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WKB solution of the wave equation for a plane angular sector
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The two angular Lamalifferential equations that satisfy boundary conditions on a plane angular sector
(PAS) are solved by the Wentzel-Kramers-BrillouKB) method. The WKB phase constants are derived by
matching the WKB solution with the asymptotic solution of the Weber equation. The WKB eigenvalues and
eigenfunctions show excellent agreement with the exact eigenvalues and eigenfunctions. It is shown that those
WKB eigenvalues and eigenfunctions that contribute substantially to the scattering amplitude from a PAS can
be computed in a rather simple way. An approximate formula for the WKB normalization constant, which is
consistent with the WKB assumptions, is derived and compared with the exact normalization constant.
[S1063-651%98)00507-9
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I. INTRODUCTION

\/1—choszvf}diﬂ[\/l—choszﬂ%@(ﬂ)}
In a previous papefl], formulas for the Wentzel-
Kramers-Brillouin (WKB) eigenvalues satisfying Dirichlet +[v+1) k2SIt 9+ u]O(9)=0 (1)
or Neumann boundary condition on a plane angular sector
(PAS) were reported and the WKB eigenvalu¢su}, were
compared with the exact eigenvalues for PAS’s of differentand
corner angle$60°, 90°, and 120° A historical review of the
solution of the wave equation for a PAS was also given in d d
the above paper. It suffices to say that, to our knowledge, no V1-«'%cose d_[ V1-«'%cose d—q)(@)}
approximate solution of this problem has been reported in ¢ i
the literature. +[v(v+1)k'?sirPe— u]P(¢)=0, 2

In this paper, the two coupled Laneguations are solved
by the WKB method. The WKB analysis in this paper is
valid for large values of. Depending on the sign qi, one
of the two Lameequations has turning points. Whém is
small the turning points occur where the angles are small. IRy
this region it proves more accurate to obtain the WKB phase
constants by.matching it with the asym_ptotic solution 01_‘ the x=r cos 91— k' 2code,
Weber equation. For large values|gf, it is shown that this
phase constant reduces to the phase constant obtained when
the solution is matched with the asymptotic solution of the y=r sin 9 sin ¢, 3
Airy’s equation as is commonly done in quantum mechanics.

This paper is organized in the following way: In the sec-
ond section the WKB solution is formulated and the WKB z=r cos¢1—k*cos'd,
phase constants are derived. In the third section formulas for
the WKB eigenvalues for Dirichlet and Neumann boundary
conditions are derived and a comparison between the WKE’
and exact eigenfunctions is presented. The fourth section
contains a derivation of approximate WKB solutions which B
are valid for small values ofi/v. Finally, an approximate K:COS(E),
formula for the WKB normalization constant consistent with
WKB assumptions is derived in section five.

where the sphero-conal coordinate system variablasd ¢
are related to the Cartesian coordinate variablesy, andz

here

B is the corner angle ane’=+1—«2. The range of the

variables i
Il. THE GENERAL SOLUTION ariables is

The angular part of the wave equation in the sphero-,conal 0<g<
coordinate system are expressed by the two angular Lame
differential equation$2,1]:

The geometry of the sphero-conal coordinate system is
shown in Fig. 1. The construction of this coordinate system
*Present address: Propagation Division, SPAWAR Systems Ceris described, and its orthogonality proved[#]. The WKB
ter, D881, 53560 Hull Street, San Diego, CA 92152-5001. solution of Egs(1) and(2) are respectively given bjl]
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FIG. 1. The geometry of the sphero-conal coordinate system.

is the distance from the origin to the poipt

1
O(Y)=
“\/(V‘i‘%)zkzsinzﬁ-l-,u,
S{ 0((V+%)2K25in219+,u,)1/2 ]
X co f dd+ds¢,
9 1— k?cosd
(4)
and
O (o) -
@)=
Vit 52 Zsito—p
¢(<v+%>zx'zsin2<p—u e
7co f¢t 1—k'?coS¢ dot 0
®)

Notice that the® solution can be obtained from ti& solu-
tion by replacingd with ¢, w with —u, and k with «’. This
is also evident in the differential equations, E¢s.and(2).
For >0, the turning point for thé equation,¥;=0, and
the turning point for thed equation is¢= ¢i(v,— u,x’).
For u<0, ¢;=0 and 9= ¢(v,u, k), where

1/2

¢t(u,,u,;<)=arcsir(

Kz(v-f-%)z

The above solutions are valid fotr—9,>39>9; and 7
—¢@>@>¢;. For the regionsd;>9>m— 34, and ¢;>¢
> 1 — ¢, the solutions are given by

1
O(d)=

Vlaal= (v 1) 2usirey

of || — (v+3)2k2sinf S
X exp| —
XP fo 1— k2cogd

1/2
.

u<0. (6)
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A similar solution for the® equation which is valid fo>0

can be obtained from the above equation by replagimg,
andd with u, «’, ande, respectively. The solutions given by
Egs. (4) and (6) are separated by the turning points where
they are both singular. To match these solutions at the turn-
ing points, the Lamesquation is approximated by another
differential equation at the turning point and then the
asymptotic solution of this differential equation is matched
with the WKB solution of the Lamequation. By this pro-
cess the phase constardig and 6, are obtained.

