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Based on the method of separation of variables, a direct approach in the study of soliton perturbations has
been developed in our previous papehys. Rev. B54, 6816(1996)]. In this paper, we use it to deal with the
nonlinear Schrdinger and the sine-Gordon equations under the action of perturbations. Results which differ
from those in past papers are obtaing®t1063-651X98)00807-1

PACS numbes): 42.65.Tg, 42.81.Dp

[. INTRODUCTION equations in laboratory coordinates, authors generally adopt
the so-called quasistationary assumptid©,15,17. This
It is commonly known that there are several importantleads to results which are valid only for a short time. And, in
exactly integrable nonlinear evolution equations which pro-this scheme, the parameters variation on “slow” time scales
vide effective mathematical models for some very generals not taken into account. Therefore, to our knowledge, there
physical phenomena. They are the Korteweg-de Vrieds still not a satisfactory direct approach for SG soliton per-
(KdV), nonlinear Schidinger(NLS), sine-Gordor(SG), and  turbations yet. _ _
some other equations. As a matter of fact, in real physical We have developed a direct approach for studying the
applications, these equations usually come from som@erturbed KdV equatiop20]. Since this scheme is a natural
asymptotic expansion, so they are actually approximaté‘ppl'caltlon of the class!cal perturbatlon theory .and the gen-
equations. In more realistic situations, when higher-ordeFral method of separation of variables, we believe that this

terms must be taken into account, the equations we derive%cheme Is easy to follow and use. In this paper, we use this
differ slightly from the standard ones by small additional approach to stqdy the perturbed. NLS and SG equgtlons, and
terms that are called perturbations. Considerable attentio%et resilts for first-order corrections for both equations.

was given to this aspect of soliton science, and various meth-

ods were developed by many authors in the past decades. A !l SOLITON PERTURBATIONS OF NLS EQUATION

method based on the inverse scattering transformati&in A. Linearization

[1-6] is very powerful when dealing with these cases. How-
ever, it is rather sophisticated and inconvenient for one who
is not familiar with IST. Ostrovskii and his colleagugg8] iU+ Uy + 2|ul2u=ieR[u], (1
first developed a direct approach to the study of soliton per-

turbations. Some general features of this approach can hghere the subscripts stand for partial differentiation with re-
seen from subsequent pap¢gs-19. In this approach, per- spect to the timet and the space, e is a small positive
turbed nonlinear equations are usually linearized by expanctonstant measuring the weakness of the perturbatiene(0
ing their solutions about the unperturbed ones. The most im< 1), and the perturbation ter®{ u] is a known function of

portant technique is to find eigenfunctions of a linearizedy, u,, u,,,... . WhenR=0, Eq. (1) reduces into the stan-
operator associated with the linearized equation. Thesgard NLS equation
eigenfunctions are used either to construct a Green’s function

Let us consider the perturbed NLS equation

[12], to invert the linearized equatior§d8,19, or in other iU+ Ugyt+2|u|?u=0. 2)
alternative ways for the purpose of calculating the first-order
corrections. It is well known that Eq(2) has the following single-soliton

However, in Refs[11,18,, it is not difficult to find that  sgjution:
the eigenfunctions are actually derived by making use of
some knowledge of IST. In addition, the authors consider SG u(x,t) =28 secti2B(x—xo+4at)]
equations in characteristic coordinates. As to the study of SG
X exd —2iax—4i(a?—BA)t—i6,], (3

* Author to whom correspondence should be addressed. Addresghere «, B, Xo, and 6, are four real parameters which de-
correspondence to Department of Physics, Hunan Normal Univetermine the propagating velocity, heigtats well as width
sity, Changsha 410081, Hunan, China. initial position, and initial phase of the soliton, respectively.
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Since what we study in this paper is the effects of perturbawith

tion on a single soliton, EqJ) is subject to the initial con-
dition z=2B(x—§), &,=—4a, (13)

u(x,00=28 seci2B(x—Xp)]exp(—2iax—ify). (4) 0=zl B+ 6=2a(Xx— &)+ 5, 5t0:_4(a2+ﬁ2)-

At first, we linearize Eq(1) following the lines of Ref[18]. (14)

The independent variableis transformed into several vari- p e to perturbation, the soliton parameterss, & andé are
ables by now supposed to be functions of the slow time variables
t =t n=0.1.2 (5) ty,t,,..., buta and B are independent ofy, and thet,
: ’ T dependence of and § are given by the second equations in
where eachy, is an order ofe smaller than the previous time. Eds.(13) and(14), respectively. It follows from Eq(12) that

Thus the time derivatives should be replaced by the expan- () it A , )
sion uO=e""[(4iaBé ~2i B8, ) $1(2)—2iay pa(2)

y= 0y + €0y + €25y, (6) +2B; h1(2)+4B%E ¢a(2)], (19

At the same timey andR[u] are expanded in an asymptotic where

series
$1(z)=sechz, ¢,(z)=z sechz, (16)

u=u+euV+e2u@+. .., 7
¥1(2)=(1—2z tanhz)sechz, i,(z)=tanhzsechz.

