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Direct approach to the study of soliton perturbations of the nonlinear Schrödinger equation
and the sine-Gordon equation
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Based on the method of separation of variables, a direct approach in the study of soliton perturbations has
been developed in our previous paper@Phys. Rev. E54, 6816~1996!#. In this paper, we use it to deal with the
nonlinear Schro¨dinger and the sine-Gordon equations under the action of perturbations. Results which differ
from those in past papers are obtained.@S1063-651X~98!00807-1#

PACS number~s!: 42.65.Tg, 42.81.Dp
n
ro
ra
ie

ic
m
a
de
iv
a
ti
et
s

w
h

e

-
n
im
e
e
ti

de

o
S
S

opt

in
les
ere
er-

the
al
en-
this
this
and

re-

-

-

ly.

re
ve
I. INTRODUCTION

It is commonly known that there are several importa
exactly integrable nonlinear evolution equations which p
vide effective mathematical models for some very gene
physical phenomena. They are the Korteweg-de Vr
~KdV!, nonlinear Schro¨dinger~NLS!, sine-Gordon~SG!, and
some other equations. As a matter of fact, in real phys
applications, these equations usually come from so
asymptotic expansion, so they are actually approxim
equations. In more realistic situations, when higher-or
terms must be taken into account, the equations we der
differ slightly from the standard ones by small addition
terms that are called perturbations. Considerable atten
was given to this aspect of soliton science, and various m
ods were developed by many authors in the past decade
method based on the inverse scattering transformation~IST!
@1–6# is very powerful when dealing with these cases. Ho
ever, it is rather sophisticated and inconvenient for one w
is not familiar with IST. Ostrovskii and his colleagues@7,8#
first developed a direct approach to the study of soliton p
turbations. Some general features of this approach can
seen from subsequent papers@9–19#. In this approach, per
turbed nonlinear equations are usually linearized by expa
ing their solutions about the unperturbed ones. The most
portant technique is to find eigenfunctions of a lineariz
operator associated with the linearized equation. Th
eigenfunctions are used either to construct a Green’s func
@12#, to invert the linearized equations@18,19#, or in other
alternative ways for the purpose of calculating the first-or
corrections.

However, in Refs.@11,18#, it is not difficult to find that
the eigenfunctions are actually derived by making use
some knowledge of IST. In addition, the authors consider
equations in characteristic coordinates. As to the study of
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equations in laboratory coordinates, authors generally ad
the so-called quasistationary assumption@10,15,17#. This
leads to results which are valid only for a short time. And,
this scheme, the parameters variation on ‘‘slow’’ time sca
is not taken into account. Therefore, to our knowledge, th
is still not a satisfactory direct approach for SG soliton p
turbations yet.

We have developed a direct approach for studying
perturbed KdV equation@20#. Since this scheme is a natur
application of the classical perturbation theory and the g
eral method of separation of variables, we believe that
scheme is easy to follow and use. In this paper, we use
approach to study the perturbed NLS and SG equations,
get results for first-order corrections for both equations.

II. SOLITON PERTURBATIONS OF NLS EQUATION

A. Linearization

Let us consider the perturbed NLS equation

iut1uxx12uuu2u5 i eR@u#, ~1!

where the subscripts stand for partial differentiation with
spect to the timet and the spacex, e is a small positive
constant measuring the weakness of the perturbation (0,e
!1), and the perturbation termR@u# is a known function of
u, ux , uxx ,... . When R50, Eq. ~1! reduces into the stan
dard NLS equation

iut1uxx12uuu2u50. ~2!

It is well known that Eq.~2! has the following single-soliton
solution:

u~x,t !52b sech@2b~x2x014at !#

3exp@22iax24i ~a22b2!t2 iu0#, ~3!

wherea, b, x0 , andu0 are four real parameters which de
termine the propagating velocity, height~as well as width!,
initial position, and initial phase of the soliton, respective
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Since what we study in this paper is the effects of pertur
tion on a single soliton, Eq.~1! is subject to the initial con-
dition

u~x,0!52b sech@2b~x2x0!#exp~22iax2 iu0!. ~4!

At first, we linearize Eq.~1! following the lines of Ref.@18#.
The independent variablet is transformed into several var
ables by

tn5ent, n50,1,2,... , ~5!

where eachtn is an order ofe smaller than the previous time
Thus the time derivatives should be replaced by the exp
sion

] t5] t0
1e] t1

1e2] t2
1¯ . ~6!

At the same time,u andR@u# are expanded in an asymptot
series

u5u~0!1eu~1!1e2u~2!1¯ , ~7!

R@u#5R~1!@u0#1eR~2!@u~0!,u~1!#1¯ . ~8!

Substituting Eqs.~6!–~8! into Eq. ~1!, and equating the co
efficients of each power ofe, we obtain the following ap-
proximation equations of different orders:

iut0
~0!1uxx

~0!12uu~0!u2u~0!50, ~9!

iut0
~1!1uxx

~1!14uu~0!u2u~1!12@u~0!#2ū~1!