Although the WKB solutions obtained in this paper are
general, we are particulary interested in those solutions that
correspond to the small absolute values of the eigenvalue
The reason for this is that the expression for the scattering
amplitude for a PAS, derived in a separate pd3y con-
tains either the eigenfunctions or their derivatives evaluated
at the surface of the PAS or its edges. Observe that the sur-
face of the PAS in the sphero-conal coordinate system is
9= and its edges are=0 and ¢=m. Since the WKB
eigenfunctions are decaying exponentials to the left of the
turning point near zero and to the right of the turning point
near 7, significant contribution to the solution comes from
those eigenfunctions that have a turning point near the sur-
face or near the edges. They correspond to eigenfunctions
with small absolute values of the eigenvalue

To derive a differential equation that approximates the
Lame equation at the turning points, we use the following
transformation:

w9 =41— k2cod(9) O (D).
For v>u>1 this traznsformation converts EL) to
%zl}(ﬁ)er(ﬁ)l{ﬁ):O, )
with

B (v+3)2k%sinP o+ u
P(Y) = 1 " 2c029)

By using the Liouville transformatiofy]

dX 1/2
y(x)= —) v(9),

dd

Eq. (7) can be transformed to

dZy_( (dﬂ 2 1/2 d2

dx?

&
p()+| 4 y.

The first term in the curly brackets can be set equal to any
smooth function ok [4], and for smallu/v the second term
can be ignored. Near the turning poirii$<1) we set

dx

do —1/2
dx® | ldx

do)? )= X2+ 8

o) PO=|7+al, ®
resulting in

d’y [x?

W-f- Z_a y=0, 9
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which is the Weber equation. In the above equation the plus
sign is applicable to th® equation and the minus sign is =—
applicable to theb equation. The parametaris determined 2k’ (v+3)
from Eq.(8) by requiring that the turning points of the Lame

equation and the Weber equation occur at the same timéf, this value ofa is used in Eqgs(11) and (12), near the
thus ensuring the regularity af9/dx at the turning points: ~ turning points(small & and ¢) the above equations respec-

tively yield
1/2 s
fﬂt 4o fz\—a(x ta
0 0 4
Equation (9) is the desired differential equation. The
ing 9, by ¢,, k by x’, u by —u, anda by —a. Onceais  Minedy andd, .
determined from the above equatiahand ¢ can be related

& (14

1/2
dx. x=V2klk'\(v+ 1), x=V2k'Ik\(v+3)e. (15

(10

(v+3)2k%sin o+ u
1— k’cos o

to x by A. The WKB phase constantséy and &,
The Weber equation
of (vt 3)2k2sin? 9+ | V2 x(x2 \12 ?
f 1 oaly df}:f 2 T2 dx. d?y (X2
0 — K“CO 0 _— =
and has solutiong5]
of (vt 12k 2sirto— | x (x2 |12 W(a, £x)=2"3%(G/Gaye+ 2G3/G1y,),  (17)
f 5 d(pZJ' ——a| dx
@ 1—«'2coge 2va\ 4 where
(12
. X2 1\ x*
a is found to be Ye(X,a)=l+aﬁ+ al— Slar
2| (v+3)Pc?—p 7 \x
a=— +la*-3a ait (18
T k' V(v+3)2%k2+pu '
- s X3+ , 3)x°
|| =, ————e|-Ke)|}, @13 Yo(x,@)=x+azy+|a’=5 g
2" (4322 :
+|ad 1812 + 19
where mEAmt 19
1 P 1/2 and
“lor gL 0 #0
K\ (vt 2) K Gy(a)=|T(%+%ia)],
andIl is the elliptic integral of the third kind. Fqe<<O a can _—
be obtained from the above equation by replacingy |u| Gs(a)=|I'(z+zia)|.
and interchanging’ and x. Equation(13) has a power series ] ] )
expansion given by For x>|a| the Weber equation has asymptotic solutiffik
2_ 12 2n(a)\ 2 (1 T 1
a= 1 o K~k 2 W(a,x)=( n(@) cos{zxz—a Inx+z+§¢2(a)]
2kk’ 1663k 3(v+ 1)
3—8«k%k’? and
+ 3+0o(xh,
128650t Y O W w1, o oml
(a,—x)= X sim Zx“—alnx+ 7 2¢2(a) ,
where
where
v= M
v+3 n(a)=\1+e?m—e™,  ¢,(a)=ard[;+ial.

