq(z)) : =—1, 0, and+1 fs, is almost independent of time, and has
a width ~ag. At z=3zg, however, diffraction broadening is
sizably reduced in the leading part of the pulse, and in-
The pulse forms R&(r,z,t’) of the PGB[Eq. (25)], show-  Creased in the trailing pafsee Fig. &)].
ing the pulse time delay, broadening, and frequency shift for For comparison with Ref[2], we finally consider the
increasing’, can be seen in Fig.(8), for the parametera,  Gaussian pulse(t’) =exp(—t'/At’)cost) (the FWHM
—0.5 mm, To=1.65 fs (,=3.8 fs'Y), At=3 fs, andz T=2,In2At=1.66At),  for  which  f(w—wy)
=zx. In this case, the filtering of high frequency compo- = %\mAt exd — At (w—wo)?/4] does not vanish at an.
nents[see Fig. &)] has the double effect of indefinitely From Eq.(12), the analytic signal is

12

zpp(t’)exmwot’)=exr{ - E

. . . Atw, t
[exp(mot’)—l Im exp(lwot’)erfc(T+|A—t)H, (27)
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r=4.5a
(@) n (c)
g "é z=0
[ 3
> r=3a >
o o
[ =
£ 3 FIG. 4. (a) Pulse forms of the
E 3

r=1.5q Gaussian PGB for variable. a,
2528 =0.5 mm, Ty=1.65 fs (,=3.8
fs™1), At=1.65 fs, andz=zg/2.

(b) Power spectra of the pulses of
(a). (c) Energy distribution of the
—r—— ————— e ——— Gaussian PGB at several cross
0, 2 : . 1.0 : sections. The beam parameters are
t (fs) r (mm) !
the same as ina). The dashed

E

QE
w(r,z)

o
o
o]
(6]
—_
()]

w —450 r—30 r=1.5 lines are the energy distributions
E T TR R (b) > of the cw Gaussian beam @f.
- =0 = (d) Amplitude distribution atz
5 - =0 of the Gaussian PGB at the
= 5 time instantst’= -2, 0, and+2
L % fs, atz=0, and atz=3zz. The
~ 5 dashed lines are the amplitude dis-
§ e tributions of a cw Gaussian beam
..:'_) f_\ Of wq-
[ b
a N
17 “
. o
5 w
2
(] T T T T T
a-1 0 1 2 3 {1 0.
w (fs7)
where erfc( ) is the complementary error function. It is clear VI. CONCLUSION

from this expression tha,trf(t’) is not the complex envelope
A(t")exli®(t')]=exp(—t'*/At’). The Gaussian PGB is ob- poral structure of pulsed light beams propagating in free

talned', acc/ordmg’ to !EQS)Z, by mult!plylng byizg/q(z) and space, particularly those emitted by mode-locked lasers. As
replacingt’ by te=t'—r?/2cq(z) in Eq. (27). The pulse el a5 the monochromatic Gaussian beam, the PGB'’s, hav-
forms ReE and corresponding spectra are shown in Figsing nearly Gaussian spatial forms and arbitrary prescribed
4(a) and 4b) for the parametera,=0.5 mm,Ty=1.65fs, temporal shapes at the beam axis, are solutions of the
At=1.65 fs (T/T;=1.66 cycles within the puleandz  paraxial wave equation, and are found by the same method
=zg/2. In this case, the filtering of high frequencies with of shifting the axial coordinate by an imaginary constant in
increasing does not lead, at the first valuesrgfto a pulse the paraxial spherical wave. The PGB is a superposition of
deformation, nor even to broadening, but solely to a fre-axial Gaussian modes of a stable laser resonator rather than a
quency shift. For larger values of the spectrum reaches the single mode, and its spatial and temporal characteristics are
surroundings ofv=0, where it distorts and narrows, giving intimately entwined if the pulse duration is of the same order
rise to pulse broadening. In Figs(c} and 4d), we see the

In this paper we have provided a model for the spatiotem-

transversal energy and amplitude distributions for several
values ofz. As suggested by the approximate form{izy. w
(20)] for pulses without phase modulation(r,z) is almost '
Gaussian, of width~a(z); at z=0, |E(r,zt')| is almost -
time independent, of width-ay, and atz=3zy diffraction g
spreading increases sizeably with time. e
Figure 5 again shows the amplitude distribution of the 2 PGB from
Gaussian PGB of this paper, along with the Gaussian PGB of = Ref. [2]
Ref. [2], both for the coordinates=0 andt’=0, and the N
parametersayg=0.5 mm, T,=3.55 fs, andAt=2.14 fs = PGB from
(T/Ty=1). The PGB of Ref{2] is obtained from the one of - Eq. (27)
this paper by eliminating the term with the function erfc in 0.0 0.5 1.0 15 20
Eq. (27) [this amounts to neglectinff* in Eq. (12) and ex- r (mm)

tending the intggral up t&m]'_This approxi_mation causes FIG. 5. Amplitude distribution az=0 andt’=0 of the Gauss-
the bgam amplitude to grow without bound in the transversal,, pgB of this paper, and that of Rg2]. The parameters am,
direction. =0.5 mm,Ty=3.55 fs (wo=1.77 fs 1), andAt=2.14 fs.
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of magnitude as the optical period. pulse form, and the amplitude distribution at only one instant
In the time domain, the spatiotemporal coupled structuref time (t' =0). More importantly, their Gaussian PGB lacks
of the PGB leads, regardless of the pulse form at the beam true beam behavior because of their use of the common
axis, to a pulse shift and a change in the pulse shape towambmplex representatiof(t’)exdid(t’)Jexpiwt’) of the real
the beam periphery. Depending on the axial pulse form, sucpulse A(t")cog wt’+®(t')], which only approximates the
a change may manifest itself as an envelope distortiomnalytical signal complex representation for real time. In the
(broadening in simple cases frequency shift toward lower present paper, transversally decaying spatial profiles for
frequencies, or both. In the spatial domain, spatiotempordPGB’s with arbitrary pulse forms are achieved by the use of
coupling gives rise to time-dependent diffraction and aa true analytic signal complex representation.
pulse-form-dependent spatial distribution of energy. The way The PGB of this paper should not be confused with the
the transversal amplitude distribution varies with time ispulsed Gaussian beams studied in earlier papgfd, in
quite involved in general, but, for pulses without phasewhich the pulsed beam is a propagated initial condition of
modulation, the pattern is simpler. At the waist, the transtransversal and temporal Gaussian form. By contrast, the
verse amplitude profile is almost Gaussian, of the sam@®GB described here has a prescribed temporal form at the
width as that of the monochromatic Gaussian beam, and abeam axis. Our PGB also differs from the pulsed beams of
most independent of time. At some distance from the waisRefs.[13,14], where the initial condition itself contains spa-
in the direction of propagation, diffraction spreading is siz-tiotemporal couplings by the action of a lens of dispersive
ably diminished when the pulse arrives, but enlarged whematerial, but the process of propagation is described by the
the pulse surpasses that distance. The PGB has an invarigsdraxial wave equation without the crossed derivative.
transverse pattern of energy distribution, determined by the
pulse form, whose width and amplitude vary at the same rate ACKNOWLEDGMENTS
as those of the monochromatic Gaussian beam of the carrier
frequency. For pulses without phase modulation, the energy This work was partially supported by the Comisimter-
distribution is almost Gaussian, and of the same width as thaninisterial de Ciencia y Tecnologiof Spain(Grant No. PB
of the monochromatic Gaussian beam at any propagatiof5-0426, and by the Comunidad de Madrid, Project No.
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