5 iR~1!@u~0!#2 iut1
~0! ,... , ~10!

where the overbar signifies the complex conjugate. Me
while, the initial condition~4! should be replaced by

u~0!~x,0!52b sech@2b~x2x0!#exp~22iax2 iu0!,

u~n!~x,0!50, for n51,2,... . ~11!

The zeroth-order approximation equation~9! is just the stan-
dard NLS equation. It has a single-soliton solution that
formally the same as Eq.~3!:

u~0!~x,t0!52be2 iusechz, ~12!
-

n-

n-

s

with

z52b~x2j!, j t0
524a, ~13!

u5az/b1d52a~x2j!1d, d t0
524~a21b2!.

~14!

Due to perturbation, the soliton parametersa, b, j, andd are
now supposed to be functions of the slow time variab
t1 ,t2 ,..., but a and b are independent oft0 , and thet0
dependence ofj andd are given by the second equations
Eqs.~13! and~14!, respectively. It follows from Eq.~12! that

utn
~0!5e2 iu@~4iabj tn

22ibd tn
!f1~z!22ia tn

f2~z!

12b tn
c1~z!14b2j tn

c2~z!#, ~15!

where

f1~z!5sechz, f2~z!5z sechz, ~16!

c1~z!5~12z tanhz!sechz, c2~z!5tanhzsechz.
~17!

For the study of the perturbations on a single soliton, it
more convenient to usez ~space variable in a coordinat
system moving with the soliton! as a new independent var
able in place ofx. Then the linearized NLS equation~10!,
together with the appropriate initial conditions~11! are re-
duced into the following form with the aid of Eq.~15!:

iut0
~1!18iabuz

~1!14b2uzz
~1!14uu~0!u2u~1!12@u~0!#2ū~1!

5 iF ~1![ iR~1!@u~0!#2 ie2 iu@~4iabj t1
22ibd t1

!f1~z!

22ia t1
f2~z!12b t1

c1~z!14b2j t1
c2~z!#,

~18!

u~1!~z,0!50.

Introducing the transformation

u~1!5e2 iuv ~1!5e2 iu@A~1!1 iB ~1!#, ~19!

whereA(1) andB(1) are the real and imaginary part ofv (1),
respectively, one can rewrite the complex equation~18! into
the following real simultaneous equations:
H At0
~1!14b2L̂1B~1!5Re@R~1!eiu#22b t1

c1~z!24b2j t1
c2~z!,

Bt0
~1!24b2L̂2A~1!5Im@R~1!eiu#2~4abj t1

22bd t1
!f1~z!12a t1

f2~z!,
~20!
me
e

with

A~1!~z,0!5B~1!~z,0!50, ~21!

where

L̂15
d2

dz2 12 sech2 z21, L̂25
d2

dz2 16 sech2 z21 ~22!
are two self-adjoint linear differential operators.

B. Eigenvalue problem

To find the solutions of Eq.~20! with initial condition
~21! by the separation of variables, we can follow the sa
methods we used in Ref.@20#. But here we need to solve th
following coupled eigenvalue problem:
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L̂1f5lc,

L̂2c5lf.
~23!

Obviously, the simultaneous equations~23! can easily be re-
written into the following two standard eigenvalue proble
equations:

L̂2L̂1f5l2f, ~24!

L̂1L̂2c5l2c. ~25!

In Appendix A, the eigenfunction of Eq.~23! @of Eqs. ~24!
and ~25!, as well# for continuous eigenvaluel52(k211),
2`,k,` is derived in a way somewhat different than th
in Ref. @20#,

f~z,k!5
1

A2p~k211!
~12k222ik tanhz!eikz, ~26!

c~z,k!5
1

A2p~k211!
~212k222ik tanhz

12 tanh2 z!eikz5
1

ik
fz~z,k!, ~27!

and it is easy to check directly thatL̂2L̂1 andL̂1L̂2 also have
two eigenfunctionsf1(z),f2(z) and c1(z),c2(z) for dis-
crete eigenvaluel50, respectively. It must be pointed ou
emphatically that althoughf2(z) andc1(z) are solutions of
Eqs.~24! and~25! for l50, respectively, they do not satisf
the simultaneous equations~23!. In fact, it is easy to derive
that

L̂1f2~z!522c2~z!, L̂2c1~z!52f1~z!, ~28!

which are different from Eq.~23! for l50. Obviously, the
above eigenfunctions have the following symmetries wh
can be checked directly:

f̄~z,k!5f~z,2k!, c̄~z,k!5c~z,2k!,

f̄ j~z!5f j~z!, c̄ j~z!5c j~z!, j 51,2. ~29!

Now we have introduced two sets of eigenfunctions$f%
5$f(z,k), f j (z); j 51,2% and $c%5$c(z,k), c j (z); j
51,2%. They constitute two complete sets of orthonorm
bases. The orthonormalities and completeness of them
defined as follows

~i! Orthonormalities:

E
2`

`

f~z,k!c̄~z,k8!dz5E
2`

`

c~z,k!f̄~z,k8!dz5d~k2k8!,

~30!