If only the first term in the above expansion is retained, = From these two solutions we construct an even solution
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- _i3 Gj(a) 1’2(1+ 7?(a)\ Y3 1\1? Comparing the phase and amplitude of this equation with
Yeo(X,@)= G.(a) (@) X that of y(x,a) we find
x? m 1 m 1 a a
Xcos{z—a Inx+ 7+ 5 pa(a) - y(a)] , Sp=74 t5%2(a)=¥(@)~5Inlal+ 5
(200 and

and an odd solution Ga(a)\ Y2/ 1+ p2(a)\ 12
A,=kr'(v+1) 3(2) 7(a) 22)
~ Gy(a) |12/ 14 2@\ V2 1| 112 Gi(a) 7(a)
3(a) n(a) X It can be shown that
X2 | T 1 3 ra
xcog —a nx+Z+§¢2(a)+7(a) , Zy(a)—ZWZarCta+tanl{7 }ED(a):_D(_a)_
(21)
In terms of this new quantity we have
where
5,=— T+ 2 gy(@)- 2D(@)- e+ 2. (23)
1 =——+-¢,(a)—=zD(a)— zInla|+ .
tany(a)= ——=1+e’"™3+e™, ‘ 8 2 2 2 2

n(a)
The phase constant for the odd solution is obtained by com-
In the region wherep is small so that the Lamequation can paringl,, with the phase of Eq(21). It is
be approximated by the Weber equation, y&t large so that

the WKB solution for the Lamequation is valid, and , om 1 1 a a
8,= 3 + 2¢2(a)+ 2D(a) 2In|a|+ 5
2k’ 1/2 1/2
X= (T) vr 5) ¢>al, A similar analysis gives

1
2

both Eq.(5) and Eqs.(20) or (21) are solutions of the same
differential equation. The phase constaptcan therefore be
determined by matching the phases of the two solutions. De-
pending on the prescribed boundary conditions, eifhesr  and
Y, will be employed to obtain these phase constants. First

P - ZD(a)+ o) 2 (24
Py §¢2( a) (a) §n|a| > (24

8

. . . 1/2 2 1/2
consider the even solution for tide equation. From E¢(12) a1 G- 1+7%(-a)
we have Ar=N(r+2)rK Gy(—a) n(—a)
1/2 (25)
o (v+3)%k'2sife—p . '
|¢=J do And for the odd solution we find
@t 1-«k'%coge
L[ Sy =+ 3 ol ~a)~ 5D(@)+ inlal - 2
" »=g tz%("a)~zD@+7lnal- 5.
2[2\3 x“—4a dx
X For u < 0O the role of thed and the® equations are inter-
=—Jx’—4a—a In[x+ x°—4a]+a In[2Va]. changed. In other words, in this case Beequation is the
2 [ l+a In[2\a]

one with the turning points. However, the expressions ob-

. L . tained for the phase constants still remain valid. In summary
Expanding the last expression in powersaofind keeping

: ; we have
only terms of first order gives
X2 a a ) 7T+1<;5() 1D() a|||+a
=——=+-d¢y(a)—zD(a)— zInja|+ =
=2 _ ZInlal— = ¢ 8 272 2 2 2’
=7 alnx+2In|a| 5
The WKB solution, Eq(5), thus becomes Sg=— g_ %¢2(a) + %D(a)+ g|”|a| - ;

A‘;{/E 5

I 1 1 a a
= 4 — + — N + —
4\/(1/-!-%) KK’\/; % 8 2¢2(a) ZD(a) 2|n|a| 2’

X co X—z—alnx+iln|a|—i+5 5’—577 ! 1D 4 2
2 2 AT T =g %@ zP@7 glnlal- 5.

P(x)=
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The above phase constants were derived for small values efjuations by applying the boundary conditions and imposing
a when the turning points lie close to 0 et. For large the requirement that the solutions fa¥;,¢) > (9;;¢;) and
positive values of, D(a)—m/4 and¢,(a)—a InjJaj—a. In  those for(%;¢) < (7m— 9 ;7— ¢;) join each other smoothly
this limit 6,= — /4, 5;=37r/2, 8y=0, and 8y=m/2. For  in their common region of validity. This results in relation-
large negative values of, D(a)——m/4 and ¢,(a)—  ships for the WKB eigenvalues. Both Dirichlet and Neumann
—|a|In|al+]|al. In this limit 8,=0 5;: w2, 5y=—mwl4, and  boundary conditions will be considered.