Rlu]=RY[u°]+ eRP[u©@ uM]+--- . (8 17

Substituting Eqs(6)—(8) into Eq. (1), and equating the co- For the study' of the perturbations on a sipgle solitop, it is
efficients of each power o, we obtain the fo||owing ap- more convenient to use (Space variable in a coordinate

proximation equations of different orders: system moving with the solitgras a new independent vari-
able in place ofx. Then the linearized NLS equatidi0),
iug? +ug +2[u@Pu@=o, (9  together with the appropriate initial conditioli$1) are re-
duced into the following form with the aid of E¢15):
iy O (0)]2,(1) (07251
iU+ Uy H4ucut Y+ 2[u u
to + U T4 [u™] iug) +8iaBuit + 48757 + 4|u@Pu® + 2[u@ U™
=iRMu@1=iu®,..., 10 : : g ,
LU=y (19 =iIFM=iROuO]—ie [ (4iaBé, —2iBb) $1(2)

where the overbar signifies the complex conjugate. Mean- Y 2
while, the initial condition(4) should be replaced by 2iay, da(2) + 2By Y1(2) +4BE Pa(2)], 18

u©(x,0)= 28 secti2 B(x—xo)Jexp( — 2i ax—i ), u(z,0=0.
u™(x,00=0, for n=1,2,.... (11  Introducing the transformation
The zeroth-order approximation equati® is just the stan- uV=e M= 1AM +iBW)], (19
dard NLS equation. It has a single-soliton solution that is 1 1 ) . N
formally the same as Eq3): whereA® andB™ are the real and imaginary part of"),
_ respectively, one can rewrite the complex equatit® into
u(x,tg)=2Be sechz, (12)  the following real simultaneous equations:

Ag;‘)+4B2|:lB(l): Rq R(l)ei 19] _ 2Btll/’1(z) _4B2§tllr//2(z)|

B~ 452 AV = IM[RVE "] — (4af, ~ 288,) b1(2) + 201, bol2), @0
|
with are two self-adjoint linear differential operators.
1) g -
Al (Z’O)_B( (20=0, (2D B. Eigenvalue problem
where To find the solutions of Eq(20) with initial condition

(21) by the separation of variables, we can follow the same
methods we used in Rei20]. But here we need to solve the
following coupled eigenvalue problem:

. d? . d?
L1=P+23ecﬁ z—1, L2=E+GSeCH z—-1 (22
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L=\, (i) Completeness:
Lig=Ny 23
szz)\qs' o] —_ 2
z,K) (2" k) dk+ (D i(2)Y=68(z—12").
Obviously, the simultaneous equatiaf2s) can easily be re- f—ocd)( 4 ) ,2’1 $i(2)95(2) =4 )
written into the following two standard eigenvalue problem (33
tions:
equations Equationg30) and(33) are proved through a straightforward
|“_2|“_1¢:)\2¢ (24) calculation with the aid of the residue theorem in Appen-
’ dixes B and C, respectively. Equatiqi31) can also be
LL b=\2y (25) proved in a similar way, while Eq32) can be checked di-
12 ' rectly.

In Appendix A, the eigenfunction of Ed23) [of Egs.(24)

and (25), as well for continuous eigenvalug= — (k®+ 1), C. Effects of perturbation on a soliton

_—oo<k<oo is derived in a way somewhat different than that |, order to solve the initial-value problef20) and (21)

in Ref. [20], by the separation of variables, we expakd(z,t,) on the
basis{y} while B®)(z,t,) on{¢} as

(1-Kk?>-2ik tanhz)e'k?, (26)

1
$(2K)= = ) 2
V2m(ke+1) A(l)(z,t0)=J aW(ty, k) y(z,k)dk+ 21 a}1>(to)¢j(2),
— 00 ]:

1 - (34
= - - 2_
W(z,K) NEOTES (—1-k°—2iktanhz ) 5
| B“)(z,to):f b™®(to,k) p(z k) dk+ 2 bi*)(to) ¢;(2).
+2 tanif z)e'kz=m d,(2,K), (27) - - (35

and it is easy to check directly thasL, andL,L, also have ~Owing to Eq.(29), the coefficientsin in Eqs(34) and (35)

two eigenfunctionsd;(2),,(z) and ¥,(2),»(2) for dis-  Mmust siatlsfy the following relations to guarantee b))

crete eigenvalue =0, respectively. It must be pointed out and B are real:

emphatically that althoughb,(z) and ¢,(z) are solutions of =) o —1) e\ (1)

Eqgs.(24) and(25) for A =0, respectively, they do not satisfy a(to,k)=a"(to, k), aj"(to)=a;"(to),

the simultaneous equatio(®3). In fact, it is easy to derive — —

that b™®(te,k)=bM(tg, —k), b{"(te)=bi"(ty). (36)
r — r _ Substituting Eqs(34) and (35) into Egs.(20) and(21), and
L162(2)==24(2), Layn(2)=2¢4(2), (28) employing Eqs(23) and (28), one obtains

which are different from Eq(23) for A =0. Obviously, the

above eigenfunctions have the following symmetries whichfw [aW(tg,k) +482Nb D (tg, k) Je(z, k) dk+al (to) i1(2)
can be checked directly: —o

HZK) = (2, ~K), HzK) =z, —K), +[a5"(to) 825" (to) 12(2) = R R™Me'’]

— — -2 —4p2 : 3
5(D= 8,2, B(D=y(2), =12 29 B, 1(2) = 4B &, 2(2) 37

Now we have introduced two sets of eigenfuncti¢ag Jm [0 (tg,k)—482Na M (ty,k)]b(z,K)dk+[ b (to)
. s ’ ’ ' 1 0
={#(zK), #i(2); =12 and {¢y}={4(z.K), ¥i(2); ] -

=1,2}. They constitute two complete sets of orthonormal 2. (1) (1) ()i 6
bases. The orthonormalities and completeness of them are ~ — 88781 (to)1#1(2) + b3 (to) 2(2) = IM[R™e'"]

e es: ~(4aBt, ~2B8,) $1(2) + 201,82, (38)

- o - . with
z,kK) y(z,k’ dz=J’ z,K)p(z,k")dz=S5(k—k'), .
JlOOQS( )l/l( ) 700’;0( )¢( ) ( ) a(l)(O,k)=aJ(1)(0)=b(l)(0,k)=b}1)(0)=0, J:1’2,
(30) (39
o % . where the overdot signifies derivative with respecttgo
fﬁ D(zK)gi(2)dz= fﬁ #(z,K)¢i(2)dz=0, j=1,2, Making use of the orthonormal relatioi30)—(32), we ob-

tain from Eqs.(37)—(39) the following ordinary differential
(3D . ! o Y
equations with zero-initial conditions:

f ’ bi(2)(2)dz=8, =12 (32) a(to,k)+48°Xb M (tg,k)=p(k), a<1>(o,k>=0,(40)
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D(ty,k)—4B822aD(t,k) =gV (k), bD(0k)=0, If RMe'? is independent ob (for example, ifRM=—u(®),
41 —ul), etc) so the right-hand side of Eq§40)—(45) are
independent of, in the moving coordinate system, E@42)
aiM(to) =pi’ 2B, ai’(0)=0, (42 and (43), will lead to secularity. In fact, integrating them
over to yields a{)(to) = (p{"~ 28, )to and b§(to)=(qs"
Pty)= q(l)+2at1, bs"(0)=0, (43)  +2ay)to, which grows infinitely in time. Thus we must

" N L demand that
a5 (to) — 88Dy (to) =py’ —48%&,, a5”(0)=0,
(44) piY—2p,,=0—ai"(te) =0, (48)