E
2`

`

f~z,k!c j~z!dz5E
2`

`

c~z,k!f j~z!dz50, j 51,2,

~31!

E
2`

`

f j~z!c l~z!dz5d j l , j ,l 51,2. ~32!
t

h

l
re

~ii ! Completeness:

E
2`

`

f~z,k!c̄~z8,k!dk1(
j 51

2

f j~z!c j~z8!5d~z2z8!.

~33!

Equations~30! and~33! are proved through a straightforwar
calculation with the aid of the residue theorem in Appe
dixes B and C, respectively. Equation~31! can also be
proved in a similar way, while Eq.~32! can be checked di-
rectly.

C. Effects of perturbation on a soliton

In order to solve the initial-value problem~20! and ~21!
by the separation of variables, we expandA(1)(z,t0) on the
basis$c% while B(1)(z,t0) on $f% as

A~1!~z,t0!5E
2`

`

a~1!~ t0 ,k!c~z,k!dk1(
j 51

2

aj
~1!~ t0!c j~z!,

~34!

B~1!~z,t0!5E
2`

`

b~1!~ t0 ,k!f~z,k!dk1(
j 51

2

bj
~1!~ t0!f j~z!.

~35!

Owing to Eq.~29!, the coefficientsin in Eqs.~34! and ~35!
must satisfy the following relations to guarantee bothA(1)

andB(1) are real:

ā~1!~ t0 ,k!5a~1!~ t0 ,2k!, ā j
~1!~ t0!5aj

~1!~ t0!,

b̄~1!~ t0 ,k!5b~1!~ t0 ,2k!, b̄ j
~1!~ t0!5bj

~1!~ t0!. ~36!

Substituting Eqs.~34! and ~35! into Eqs.~20! and ~21!, and
employing Eqs.~23! and ~28!, one obtains

E
2`

`

@ ȧ~1!~ t0 ,k!14b2lb~1!~ t0 ,k!#c~z,k!dk1ȧ1
~1!~ t0!c1~z!

1@ ȧ2
~1!~ t0!28b2b2

~1!~ t0!#c2~z!5Re@R~1!eiu#

22b t1
c1~z!24b2j t1

c2~z!, ~37!

E
2`

`

@ ḃ~1!~ t0 ,k!24b2la~1!~ t0 ,k!#f~z,k!dk1@ ḃ1
~1!~ t0!

28b2a1
~1!~ t0!#f1~z!1ḃ2

~1!~ t0!f2~z!5Im@R~1!eiu#

2~4abj t1
22bd t1

!f1~z!12a t1
f2~z!, ~38!

with

a~1!~0,k!5aj
~1!~0!5b~1!~0,k!5bj

~1!~0!50, j 51,2,
~39!

where the overdot signifies derivative with respect tot0 .
Making use of the orthonormal relations~30!–~32!, we ob-
tain from Eqs.~37!–~39! the following ordinary differential
equations with zero-initial conditions:

ȧ~1!~ t0 ,k!14b2lb~1!~ t0 ,k!5p~1!~k!, a~1!~0,k!50,
~40!
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ḃ~1!~ t0 ,k!24b2la~1!~ t0 ,k!5q~1!~k!, b~1!~0,k!50,
~41!

ȧ1
~1!~ t0!5p1

~1!22b t1
, a1

~1!~0!50, ~42!

ḃ2
~1!~ t0!5q2

~1!12a t1
, b2

~1!~0!50, ~43!

ȧ2
~1!~ t0!28b2b2

~1!~ t0!5p2
~1!24b2j t1

, a2
~1!~0!50,

~44!

ḃ1
~1!~ t0!28b2a1

~1!~ t0!5q1
~1!2~4abj t1

22bd t1
!,

b1
~1!~0!50, ~45!

where

p~1!~k!5E
2`

`

Re@R~1!eiu#f̄~z,k!dz,

pj
~1!5E

2`

`

Re@R~1!eiu#f̄ j~z!dz, j 51,2, ~46!

q~1!~k!5E
2`

`

Im@R~1!eiu#c̄~z,k!dz,

qj
~1!5E

2`

`

Im@R~1!eiu#c̄ j~z!dz, j 51,2. ~47!
d
m

eo

r

If R(1)eiu is independent ofu ~for example, ifR(1)52u(0),
2uxx

(0) , etc.! so the right-hand side of Eqs.~40!–~45! are
independent oft0 in the moving coordinate system, Eqs.~42!
and ~43!, will lead to secularity. In fact, integrating them
over t0 yields a1

(1)(t0)5(p1
(1)22b t1

)t0 and b2
(1)(t0)5(q2

(1)

12a t1
)t0 , which grows infinitely in time. Thus we mus

demand that

p1
~1!22b t1

50→a1
~1!~ t0!50, ~48!

q2
~1!12a t1

50→b2
~1!~ t0!50. ~49!