8y=3m/2. These are the phase constants that would have

been obtained had the problem been treated by the regular A. Dirichlet boundary condition

WKB method often employed in solving the ScHioger o .

equation in quantum mechanics. In solving the Sdhrger For the Dirichlet boundary condition we ha{/g]
equation by the WKB method, the phase constants are ob-

tained by matching the phase of the WKB solution with the ®'(0)=0, O'(0)=0,

phase of the asymptotic solution of the Airy’s equation. ®'(m)=0, O(m)=0.

Ill. THE WKB SOLUTIONS . .
That is, thed solution must be even at both=0 ande=1r,

By determining the phase termé,, &,, &y, and 5; where the® solution must be even dt=0 and odd at}=.
we now have the complete WKB solutions of tBeand the  The WKB solution of the® equation valid in the regio
& equations. In this section we derive the WKB eigenvalue> ¢; is

12

(v+3)2%k'%sirfe—
do+ 54, , P>,

1—k'?coS¢p

¢
¢<<¢>=A¢h<¢>co{ f

et

where

1

h(e)=

Y+ )2 sirto—p
Since for the Dirichlet boundary conditioh(¢) is even at bothp=0 and o=, the WKB solution foro<ar— ¢, is given by

1/2

(v+3)%k'%sirPe—pu
detd,(, e<m—e¢;.

1—k'?coS ¢

T @y
<D>(<p)=A;h(<p)CO4f

¢

1/2
de

The two solutions® <(¢) and®~ (), must join smoothly o
in the regiong;<e<7— ¢;. Let us define f
Pt

(v+ %)2K’25in2(p—,u,
1-«k'?cose

. 1/2
12 o 112 o[ (v+3)7K i —p
o (v+3)%k'2sife— 1 = > de
J Ef . de o 1-« CO$2<p
¢ Je 1—k'?coS¢p
. 1/2
12 2 1/2 e (v+3)2k%sifp—pu
2fw/z (v+3)%k'%sife— | - - 1= %02 de
- o 1-«'?cosep @ 26 ¢
=J,—b+4,.
and In terms of these quantities we have

O=(¢)=A,h(¢)codJ,—b+25,}
12

de+4,, and

o e (v+3)2k %sifp—pu
:j 1-«'%cose

(2

O~ (@)=A,h(¢)cosb.

then Equating®~ and®~ gives
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A {coqd,+25,}cosb+sin{d,+28,}sinb}=A/cosb. Substituting fors,,, we find

The solution to this equation, which givés,, constant and  Jo+ $o(a)—D(a)—alnla|l+a=(m+7)m, m=0,1,....

independent of the parameter is obtained by setting B N _
For Dirichlet boundary conditio® () is even aroundy=0

J,+28,=mm, m=0,11,.... and odd aroundy=. Then

1/2

(v-l—l)zkzsinzi‘}—i-,u,
2 do+8,, 9>0,

1— k’cos 9

b
®<(19)=A,9h(1‘})cos{ L}

whereh(9) is h(¢) with the appropriate change of variables. The solutiondform+ 9, is

172

(v+3)2k%sint 0+ u
: do+8y(, I>m+9;.

1— k’cosd

b
®>(19)=A{9h(ﬂ)co4f

7+ Oy

Since this solution is odd with respect o=, the solution ford<a— 3, is given by
1/2

(v+3)2kPSiP o+ p
: dd+85(, I<m— .

1- k’cosd

7— ¢

®>(6‘):—A,’9h(ﬁ)cos{ L

Requiring that® <() and®~ (&) join each other smoothly for u>0 and

results in
Jo+ 69+ 8=nm, n=12,.... ; —2u
9=
Note that the reason starts from 1 is to guarantee that k\V(v+3)2%k'2— 1
nm—38y— 85>0, a (v+3%k%+u
XA IO — r_|—K(r.)¢,
sinceJ, is positive. Substituting fob,, and 8 we find 2 (v+y)P?