bV (to) — 8% (o) = A" - (4aBE, — 285, ),

5" +2a, =0—b5(tg) =0. (49)
b{¥(0)=0, (45)
h Due to Eqs.(48) and (49), Egs.(44) and (45) also lead to
where secularity. Similarly, we demand that
oDk = | RERDEp(zk)dz D_ 282 —0ad(t) =
_ ' ' P2 B&,=0—az"(1g) =0, (50)
* Com T . (1) — (1) —
o= RaRVENg 20 =12 G (4apt,~2p5,)=0-b{"(t)=0. (5D
- . Now we begin to find out the effects of perturbation on the
q(l)(k)=j Im[RMe 1y (z,k)dz, soliton, i.e., thet; dependence of soliton parameters and the
- first-order correction. At first, inserting Eq&8), (50) and
. (49), (51) into the second equations in Eqg46) and (47),
qjgl):f Im[RVe ] Yi(2)dz, j=1,2. (47) respectlve[y, We. obtain the following four important formu-
—o las immediately:
1 4 1 (= = 1 - _
By=> p )=§ J RgRYe' ¢ (z)dz= > ReJ RWe'? sechz dz, (52
& = ELINCURN N RER Ve ?] ¢, (2)dz= ! Re R<1>e'0z sechz d (53)
ty 4,82 P 4[32 e 2 4,82 Z
1 o__1(" Va7, 1 ¥ (D)6
ay="3 gy '=— 5| IM[R'™We'“Tyo(z)dz= — > Im B R'“e'’ tanhz sechz dz (54
5. =2aé aM=2a¢ I IM[RVe! ]y (2)dz=2a¢ _ 1 m | RWe (17 tanhz)sechz dz
t, T 6t T ,3 atl 28 J_.. U2 @y, 253 .
(55)
|
Equations(52)—(55) determine how the soliton shape and pD(k)
position are affected by the perturbation. They are the same b (tg,k)= 152 [1—cog4B%\t0)]
. ) : . B2\
as those obtained by inverse scattering perturbation theory
[5] and other direct method48]. qP(k) ,
Secondly, we return to the simultaneous equatiGt® + VTEN sin(48°\to). (57)
and (41). Their solution can be easily derived in a standard
way:
(1) Noting that a{"(to) =b{"(t5)=0, j=1,2 [see Egs.(48)-
k
aV(tg k) = q g ) [1— cog4pty)] (51)], we get from Eqs(34) and (35) that
482\
p &5 RN
+ AP Sin(48°\ty), (56) A (z,tg) = f_ a~(to,k) y(z,k)dk, (58
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L = The time dependence of the soliton parameters can be easily
B (z,t)= J_wb( (to.k) p(z,k)dk. (59 obtained from Eqs(52)—(55):
Inserting Eqs(58) and (59) into Eq.(19), we obtain B, = —,Bfw seck zdz=—28 (66)
1 e !
uB(z,te)=e "[ADV(Z,ty) +iBP(z,ty)]
o 1 o
:efiﬁf dk[aV(ty,k) (z,K) &, =~ 26 ). zsech zdz=0, (67)
+ib®(to,k) ¢p(z,k)]. (60) -
atl=/5‘f tanhzsech z dz=0, (68)

Noting that the eigenfunctions for continuous spectrum can
be rewritten as

. 5t1=0+f (1—ztanhz)secl zdz=1. (69)
e (k+i tanhz)?>—sech z], -

-1
#(z,k) ot D)
-1 _ Returning to the original time variable (noting that 9,
P(z,k)= NN e[ (k+i tanhz)?+sechk z], = dy,+ €dy, up to the first-order approximatipand perform-
(61) ing the integrals, we rewrite Eq&66)—(69) as

we finally get the following explicit expression for the first- Bi=—2€B, &=—4a, 6=—4(a?+B?), o,=0,
order correction after some calculation: (70
—je 10 [ 1(k) s which lead to
(1) - T _ a—4ipe(ke+ 1)ty
u (thO) 877,82 f_wdk(k2+1)3 [1 € ]

B=PBoe 2%, a=ay, £=&—Adat,

% (k+i tanhz)2el?+ iemr dk )
i tanhz)<e —] —

8wp*) - (K*+1)° 5= 89— (4ad— e)t+ Ble e, (71)

_ a%iB2(K2+ 1)t jkz
x[1-e Isectt z €', (62 where By, aq, &, andd, are all constants. Equatidiil)
means that the height of soliton dampdmgile the width
increasepwith time exponentially, while the propagating ve-
" o locity is not affected by the perturbation.
I(k):j dZ RMe (k+itanhz)?— RWe!’secht z]e'k2. To derive the first-order correctiart®)(z,t,), we first get
— 63 from Eqgs.(46) and(47) that

where

Keener and McLaughlifl1,12 and afterwards Hermdri8] p (k)= er RgRVel 9]g(z,k)dzz V27 B sectimki2),
studied the soliton perturbations for the NLS equation. Her- —o

man declared that their results agree. Especially, Herman de- (72
rived an exact explicit expression of the first-order correction

for the NLS equatiorigiven by Eq.(144) in Ref.[18]]. Ob- o L—

viously, our correctiorigiven by Eq.(62)] is some different qt(k)= Jim Im[RMe' ]y (z,k)dz=0, (73
from that in Ref[18]. To be exact, dividing Eq62) by 32

and multiplying the integrand of the first term in E§2) b
K2 we geFt) )I;q%l 44) in Rgef. [18]. A straightforwardagal)cu?/a- where the integrals were performed with the aid of a residue