Due to Eqs.~48! and ~49!, Eqs. ~44! and ~45! also lead to
secularity. Similarly, we demand that

p2
~1!24b2j t1

50→a2
~1!~ t0!50, ~50!

q1
~1!2~4abj t1

22bd t1
!50→b1

~1!~ t0!50. ~51!

Now we begin to find out the effects of perturbation on t
soliton, i.e., thet1 dependence of soliton parameters and
first-order correction. At first, inserting Eqs.~48!, ~50! and
~49!, ~51! into the second equations in Eqs.~46! and ~47!,
respectively, we obtain the following four important formu
las immediately:
b t1
5

1

2
p1

~1!5
1

2 E
2`

`

Re@R~1!eiu#f̄1~z!dz5
1

2
Re E

2`

`

R~1!eiu sechz dz, ~52!

j t1
5

1

4b2 p2
~1!5

1

4b2 E
2`

`

Re@R~1!eiu#f̄2~z!dz5
1

4b2 Re E
2`

`

R~1!eiuz sechz dz, ~53!

a t1
52

1

2
q2

~1!52
1

2 E
2`

`

Im@R~1!eiu#c̄2~z!dz52
1

2
Im E

2`

`

R~1!eiu tanhz sechz dz, ~54!

d t1
52aj t1

2
1

2b
q1

~1!52aj t1
2

1

2b E
2`

`

Im@R~1!eiu#c̄1~z!dz52aj t1
2

1

2b
Im E

2`

`

R~1!eiu~12z tanhz!sechz dz.

~55!
Equations~52!–~55! determine how the soliton shape an
position are affected by the perturbation. They are the sa
as those obtained by inverse scattering perturbation th
@5# and other direct methods@18#.

Secondly, we return to the simultaneous equations~40!
and ~41!. Their solution can be easily derived in a standa
way:

a~1!~ t0 ,k!52
q~1!~k!

4b2l
@12cos~4b2lt0!#

1
p~1!~k!

4b2l
sin~4b2lt0!, ~56!
e
ry

d

b~1!~ t0 ,k!5
p~1!~k!

4b2l
@12cos~4b2lt0!#

1
q~1!~k!

4b2l
sin~4b2lt0!. ~57!

Noting that aj
(1)(t0)5bj

(1)(t0)50, j 51,2 @see Eqs.~48!–
~51!#, we get from Eqs.~34! and ~35! that

A~1!~z,t0!5E
2`

`

a~1!~ t0 ,k!c~z,k!dk, ~58!
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B~1!~z,t0!5E
2`

`

b~1!~ t0 ,k!f~z,k!dk. ~59!

Inserting Eqs.~58! and ~59! into Eq. ~19!, we obtain

u~1!~z,t0!5e2 iu@A~1!~z,t0!1 iB ~1!~z,t0!#

5e2 iuE
2`

`

dk@a~1!~ t0 ,k!c~z,k!

1 ib ~1!~ t0 ,k!f~z,k!#. ~60!

Noting that the eigenfunctions for continuous spectrum
be rewritten as

f~z,k!5
21

A2p~k211!
eikz@~k1 i tanhz!22sech2 z#,

c~z,k!5
21

A2p~k211!
eikz@~k1 i tanhz!21sech2 z#,

~61!

we finally get the following explicit expression for the firs
order correction after some calculation:

u~1!~z,t0!5
2 ie2 iu

8pb2 E
2`

`

dk
Ī ~k!

~k211!3 @12e24ib2~k211!t0#

3~k1 i tanhz!2eikz1
ie2 iu

8pb2E
2`

`

dk
I ~2k!

~k211!3

3@12e4ib2~k211!t0#sech2 z eikz, ~62!

where

I ~k!5E
2`

`

dz@R̄~1!e2 iu~k1 i tanhz!22R~1!eiusech2 z#eikz.

~63!

Keener and McLaughlin@11,12# and afterwards Herman@18#
studied the soliton perturbations for the NLS equation. H
man declared that their results agree. Especially, Herman
rived an exact explicit expression of the first-order correct
for the NLS equation@given by Eq.~144! in Ref. @18##. Ob-
viously, our correction@given by Eq.~62!# is some different
from that in Ref.@18#. To be exact, dividing Eq.~62! by b2

and multiplying the integrand of the first term in Eq.~62! by
k2, we get Eq.~144! in Ref. @18#. A straightforward calcula-
tion shows that ouru(1)(z,t0) satisfies Eq.~10! and initial
condition ~11!.

D. Damping NLS equation

As an important example, let us consider the so-ca
damping NLS equation in whichR@u#52u

iut1uxx12uuu2u52 i eu. ~64!

Obviously,

R~1!@u~0!#52u~0!522be2 iusechz. ~65!
n

r-
e-

n

d

The time dependence of the soliton parameters can be e
obtained from Eqs.~52!–~55!:

b t1
52bE

2`

`

sech2 z dz522b, ~66!

j t1
52

1

2b E
2`

`

zsech2 z dz50, ~67!

a t1
5bE

2`

`

tanhzsech2 z dz50, ~68!

d t1
501E

2`

`

~12z tanhz!sech2 z dz51. ~69!