Jy+ ¢do(—a)+alnjaj|—a=(n+3)m, n=0,1,....

and
For Dirichlet boundary condition we therefore have the set of
eigenvalue equations
g q 24 [ a (vt 122
J,+¢d-(a)—D(a)—a Inlal]+a=(m+H7, m=0,1,..., Jo= I =, , -
@ 4)2( ) ( ) | | ( 4) « ,(V+%)2K,2—/_L 2 (V+%)2K Z_M

Jy+d(—a)+alnjaj—a=(n+3)m, n=0,11,....
27) for u < 0. In the above

The integrals defined by, andJ, can be expressed in terms
of elliptic integrals[6] « ( (v+ 322 1/2

(v+ %)2K2+,u,

2 7 (v+3)%K? «'
Jy= IT Py baeera BN N
k' NV(v+ 322+ 1 2 (v+3)22+

W[ 32|
r_=— ’
and K\ (v+ 1224
2u
Jo= ITis the elliptic integral of the third kind, and is the elliptic
&' N(v+3)°6%+ p integral of the first kind. We also have the following identity
for Jy andJ,:
7 (v+3)°K P~
XY oy —————r4 | =K(ry)
2 (vt+3)%’? Jp+d,=(v+3)m. (28)
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FIG. 2. The top two panels show tkieand the® eigenfunctions for the exa¢solid lineg, the WKB (dashed linesand the power series
solution to the Weber equatiofotted line$ of the Lameequations, subject to Dirichlet boundary condition. The corresponding exact
eigenvalues arév,u)=(6.282 285,0.442 731and the corresponding WKB eigenvalues arg:)=(6.282 324,0.441 5)5The bottom two
panels show the same eigenfunctions for Neumann boundary condition with exact eigefivalire$6.792 665,-0.632 047 and WKB
eigenvaluesv,u)=(6.792 723;-0.630 76). Note how the power series solutions overlay the exact solution§ ford ¢ close to zero and

7r and connect smoothly with the WKB solutions.

B. Neumann boundary condition

For the Neumann boundary condition we have

®(0)=0,

P(m)=0,

The ® solution is thus odd with respect to=0 and o=
where the® solution is odd with respect t¢=0 and even
with respect tod=m. A similar approach yields the eigen-

value equations:

0(0)=0,
@' (m)=0.

J,+¢y(a)+D(a)—a Inja|+a=(m+3)m,

Jo+ d(—a)+alnja|—a=(n+ 3)m,

Note that Eqs(27) and (29) are two parameter eigenvalue
equations. This means that for a given valua @nhdm each

n=0,1, .

(29

eigenvaluesy andu for each boundary condition. The WKB
eigenvalues agree remarkably well with the exact eigenval-
ues[1].

C. The WKB eigenfunctions

Once the eigenvalues are computed, the WKB eigenfunc-
tions can be obtained from Edd) and(5). It is obvious that
either of these solutions multiplied by a constant is still a
solution. However, the amplitudes, and A, were deter-
mined in such a way that the WKB solutions can be com-
pared with the exact solution and with the solution of the
Weber equation without the need to multiply them by a con-
stant. This proves convenient when comparing individual
eigenfunctions. The complete normal mode solution of the
wave equation for this problem involves a sum over the
product of all eigenfunctions divided by the normalization
constant that removes any amplitude ambiguifigs The

set of equations must be solved simultaneously. We used th&KB normalization constant is derived later in this paper.
Newton-Raphson method in two dimensions to compute th&or even solutions the amplitudés, andA,, given by Egs.
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(25 and (22) are determined such tha(0)=1 andz’(0) o[ (v+1)2k2SiP 9+ u 12
=0, wherez can be eithe® or ®. For odd solutions, on the Jo= f 2 >
other hand, the initial conditions arg0)=0 and z’(0) 0 1-«“cosd
=1. Because the derivative of the solution is honzero at the -
initial point, Ay and A, must be multiplied by the scale 2K( 1) T2 ySimdta iﬁ—’_adﬁ
factorsdd/dx andd¢/dx, respectively. To see this, take, for V1+sirfd
example,®(9), which neard=0 reduces to the solution of
the Weber equationy(x). Then where

dO(d)| _dyoo| _dy| dx 2 2ax’_ ( « )2

~ = —=1. o= = s =| — .
do |,_, d¥ |, o dx | _,do KP(r+3)? k(v+3) K’

Sincedy/dx|,_g is chosen to be unity®(9) multiplied by  For small values ot this integral is approximated Hy]
dd/dx satisfies the above equation. The same is true for
®O(¢). dd/dx andde/dx may be obtained from Ed15).