; h h (1) isfies Ea(l initial theorem similar to the one in Appendix B. Then substituting
ggzd?ti:r\ll\ﬁlt) at oun(z,to) satisfies Eq(10) and initia Egs.(72) and(73) into Egs.(56) and (57) yields

D. Damping NLS equation aY(ty,k)= V27 sectiwk/2)sin(48°\to) /48BN, (74)
As an important example, let us consider the so-called

damping NLS equation in whicR[u]=—u b¥(to k) = V2 sech mk/2)[ 1 - cog 457\ to) J/4BX.

(75
iU+ Ugy+ 2|ul?u=—ieu. (64)
Note that the soliton paramet@rshould be taken as a con-
Obviously, stant By up to the first-order approximation. Substituting
Egs.(74) and (75) into Eq. (60), and replacing, by t, we
RU[u@]=-u®=—-2Be ’sechz. (65 finally obtain the first-order correction
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u(l)(z,t)=\/27re_”’J dksecliwk/2)sin(483\t)

X (Z,K) 4B\ +i ﬂe“or dk sectiwk/2)

X[1—cog4B5\t)](z,K) /4B (76)

Ill. SOLITON PERTURBATIONS OF SG EQUATION
A. Linearization

Now we return to the perturbed SG equation
(77)

It is well known that the standard SG equatid®=0) has a
single-soliton solution

Uyt — Uy +Sin u=eR[ u].
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u®(z,0=0, u(20=0, (87)
respectively. To solve the initial-value problef86) and
(87), we must make a further transformation on the indepen-
dent variable to eliminate the first or second term of B6).

For instance, in this paper, we may introduce a new time
variable

T=to/2m—(1+a)z/2. (89
Equation(86) is replaced by
uld—uld+(1-2sechk zuV=F®. (89)

According to the separation of variables, we must search for
special solutions of Eq89), which can be expressed as pro-
duction of a function ofr with a function ofz

Uo(X,t)=4 arctan expm(x—at)], m=1/\J1—az. u(z,7)=T(1)X(2), (90)
(78)
and at the same time, we suppose that
Equation(77) can be linearized in the same way as was done
in Sec. II: FP(z,)=f(1)XA2). 9D
U§§30—u(x‘i)+sin u@=0, (79  Substituting Eqs(90) and(91) into Eq. (86), we reduce Eq.
(86) into two ordinary differential equations
(1) _ (D (0),(D = (0)7_ 240
u u,,’+cosuPutY=R[u 2u; ¢ ,... (80
fofo XX LU= 2, X, +(2sech z—1)X=\"X,, (92
and the initial condition for perturbations on a single soliton
is T,—N'T=f, (93
u©(x,0)=4arctane™ (81  Where)\' is a constanteigenvalug to be determined.
u(“)(x,0)=0, for n=1,2,.... (82 B. Eigenvalue problem

Obviously, Eq.(79) has a single soliton solution formally the

same as Eq(798)

u@(x,tg)=4arctane?, z=m(x—¢), &,=a, (83

where the soliton parameters and ¢ are supposed to be

functions of the slow time variables ,t,,..., by virtue of

Equation (92) is just a generalized eigenvalue problem
equation
LX=\'X,, L=a,,4+2 seck z—1, (94)

which differs from the ordinary cases witk, on the right-
hand side of Eq(94) taking the place oK. L is nothing but

perturbation. Then the second term on the right-hand side dhe self-adjoint operatok ; introduced in Sec. II. Recalling

Eq. (80) is replaced by
uiy. = —2am (1-z tanhz)sechz
- 2m2a§tl tanhz sechz. (84)

Noting that Eq.(83) gives rise to cos?=1-2 secRz, we
rewrite Eq.(80) as

ugy — Uiy +(1—2sec zu®
=FM(2)=R[u?]+4am, (1-ztanhz)sechz
+ 4m2a§tltanhzsechz. (85)

In a coordinate system moving with the soliton, E8f) and
initial conditions(82) become

ug(:)lhgo_ ZmaL{;'Z)— u(zji)"_ (1_ 2 SeCﬁ Z)u(l): F(l)’ (86)

that ¢(z,k) = ¢,(z,k)/ik [see Eq.27)], one can easily find
from the first equation in Eq23) that

Lo(z,k)=N"b,(z,K) for N =i(k+k™ 1), —e<k<c,
(99

Le1(2)=0, (96)

which means thaf¢} can also be used as a basis for the SG

equation.