Returning to the original time variablet ~noting that ] t
5] t0

1e] t1
up to the first-order approximation! and perform-

ing the integrals, we rewrite Eqs.~66!–~69! as

b t522eb, j t524a, d t524~a21b2!, a t50,
~70!

which lead to

b5b0e22et, a5a0 , j5j024a0t,

d5d02~4a0
22e!t1b0

2e24et/e, ~71!

whereb0 , a0 , j0 , andd0 are all constants. Equation~71!
means that the height of soliton dampens~while the width
increases! with time exponentially, while the propagating ve
locity is not affected by the perturbation.

To derive the first-order correctionu(1)(z,t0), we first get
from Eqs.~46! and ~47! that

p~1!~k!5E
2`

`

Re@R~1!eiu#f̄~z,k!dz5A2pb sech~pk/2!,

~72!

q~1!~k!5E
2`

`

Im@R~1!eiu#c̄~z,k!dz50, ~73!

where the integrals were performed with the aid of a resid
theorem similar to the one in Appendix B. Then substituti
Eqs.~72! and ~73! into Eqs.~56! and ~57! yields

a~1!~ t0 ,k!5A2p sech~pk/2!sin~4b2lt0!/4bl, ~74!

b~1!~ t0 ,k!5A2p sech~pk/2!@12cos~4b2lt0!#/4bl.
~75!

Note that the soliton parameterb should be taken as a con
stant b0 up to the first-order approximation. Substitutin
Eqs. ~74! and ~75! into Eq. ~60!, and replacingt0 by t, we
finally obtain the first-order correction
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u~1!~z,t !5A2pe2 iuE
2`

`

dksech~pk/2!sin~4b0
2lt !

3c~z,k!/4b0l1 iA2pe2 iuE
2`

`

dk sech~pk/2!

3@12cos~4b0
2lt !#f~z,k!/4b0l. ~76!

III. SOLITON PERTURBATIONS OF SG EQUATION

A. Linearization

Now we return to the perturbed SG equation

utt2uxx1sin u5eR@u#. ~77!

It is well known that the standard SG equation (R50) has a
single-soliton solution

u0~x,t !54 arctan exp@m~x2at!#, m51/A12a2.
~78!

Equation~77! can be linearized in the same way as was do
in Sec. II:

ut0t0
~0! 2uxx

~0!1sin u~0!50, ~79!

ut0t0
~1! 2uxx

~1!1cosu~0!u~1!5R@u~0!#22ut0t1
~0! ,... ~80!

and the initial condition for perturbations on a single solit
is

u~0!~x,0!54 arctanemx, ~81!

u~n!~x,0!50, for n51,2,... . ~82!

Obviously, Eq.~79! has a single soliton solution formally th
same as Eq.~78!

u~0!~x,t0!54 arctanez, z5m~x2j!, j t0
5a, ~83!

where the soliton parametersm and j are supposed to b
functions of the slow time variablest1 ,t2 ,..., by virtue of
perturbation. Then the second term on the right-hand sid
Eq. ~80! is replaced by

ut0t1
~0! 522amt1

~12z tanhz!sechz

22m2aj t1
tanhz sechz. ~84!

Noting that Eq.~83! gives rise to cosu(0)5122 sech2 z, we
rewrite Eq.~80! as

ut0t0
~1! 2uxx

~1!1~122 sech2 z!u~1!

5F ~1!~z![R@u~0!#14amt1
~12z tanhz!sechz

14m2aj t1
tanhzsechz. ~85!

In a coordinate system moving with the soliton, Eq.~85! and
initial conditions~82! become

ut0t0
~1! 22maut0z

~1!2uzz
~1!1~122 sech2 z!u~1!5F ~1!, ~86!
e

of

u~1!~z,0!50, ut0
~1!~z,0!50, ~87!

respectively. To solve the initial-value problem~86! and
~87!, we must make a further transformation on the indep
dent variable to eliminate the first or second term of Eq.~86!.
For instance, in this paper, we may introduce a new ti
variable

t5t0/2m2~11a!z/2. ~88!

Equation~86! is replaced by

utz
~1!2uzz

~1!1~122 sech2 z!u~1!5F ~1!. ~89!

According to the separation of variables, we must search
special solutions of Eq.~89!, which can be expressed as pr
duction of a function oft with a function ofz

u~1!~z,t!5T~t!X~z!, ~90!

and at the same time, we suppose that

F ~1!~z,t!5 f ~t!Xz~z!. ~91!

Substituting Eqs.~90! and~91! into Eq. ~86!, we reduce Eq.
~86! into two ordinary differential equations

Xzz1~2 sech2 z21!X5l8Xz , ~92!

Tt2l8T5 f , ~93!

wherel8 is a constant~eigenvalue! to be determined.