As was pointed out before, we are particularly interested
in those solutions for which the turning points lie close to 0
or 7. In this case near 0 and the solution can be obtained —a In|a|+a+0(a?). (30
from the power series solution of the Weber equation given
by Egs.(18) and(19). For a given set of eigenvaluégu}, a  Similarly,
is determined from Eq10). Then the power series solution o
are obtained by choosing or ¢ as independent variables J,=2(v+3%)arctan——a In[8x«’ (v+3)]
and determining from Egs.(11) or (12), which is then used K
in Egs. (18) and (19). The results are shown in Fig. 2. By
only using a few terms, the power series solution overlays
the exact solution for§ and ¢ close to zero andr and By adding the eigenvalue equations for the Dirichlet bound-
smoothly connects with the WKB solution in each case. Ingry condition, Eq(27), and using Eq(28) we find
this way an excellent approximation to the exact solution can

be obtained for the entire interval between 0 and 1 D(a)
v=m+n+— 7 + — (32

K
Jyp=2(v+3)arctan—+a In[8x«k'(v+3)]
K

+a Inja]—a+0(a?). (31)

IV. SOLUTION FOR LARGE » AND SMALL u

i ) ) o For Neumann boundary condition we similarly find
It was pointed out earlier that the main contribution to the

scattering amplitude comes from those eigenfunctions that 3 D(a)

correspond to small values qf. It will be shown in this v=m+n+ 4 a7 (33
section that whem/»?<1, the expressions for the eigenval-

ues and the integrals appearing in the phases of the WKBYy subtracting the eigenvalue equations for the Dirichlet
solutions can be approximated by simple algebraic functiondhoundary condition and using Eq®0), (31), and (32) we

First, consider the integral find
2 3.2 2aIn(8 3,0@ 2 D(a)= 34
m+n+Z+T ——B|+2aln 8k’ m+n+ 7+ —— ¢o(a)+D(a)=|n m+ 7|7 (39
In the same way we find for the Neumann boundary condition
5 D(a) 5 D(a) 1
2 m+n+Z—T —B|+2aln|8kk’ m+n+Z—— —2¢,(a)—D(a)= n—m-|m. (35

In the above equations use has been made of the relatiodepend on the parametar This allows one to solve these

ships equations fom by performing a search in one dimensi@s
opposed to two dimensions when the equations depend on

arctanK—,= E arctaali: (Z_ E) as wel) and then use I_Eq$3_2) and(33) to_de_zterminev. The
k 2’ K’ 2 2/ eigenvalues obtained in this way are still in excellent agree-

ment with the exact eigenvalues. The phase of the WKB
Equations(34) and (35) have the advantage that they only solution for the® equation, Eq(4) is
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. 1/2
o (v+3)2k7SiIR O+ V. THE WKB NORMALIZATION
f(9)= Lt 1— k2co2d do+dy. In this section we derive an approximate formula for the

This can be written as

WKB normalization coefficient that is valid for small values
of u and large values of. The normalization coefficent for
the solution of the wave equation in the sphero-conal coor-

H{&=1(mi2) ~u(d), @8 Ginate system is given bi2]
where
- 2 (V+%)2K25inzﬁ+/‘l’ 12 N:fo fO |®Lamé(ﬁ)q)Lamé(§D)|20-dﬁd¢v (38
flz _Lt 1— k%co9 d+ 3y,
h
and where
w2 (v+ 3)2k%sSiP O+ u k’Sit O+ k'?sirfe
)= o= :
u(#) fﬁ 1— k?cogd V(11— k?coS9)(1— k'?coS )
+1 w2 \Sif9+ o 4o et us def
=kl v+ —d9, et us define
2] )y J1-«%cod
where XLarid ) =00 d D) and  Xiand @)=PLorid ),
0= L_ then by submitting these quantities in £§8), we find
K’(v+3)?
Using the WKB eigenvalue equations and the expressions N= J” {9) Ksir? 9 4o
for 6y and 6,, we find for both Dirichlet and Neumann o XLam [1— <2co2s

boundary conditions

Similarly the phase of

ag(e)

™ 1
Z)—%(n+%)w+%a). xfo XLam’e(‘P)md(p
thé equation can be written as N fWXLam'éQD)ﬂd(p
T
:g(E)_U(‘p). XJWX 'w);dﬂ (39
0 Lam m .

For the Dirichlet boundary condition we find

T\ mm The above integrals are of the general form
ol 5] =5
2 2
and for the Neumann boundary condition we find J Xtamd ®)v($)d,
T 1 1
9| 7| =3\ m+5]7-D(@). where ¢ can be either or ¢ and (¢) represents the other

In the aboveg(yp) is f(9) with « replaced byx’, u by —pu,

functions appearing in Eq.(39. Now let us write
JoXLamd 9) v(9)d D as

and 8, by &,. For smalle it may be shown thajt7]

1
V+§

u(9)=

+aln

| f a9 U 9)d D= f "Ltarid ) — xS 9) T 9)d 0
arcsif k cosd] 0 0

J1— k%cogd+ k' cosd

sind

+ f O’T XV 5) o 9)d 9, (40)