C. Effects of perturbation on a soliton

Following the lines of the above section, we expand
u®)(z,7) on the basig¢}:

©

2
xT(T,k)¢(z,k)dk+JZl T(7) ¢(2).
(97)

u(z, T)=f
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Substituting Eq(97) into Eqg.(89), and employing Eq495), o % 1 —
(96), and(28), one can obtain u(ztg)=— fﬁwdkﬁde’ o d(z2,K) d(z' K)F (2"
Jiik[fu,k)—m(r,k>]w<z,k>dk+'T2<T>¢1<z> + f " dke(k)exp\[to—m(1+a)z]/2m}
—[To(7)=2To(n)es(2)=F D, (99) X p(2,K)+ T1h1(2). (107)

The coefficient(k) andT; in Eqg. (107) can be determined

which gives rise to the following ordinary differential equa- by the initial conditiong87) through a series of calculations:

tions with the aid of orthonormal relatior{80)—(32):

1 (> —
_ 1= o = c(k)sz dzo(z,k)F Y (z2)exdm\'(1+a)z],
T(7,K)=N'T(7,k =.—f F'*Y(2)éd(z,k)dz, (99 -

(rl-NT(rk)=1 | FU@e(zkdz (99 108
: ” T [ dz zp,(2)F Y (2) (109
Tz(T):f FN(2)¢41(2)dZ, (100 1V am? ). 2 '

Substituting Eqs(108 and (109 into Eq.(107), one finally
» obtains the first-order correction as follows:

Tl(r)—2T2(7)=—fﬁwF(l)(ZM)z(z)dz. (101) )

o k o0 _
u(l)(z,t0)=J o qb(z,k)J dz' ¢(z' k) FV(z")
If R[u(z)] does not contain time explicitly, the right-hand - -
side of EQs.(99)—(101) should be independent af Then
Egs. (100 and (101) will gives rise to the secularities, and X
the nonsecular condition is

exp{% [to—m(1+a)(z—z’)]] —1}

1 o
- . R el BREER NEALEaY
f FO(z2)¢1(2)dz=0—-Ty(7)=0, (102 —
- (110

o . It is not difficult to check through a straightforward calcula-
J FY(2)n(2)dz=0—T,(7)=0 and T,(7)=0. tion thatu*)(z,t,) really satisfies Eq(86) and initial condi-
- tions (87). In contrast to KdV and SG equations, here
(103 u®(z,t,) also contains the contribution made by the discrete

spectrum eigenfunctions. Obviously, Ef10) can be further
So we get from Egs(102) and (103 thatTo(7)=0, T1(7)  rewritten as

=const. As was pointed out above, the nonsecular conditions
102 and(103) will determine the slow time dependence of * , N o
t(he ;olitorg paiameters P ut(zto) = f, G(zto;2)FU(2))dz, (11D

whereG(z,tg;2z") is the Green’s function defined by

1 ©
m,=— 7~ R[u©]sechz dz (104 . dk -
G(ztoi2)= | qor #2K9(Z K
£ =— ! fw R[u®]zsechz dz (105 N

4 4m?a | _. Xlex[{ﬁ [to—m(1+a)(z—2')] —1]
Equationg(104) and(105) are consistent with those obtained 1 , ,
by the inverse scattering perturbation theory. To our knowl- ~amz 9197 2(Z'). (112
edge, they have not been obtained by any other direct ap-
proach yet. Now we begin to derive the first-order correction IV. CONCLUSION

u®), At first, we solve Eq(99) in a standard way _ _ _ _
In this paper, we studied the soliton perturbations for NLS

1 o _ and SG equations by a direct approach, and obtained some

T(r.k)=c(k)er "— —— f FV(z)¢(z,k)dz, results for the above two equations. At first, the first-order

ikN" o correction for the NLS equation is somewhat different than

(106  that obtained by other authofd8]. A careful calculation

shows that our correction really satisfies the linearized equa-

where the coefficient(k) should be determined by the ini- tion while that in Ref[18] does not. So we suspect that there

tial conditions. Inserting Eqg106) and (88) into Eq.(97),  are probably some errors in the calculation in R&8].