B. Eigenvalue problem

Equation ~92! is just a generalized eigenvalue proble
equation

L̂X5l8Xz , L̂5]zz12 sech2 z21, ~94!

which differs from the ordinary cases withXz on the right-
hand side of Eq.~94! taking the place ofX. L̂ is nothing but
the self-adjoint operatorL̂1 introduced in Sec. II. Recalling
that c(z,k)5fz(z,k)/ ik @see Eq.~27!#, one can easily find
from the first equation in Eq.~23! that

L̂f~z,k!5l8fz~z,k! for l85 i ~k1k21!, 2`,k,`,
~95!

L̂f1~z!50, ~96!

which means that$f% can also be used as a basis for the S
equation.

C. Effects of perturbation on a soliton

Following the lines of the above section, we expa
u(1)(z,t) on the basis$f%:

u~1!~z,t!5E
2`

`

T~t,k!f~z,k!dk1(
j 51

2

Tj~t!f j~z!.

~97!
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Substituting Eq.~97! into Eq.~89!, and employing Eqs.~95!,
~96!, and~28!, one can obtain

E
2`

`

ik@ Ṫ~t,k!2l8T~t,k!#c~z,k!dk1Ṫ2~t!c1~z!

2@ Ṫ1~t!22T2~t!#c2~z!5F ~1!, ~98!

which gives rise to the following ordinary differential equ
tions with the aid of orthonormal relations~30!–~32!:

Ṫ~t,k!2l8T~t,k!5
1

ik E
2`

`

F ~1!~z!f̄~z,k!dz, ~99!

Ṫ2~t!5E
2`

`

F ~1!~z!f1~z!dz8, ~100!

Ṫ1~t!22T2~t!52E
2`

`

F ~1!~z!f2~z!dz. ~101!

If R@u(z)# does not contain time explicitly, the right-han
side of Eqs.~99!–~101! should be independent oft. Then
Eqs. ~100! and ~101! will gives rise to the secularities, an
the nonsecular condition is

E
2`

`

F ~1!~z!f1~z!dz50→Ṫ2~t!50, ~102!

E
2`

`

F ~1!~z!f2~z!dz50→Ṫ1~t!50 and T2~t!50.

~103!

So we get from Eqs.~102! and ~103! that T2(t)50, T1(t)
5const. As was pointed out above, the nonsecular condit
~102! and~103! will determine the slow time dependence
the soliton parameters

mt1
52

1

4a E
2`

`

R@u~0!#sechz dz, ~104!

j t1
52

1

4m2a E
2`

`

R@u~0!#zsechz dz. ~105!

Equations~104! and~105! are consistent with those obtaine
by the inverse scattering perturbation theory. To our kno
edge, they have not been obtained by any other direct
proach yet. Now we begin to derive the first-order correct
u(1). At first, we solve Eq.~99! in a standard way

T~t,k!5c~k!el8t2
1

ikl8
E

2`

`

F ~1!~z!f̄~z,k!dz,

~106!

where the coefficientc(k) should be determined by the in
tial conditions. Inserting Eqs.~106! and ~88! into Eq. ~97!,
and noting thatT1(t)5T1 is a constant, we obtain the gen
eral solution of Eq.~86! as follows:
ns

l-
p-
n

u~1!~z,t0!52E
2`

`

dkE
2`

`

dz8
1

ikl8
f~z,k!f̄~z8,k!F ~1!~z8!

1E
2`

`

dkc~k!exp$l8@ t02m~11a!z#/2m%

3f~z,k!1T1f1~z!. ~107!

The coefficientsc(k) andT1 in Eq. ~107! can be determined
by the initial conditions~87! through a series of calculations

c~k!5
1

ikl8
E

2`

`

dzf̄~z,k!F ~1!~z!exp@ml8~11a!z#,

~108!

T152
1

4m2 E
2`

`

dz zf2~z!F ~1!~z!. ~109!

Substituting Eqs.~108! and~109! into Eq. ~107!, one finally
obtains the first-order correction as follows:

u~1!~z,t0!5E
2`

` dk

ikl8
f~z,k!E

2`

`

dz8f̄~z8,k!F ~1!~z8!

3FexpH l8

2m
@ t02m~11a!~z2z8!#J 21G

2
1

4m2 f1~z!E
2`

`

dz8z8f2~z8!F ~1!~z8!.

~110!

It is not difficult to check through a straightforward calcul
tion thatu(1)(z,t0) really satisfies Eq.~86! and initial condi-
tions ~87!. In contrast to KdV and SG equations, he
u(1)(z,t0) also contains the contribution made by the discr
spectrum eigenfunctions. Obviously, Eq.~110! can be further
rewritten as

u~1!~z,t0!5E
2`

`

G~z,t0 ;z8!F ~1!~z8!dz8, ~111!

whereG(z,t0 ;z8) is the Green’s function defined by

G~z,t0 ;z8!5E
2`

` dk

ikl8
f~z,k!f̄~z8,k!