. @37

WKB

wherea= u/2k k' (v+3). A similar solution can be obtained where x ,-4(9) is the WKB solution of the Lamequation.

for u(e) by replacing«

with k" anda with —a. The first integral can be written as
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A
J  Dxwenef 9) — XWeef ) () d O

A o
- fo e )~ X"E(9) o 9)dd - fo Dwenel 9) — xUSE(9)Ju(9)dD

T—A 1)
+ JA [XLanid ) = X\ o2 9) Ju(9)d S - L [ Xwebek ®) = Xwotel 9 1(9)d 5.

i 9y JWKB For 9>A, xwebel ™) =xwite(®) and thus the second integral
+J ﬂuLam&ﬁ) Xiamd 9)]v(9)d9. in the above equation is zero and
Since ford close to 0 orrr the Lameequation reduces to the
Weber equationd is chosen to be small enough such that for
0<9<A and7—A<9<r, the solution of the Lamequation
can be represented by the solution of the Weber equation,
denoted byyweper, and the WKB solution of the Lamequa-
tion can be represented by the WKB solution of the Weber
equation, denoted bywate, and given by Eqs20) or 21).  Thus
In the regionA<9<m—A, both the solution of the Lame
equation and the solution of the Weber equation can be rep-
resented by their WKB solutions:

Xeamd 8) = X o 9),

Based on this argument the middle integral in the above
equation is zero and in the other integrgls, can be re-
placed byxweper resulting in

A
jo [ Xwebek &) — XwgbBe( 9)Ju(3)dd

= fow[XWebe( ) _Xwgk?e(ﬁ)]v( Ndd.

fowaamg 9)u(9)do

XWebet &) = xWSEeK 9). * WKB
= 0 [ Xwebek O) — XWebel( 9) Ju()dd

+ J:[XWeben(ﬂ,) _Xwgk?e(ﬁl)]v(ﬁ),dﬂ,
foﬁ[XLamg 9) —Xgﬁ%(ﬁ)]v( Fdd

+ f "B ) o(9)d . (41)
0

Note that in the first integral the functions in the square
brackets are valid nea?=0 and in the second integral they
are valid neary= . In the equation for the normalization we

A
= [ el 91~ R 910 9100

# 7 Drwened 9~ B9 T 91

either have
Substituting these in Eq40) we find o 8)= K*sin’ 9
V1— k’cosd
J;) XLam'e(ﬁ)U(ﬁ)d’& or
A WKB 1
= o [ Xwebek ) — Xwebel 9 Jv(9)d I )= ———.
J1— k%cogd
+f _A[XWebel(ﬁ)—Xwgl?e.(ﬂ)]v(ﬁ)dﬁ In the first case we have
T KB ™ K2Sintd
+f0 XLamd ) v(3)d . Jo XLaméﬁ)mdﬂ

_fx[ (9)- WKB 9] P 4o
=, Xwebe Xwebek \/m

In the second integral in the above equationdét 7— 9, so

i _ . WKB
fﬁA[XwebEW) i +fw ') — yWKB (g7 Ksir?(9") do’
A WKE " [XWebel( XWebe|( ]m
:f [Xwebek ") — Xwebel ") J(¥")d 9.
° K?Sirt 9

+ f WX\If\zI;\I:n%( V) ———=
0 J1—k%cogd

) dd.
Next, let us write
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There is negligible contribution from the first two integrals  TABLE I. Comparison between the exact and WKB normaliza-
on the right hand side because for small valuestpgind  tion coefficients.
~0 and for large values of), xwebel®) = Xtibel®D).

Therefore, we find (n,m) Qexact awks Nexact Nwks
- 1,0 0.465 255 0.324 84 3.8244 3.3266
f ” {9) Ksir? 9 49 2,0 —-0.452788 —0.348 023 2.9522 3.0724
Xiam J1— «%codd 2,2 0.530 210 0.504 450 5.0025 4.8042
(3,0 —-0.549215 —0.537476 8.4871 8.7563
(7 wke K*sir? 9 (3,2 0.057476  0.055 747 1.3784 1.3586
- f Xiame mdﬂ' (3,3 0.617 823 0.611585  19.0350  18.5510
4,1 ~0.652852 —0.651458  41.9459  41.1747
In the second case (4,2 —0.126 564 —0.124 423 1.4276 1.4592
4,3 0.204 048 0.201 308 2.2521 2.2066
w 1 (4,9 0.691 944 0.694140  98.7856  93.2777
f . Xtamd ) mdﬁ (5, —-0.720185 —0.725213 229.3953 211.8818
(5,2 —-0.251494 —0.244911 3.7883 3.8674
(5,3 0.029 370 0.029 055 0.8805 0.8758
f [Xwebel ®) — Xwepek )] ——5=d (5.4 0.309 851 0.308 281 7.8471 7.7465
V1-«?cos'd (5,5 0.745 515 0.752932 539.3419  480.6180
* WKB 1
+f [XWebe(ﬂ,)_XWebel(ﬁ,)] dd’
0 J1—k%cody’ ™ 1
et Jy ok =gy
0 XLamdl J1-«2co2d €9t el jw e, o) 1 io
Here again there is negligible contribution from the first two K’ NLame V1-«k*cosd

integrals for large values of since ywepel ¥) = Xiief D).