and noting thafl{(7) =T, is a constant, we obtain the gen-  In the past papers mentioned above, the authors dealt with
eral solution of Eq(86) as follows: a time-dependent operator associated with the linearized
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equation directly. An elaborate scheme is developed to dewhere the coefficients; andb;, j=1,2,..., are functions &
rive the eigenfunctions of this operator by making use ofto be determined. Inserting Eq#4) and(A5) into Eq.(A3),
some knowledge of IST. In our scheme, since the operator iand comparing the coefficient of 1, tamh 1/cosk z,
time independent, the derivation of eigenfunctions is moresinhz/cosi z,..., one obtains a series of algebraic equation
direct and easier. In addition, the separation of time andystems which determine all the coefficients successively:
space actually bring some convenience for the subsequent

derivation. For instance, the secular terms appears clearly. ap="Do, (A6)
An unexpected thing appears in this study: the expansion _b
basis for the above two different equations is the same. We a1=Db1, (A7)
t)heeilrcra]ve that this must suggest some deep connection between Dag+ 2ika, + (3— k2)a,— dikag+ (K2+1)b,=0,

: ; 2 i 2 —

In summary, this scheme is totally independent of IST, ~ 6Pot2ikby+(3—k%)by—4ikbs+(k*+1)a,=0, A8
and derivations differ from the past papers substantially. It is (A8)
helpfu'l to have it as an alternative way to study soliton per- — dika,+ (3—k?)ag+ (K2+1)bs=0,
turbations. (A9)
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APPENDIX A: DERIVATION OF EIGENFUNCTIONS
$(Z,K) AND #(Z,K)

Let us consider the eigenvalue problem

Lid=N\e,
Lig=\y (A1)
L2‘//:)\¢!

where L,=d¥dzZ2+2secRz—1 and L,=d¥dz

+6sechz— 1. Along the lines of Ref[20], we assume that

d(z,k)=€"%p(z,k),
W(z,K) =e¥a(z,K), (A2)
where p(z,k) and o(z,k) are supposed to have the
asymptotic behaviop(z,k)—const ando(z,k)—const as
z— *oo, Then the asymptotic equation of E@1) leads to
A=—(k?+1). Inserting Eq(A2) into Eq. (A1), one obtains
an ordinary differential equation system ferand o

Lp+2ikp,—k2p+(kK2+1)o=0,

Lyo+2iko,—k?c+ (k?+1)p=0. (A3)

To determinep(z,k) and o(z,k), we may expand each of
them into a power series ok as was done in Ref.20].

However, we would like to use a method a bit different from

that used in Ref[20] here, in whichp and o are expanded
into the following series:

) ot A tanha a, N sinthr ay
p(zK)=aotastanhz+  oe— +8s oot cosh 2
N sinh z N Ad
8 Cosft z ’ (A9
K=o+ bytanhzt —%— 1y Sz Da
(2K =botbatanhz+ oo +bs Losi 2 * cosf 2
sinhz A5
5coshz | (A9

4b;—4ikb,+ (3—k?)by+ (k®+1)az=0,

—4a,+6ikag+ (15— k?)a,— 8ikag+ (k*+ 1)b,=0,
6ikbs+ (15— k?)b,— 8ikbs+ (k?+1)a,=0.
(A10)

If we assume thag;=Db;=0, for j=3, then it is easy to

derive from Eqs.(A6)—(A10) that a,=0, and the nonzero

coefficients are
ao:boz(l_kz)c,

a1=b1=—2ikC, b2:_2C,

(A11)

wherec is a constant determined by the orthonormalg9)
or completenesg33) as

c=1n2m(k®+1).

Inserting Eqs(A4) and (A5) into Eq. (A2) and employing
Eqg. (Al11) gives rise to

(A12)

1 .
z,k)= ———— e**(1-k?-2ik tanhz),
#(z,k) 2k D) ( )
(A13)
z,k)= .t e'k?(1—k?-2ik tanhz— 2/cosK z)
wzl= 2m(ke+1)
I S —1—k?—2ik tanhz
T Zmke+1) ( 2
+2 tanit 2). (A14)

APPENDIX B: ORTHONORMALITY OF SETS
{¢} AND {y}
Before the proof of the orthonormality relations, we must

derive some useful integral formulas. At first let us calculate
the following integral by the aid of the residue theorem:

I (k)= f e'*? tanhz dz (B1)

To do this, we consider a complex integral along a closed
pathc in plane{=z+i % as follows:

ifl(g“)dgz jgcei“ tanh ¢ d¢. (B2)
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Since the factor tanfiin the integrand is a periodic function Comparing Eqs(B3), (B4), and(B5), we get immediately
with an imaginary period, we choose to be the bound-

ary of a rectangular region infinitely long:oo<z<w, 0 w

<p=<m. In this region the integrand is analytic except for a |1(k)=f e*%tanhz dz=in/sinh(7k/2).  (B6)
simple polel,=i/2. We note thae'*¢ oscillates rapidly for o

large z. Then the integral along the two straight line seg-

mentsz= *, 0< »=< should be zero. It follows that Starting from Eq.(B6), and employing the technique of in-
tegration by parts repeatedly, we obtain the following formu-