3H expF l8

2m
@ t02m~11a!~z2z8!#G21J

2
1

4m2 f1~z!z8f2~z8!. ~112!

IV. CONCLUSION

In this paper, we studied the soliton perturbations for N
and SG equations by a direct approach, and obtained s
results for the above two equations. At first, the first-ord
correction for the NLS equation is somewhat different th
that obtained by other authors@18#. A careful calculation
shows that our correction really satisfies the linearized eq
tion while that in Ref.@18# does not. So we suspect that the
are probably some errors in the calculation in Ref.@18#.

In the past papers mentioned above, the authors dealt
a time-dependent operator associated with the linear
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equation directly. An elaborate scheme is developed to
rive the eigenfunctions of this operator by making use
some knowledge of IST. In our scheme, since the operato
time independent, the derivation of eigenfunctions is m
direct and easier. In addition, the separation of time a
space actually bring some convenience for the subseq
derivation. For instance, the secular terms appears cle
An unexpected thing appears in this study: the expans
basis for the above two different equations is the same.
believe that this must suggest some deep connection betw
them.

In summary, this scheme is totally independent of IS
and derivations differ from the past papers substantially. I
helpful to have it as an alternative way to study soliton p
turbations.
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APPENDIX A: DERIVATION OF EIGENFUNCTIONS
f„Z,K… AND c„Z,K…

Let us consider the eigenvalue problem

L̂1f5lc,

L̂2c5lf,
~A1!

where L̂15d2/dz212 sech2 z21 and L̂25d2/dz2

16 sech2z21. Along the lines of Ref.@20#, we assume that

f~z,k!5eikzr~z,k!,
c~z,k!5eikzs~z,k!, ~A2!

where r(z,k) and s(z,k) are supposed to have th
asymptotic behaviorr(z,k)→const ands(z,k)→const as
z→6`. Then the asymptotic equation of Eq.~A1! leads to
l52(k211). Inserting Eq.~A2! into Eq.~A1!, one obtains
an ordinary differential equation system forr ands

L̂1r12ikrz2k2r1~k211!s50,

L̂2s12iksz2k2s1~k211!r50.
~A3!

To determiner(z,k) and s(z,k), we may expand each o
them into a power series ofik as was done in Ref.@20#.
However, we would like to use a method a bit different fro
that used in Ref.@20# here, in whichr ands are expanded
into the following series:

r~z,k!5a01a1tanhz1
a2

cosh2 z
1a3

sinh z

cosh3 z
1

a4

cosh4 z

1a5

sinh z

cosh5 z
1¯ , ~A4!

s~z,k!5b01b1tanhz1
b2

cosh2 z
1b3

sinh z

cosh3 z
1

b4

cosh4 z

1b5

sinh z

cosh5 z
1¯ , ~A5!
e-
f
is
e
d
nt

ly.
n
e
en

,
is
-

e

where the coefficientsaj andbj , j 51,2,..., are functions ofk
to be determined. Inserting Eqs.~A4! and~A5! into Eq.~A3!,
and comparing the coefficient of 1, tanhz, 1/cosh2 z,
sinhz/cosh3 z,..., one obtains a series of algebraic equat
systems which determine all the coefficients successivel

a05b0 , ~A6!

a15b1 , ~A7!

2a012ika11~32k2!a224ika31~k211!b250,
6b012ikb11~32k2!b224ikb31~k211!a250,

~A8!

24ika21~32k2!a31~k211!b350,
4b124ikb21~32k2!b31~k211!a350, ~A9!

24a216ika31~152k2!a428ika51~k211!b450,
6ikb31~152k2!b428ikb51~k211!a450.

~A10!

If we assume thatai5bj50, for j >3, then it is easy to
derive from Eqs.~A6!–~A10! that a250, and the nonzero
coefficients are

a05b05~12k2!c, a15b1522ikc, b2522c,
~A11!

wherec is a constant determined by the orthonormality~30!
or completeness~33! as

c51/A2p~k211!. ~A12!

Inserting Eqs.~A4! and ~A5! into Eq. ~A2! and employing
Eq. ~A11! gives rise to

f~z,k!5
1

A2p~k211!
eikz~12k222ik tanhz!,

~A13!

c~z,k!5
1

A2p~k211!
eikz~12k222ik tanhz22/cosh2 z!

5
1

A2p~k211!
e2ik~212k222ik tanhz

12 tanh2 z!. ~A14!

APPENDIX B: ORTHONORMALITY OF SETS
ˆf‰ AND ˆc‰

Before the proof of the orthonormality relations, we mu
derive some useful integral formulas. At first let us calcula
the following integral by the aid of the residue theorem:

I 1~k!5E
2`

`

eikz tanhz dz. ~B1!

To do this, we consider a complex integral along a clos
pathc in planez5z1 ih as follows:

R
c
f 1~z!dz5 R

c
eikz tanhz dz. ~B2!
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Since the factor tanhz in the integrand is a periodic functio
with an imaginary periodip, we choosec to be the bound-
ary of a rectangular region infinitely long:2`,z,`, 0
<h<p. In this region the integrand is analytic except for
simple polez05 ip/2. We note thateikz oscillates rapidly for
large z. Then the integral along the two straight line se
mentsz56`, 0<h<p should be zero. It follows that

R
c
f 1~z!dz5@12e2kp#I 1~k!. ~B3!