For small valuers of% Following a similar procedure using integrals involving the

variable ¢ and substituting in Eq(38) yields

1 1 2 WKB
T 7 k2SI D) X e D)
A _ 2 1’ N= do
1—«k C05219 K 0 \/m—
and thus we have , WKB
X|C, S0 < + " Xiamd #)
J’W (9) 1 do K 0 V1—«k'%cose
XLam' —2
0 V1—k COSZI’} - KIZSInZ((P)X\li\Qr(nBe(QD)
L - "o T i rtc0ge ¢
= | Dxwene )= X 910 »
6194‘61’3 4 XLamé( )
x| Cyg + do|, (42
1 (= ) , , K’ 0 J1—«?cosd
+ = | Drwenel )~ 971109
K where
+fﬂ By );dﬁ - WKB
0 XLame V1— k2co2 9 . €o= JO [ Xwebek ©) — Xwebel ¢) 1d e,
Let us define and
= N — yWKB ! * ' ' ’
0= | Drwooel 9) - X910, 1= [ Trasl )~ 242 e

and andC, andC,, are proportionality constants given by

5= fo [ Xwebed ")~ Xwebel )19, f Yiamd 9)2d0=C, f Vel X)X, (43)

then and
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) ) accurate, and smalt, where the approximation leading to
f Yramd @) de=C, j Pivenel X)AX. (44)  Eq. (45) is valid, Nyyg matchesNg,,qVery closely.

Expressions foCy andC, are derived in the Appendix. The

evaluation of the integrals appearing in the expressions for APPENDIX: THE DERIVATION OF Cy andC,,

€'s is quite lengthy. In this paper we only report the results. ,

The interested reader may refer to REf] for a detailed We use the fact that for small angles the leaand the

derivation. We find the WKB normalization coefficient Weber equations have the same solution up to a multiplica-
tive constant. First, note that the WKB solution of the Weber

equation using the amplitude factors in EG&) and(21) in

A2A27 (1 1 Eqg. (17) is given by
N= u —|n[8KK’ v+ = ]
2(v+3)%kk’ 2 2
Pebel) ﬁ(“”z(_a) -

1 1 arcsink WebekX) =

_z i Ehahkkioll n(—a) AUx%+4a
2Re{¢ 2+|a ie”a+e*”a' (45)

X
2
where ¢ is the digamma function defined by(z) = fo X“+4a

dI'(z)/dz In the above equation the plus sign is used for the X co 2 dx
Dirichlet boundary condition and the minus sign is used for

the Neumann boundary condition. Table | shows a compari-

son between the exact and the WKB normalization coeffi-Then

cients for a 90° PAS subject to Dirichlet boundary condition.

In Table |

[ 21+’72(_a)f .

X X=
Webe n(-a) J [x’+4a
Mexact MWKB

RN AWKB= 7 1.5, 1 X
(Vexact™ %)ZKZ (vwks+ %)ZKZ X COSZ< > f \/x2+4adx) dx. (A1)
0

andn andm are defined in Eq(27). As can be seen from
Table |, for large values ofi, where the WKB solution is On the other hand we have

Aexact™

o] (v+2)2k%siP 9+ 1z
cog f 5 do
0 1— k’cosd

f apfamé(a)dﬂ:Agf do.
\/(V+§)2K2s,in2ﬁ+ﬂ

The arguments of the cosines in the above two equations a@omparing Eqs(Al) and (A2) with Eq. (43) yields
the same according to Eqll). For small 9, we replace
siny by 9 and use

ﬂ—(Kr)l/Z X . A% 7](—a)
“\s T 9= 2 ,
2K V(v+1) 2k(v+3) 1t 7°(-a)
to get
— ! 1 [ .
J' lﬂﬁam'e(ﬁ)dﬁ wherea= u/2xk’(v+3). In a similar manner we find

AZ 1 1 (x
= e f \/mcosz(i fo \/x2+4adx)dx.

c AZ n(a)
(A2) ? ok (vt+d) 1t ni(a)
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