_ las successively:
ﬁflmdz:[l—e Ty (K). (83) Y
o 1

On the other hand, according to the residue theorem, we Iz(k)=f e'k? cos 2 dz=wk/sinh(7k/2), (B7)

have ‘°°

. © inhz
f,()d¢=2mi Resfy(Zy). (B4) :f ikz SN 12
fﬁc 15(k) ﬂce cosh 2 dz=imwk?/2 sinh(7wk/2).
The residue is easily obtained by the standard method (B8)
Resf({o)= lim ({— &) f1(0)=e K2, (B5) In addition, some more integral formulas can also be ob-
(=40 tained in a similar way,
— ” ikz —
I4(k)—f_we coshz dz= m/coshi wk/2), (B9)
I5(k —F e SINNZ dz=ika/ k/2 (B10)
s(k)= _xe cosR z z=ikm/cosh wk/2),
_ 7 Like _ 2
|6(k)—j7xe cosF 2 dz=(1+k*)w/2 costimk/2), (B11)
o z

_ ikz i 2 i 2,—7k/2

(k)= fﬁxe ~oshz dz=in?2 costimk/2) —im?e” ™2 cosK(mk/2), (B12)
© zsinhz
lg(k)= f e'kz oSl 2 dz=(1— wk/2) w/cosh wk/2) + w’ke™ ™/%/2 cosK(7k/2), (B13)
o z

lo(k)= J elkz sos 3 42 ~imkicosh wki2) +i72(1+k?)sinh(7k/2)/4 cosR(wk/2). (B14)

Now we return to the orthogonality relations. As an example, let us calculate the following integral in detail:

= — 1 ® _
f_wqﬁ(z,k)(p(z,k’)dz: (KT DIk 1] f_w ek 1~ k*~2iktanhz]

X[1—(k')?+2ik’tanhz— 2sesRz]dz

1
T 27K+ D)[(K)Z+1]

F e =KD (K- 1)[(k')2—1]+4kk']dz

T DR D] LK) =k =k (k=K

+[2(k2— 1) — 4kK' T o(k—K') + 4ikl 5(K—k")]. (B15)
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Obviously, the first term of the second equation in BB{L5)
gives rise to a function §(k—k'), while the other terms
are just eliminated, namely,

2i[k(k")2—k2k' —k+k']l 1(k—K")

0,
(B16)

+[2(k?—1)—4kK' ]l ,(k—K")+4ikl 3(k—k")
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X[4—2ik(tanhz—tanhz')—2 sesRz’]
+i fw _dk ek(z=24[ 1~ ik tanhZz]
27 ) o (K2+1)?
X[ik tanhz’ +tanhz']. (Cy

Obviously, the first term of the second equation in Egjl)
gives 8(z—z2'), while the other two terms can be calculated
by the aid of the residue theorem. Note that the integrands in

which can be easily checked through a straightforward calthe above two terms as functions of complex varidblaere

culation with the aid of Eqs(B6)—(B8). Thus the proof of
Eqg. (30) has been finished. Moreover, E@1) can also be
proved in the same way with the aid of E¢B9)—(B14).

APPENDIX C: COMPLETENESS OF SETS {¢} AND {4}

We start from the integral

f:qS(z,k)Z(z’,k)dk

_ L F Leik<Z*Z’>[1—k2—2iktanhz]
2m ). (K*+1)?
X[1—k2+ 2ik tanhz'—2 seshz’]

dk
K2+1©

1 0

2

” dkék(z—z’)_ ik(z—2")

— o0

:277

— oo

analytical everywhere except for two poles (of first and
second order, respectivelyThe residues can be easily cal-
culated in the standard way. Then the sums of the residues of
the second and third terms are obtained as

Reg+i)=*i[sechz(1—-z' tanhz')sechz’
+z sechz tanhz’' sechz’, (C2

through a series of calculations. Finally, according to Jor-
dan’s lemma, we have

fx ¢(z,k)$(z',k)dk= 8(z—2')*=2mi Reg i)

2
= 5(2—2’)—2]1 ¢i(2)¥;(2'),

(C3)

which is the same as the completeness relaiBsh.
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