On the other hand, according to the residue theorem,
have

R
c
f 1~z!dz52p i Res f 1~z0!. ~B4!

The residue is easily obtained by the standard method

Res f 1~z0!5 lim
z→z0

~z2z0! f 1~z!5e2kp/2. ~B5!
-

e

Comparing Eqs.~B3!, ~B4!, and~B5!, we get immediately

I 1~k!5E
2`

`

eikztanhz dz5 ip/sinh~pk/2!. ~B6!

Starting from Eq.~B6!, and employing the technique of in
tegration by parts repeatedly, we obtain the following form
las successively:

I 2~k!5E
2`

`

eikz
1

cosh2 z
dz5pk/sinh~pk/2!, ~B7!

I 3~k!5E
2`

`

eikz
sinh z

cosh3 z
dz5 ipk2/2 sinh~pk/2!.

~B8!

In addition, some more integral formulas can also be
tained in a similar way,
I 4~k!5E
2`

`

eikz
1

coshz
dz5p/cosh~pk/2!, ~B9!

I 5~k!5E
2`

`

eikz
sinh z

cosh2 z
dz5 ikp/cosh~pk/2!, ~B10!

I 6~k!5E
2`

`

eikz
1

cosh3 z
dz5~11k2!p/2 cosh~pk/2!, ~B11!

I 7~k!5E
2`

`

eikz
z

coshz
dz5 ip2/2 cosh~pk/2!2 ip2e2pk/2/2 cosh2~pk/2!, ~B12!

I 8~k!5E
2`

`

eikz
z sinh z

cosh2 z
dz5~12pk/2!p/cosh~pk/2!1p2ke2pk/2/2 cosh2~pk/2!, ~B13!

I 9~k!5E
2`

`

eikz
z

cosh3 z
dz52 ipk/cosh~pk/2!1 ip2~11k2!sinh~pk/2!/4 cosh2~pk/2!. ~B14!

Now we return to the orthogonality relations. As an example, let us calculate the following integral in detail:

E
2`

`

f~z,k!c̄~z,k8!dz5
1

2p~k211!@~k8!211#
E

2`

`

ei ~k2k8!z@12k222iktanhz#

3@12~k8!212ik8tanhz22sesh2z#dz

5
1

2p~k211!@~k8!211#
E

2`

`

ei ~k2k8!z@~k221!@~k8!221#14kk8#dz

1
1

2p~k211!@~k8!211#
@2i @k~k8!22k2k82k1k8#I 1~k2k8!

1@2~k221!24kk8#I 2~k2k8!14ikI 3~k2k8!#. ~B15!
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Obviously, the first term of the second equation in Eq.~B15!
gives rise to ad function d(k2k8), while the other terms
are just eliminated, namely,

2i @k~k8!22k2k82k1k8#I 1~k2k8!

1@2~k221!24kk8#I 2~k2k8!14ikI 3~k2k8!50,
~B16!

which can be easily checked through a straightforward
culation with the aid of Eqs.~B6!–~B8!. Thus the proof of
Eq. ~30! has been finished. Moreover, Eq.~31! can also be
proved in the same way with the aid of Eqs.~B9!–~B14!.

APPENDIX C: COMPLETENESS OF SETS ˆf‰ AND ˆc‰

We start from the integral

E
2`

`

f~z,k!c̄~z8,k!dk

5
1

2p E
2`

` dk

~k211!2 eik~z2z8!@12k222ik tanhz#

3@12k212ik tanhz822 sesh2z8#

5
1

2p E
2`

`

dkeik~z2z8!2
1

2p E
2`

` dk

k211
eik~z2z8!
A

c.
l-

3@422ik~ tanhz2tanhz8!22 sesh2z8#

1
1

2p E
2`

` dk

~k211!2 eik~z2z8!4@12 ik tanhz#

3@ ik tanhz81tanhz8#. ~C1!

Obviously, the first term of the second equation in Eq.~C1!
givesd(z2z8), while the other two terms can be calculate
by the aid of the residue theorem. Note that the integrand
the above two terms as functions of complex variablek are
analytical everywhere except for two poles6 i ~of first and
second order, respectively!. The residues can be easily ca
culated in the standard way. Then the sums of the residue
the second and third terms are obtained as

Res~6 i !56 i @sechz~12z8 tanhz8!sechz8

1z sechz tanhz8 sechz8, ~C2!

through a series of calculations. Finally, according to J
dan’s lemma, we have

E
2`

`

f~z,k!c̄~z8,k!dk5d~z2z8!62p i Res~6 i !

5d~z2z8!2(
j 51

2

f j~z!c j~z8!,

~C3!

which is the same as the completeness relation~34!.
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