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WKB solution of the wave equation for a plane angular sector

Ahmad T. Abawi* and Roger F. Dashen
Physics Department, University of California, San Diego, La Jolla, California 92093

~Received 31 December 1997; revised manuscript received 10 March 1998

The two angular Lame´ differential equations that satisfy boundary conditions on a plane angular sector
~PAS! are solved by the Wentzel-Kramers-Brillouin~WKB! method. The WKB phase constants are derived by
matching the WKB solution with the asymptotic solution of the Weber equation. The WKB eigenvalues and
eigenfunctions show excellent agreement with the exact eigenvalues and eigenfunctions. It is shown that those
WKB eigenvalues and eigenfunctions that contribute substantially to the scattering amplitude from a PAS can
be computed in a rather simple way. An approximate formula for the WKB normalization constant, which is
consistent with the WKB assumptions, is derived and compared with the exact normalization constant.
@S1063-651X~98!00507-8#
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I. INTRODUCTION

In a previous paper@1#, formulas for the Wentzel-
Kramers-Brillouin ~WKB! eigenvalues satisfying Dirichle
or Neumann boundary condition on a plane angular se
~PAS! were reported and the WKB eigenvalues,$n,m%, were
compared with the exact eigenvalues for PAS’s of differ
corner angles~60°, 90°, and 120°!. A historical review of the
solution of the wave equation for a PAS was also given
the above paper. It suffices to say that, to our knowledge
approximate solution of this problem has been reported
the literature.

In this paper, the two coupled Lame´ equations are solved
by the WKB method. The WKB analysis in this paper
valid for large values ofn. Depending on the sign ofm, one
of the two Lame´ equations has turning points. Whenumu is
small the turning points occur where the angles are smal
this region it proves more accurate to obtain the WKB ph
constants by matching it with the asymptotic solution of t
Weber equation. For large values ofumu, it is shown that this
phase constant reduces to the phase constant obtained
the solution is matched with the asymptotic solution of t
Airy’s equation as is commonly done in quantum mechan

This paper is organized in the following way: In the se
ond section the WKB solution is formulated and the WK
phase constants are derived. In the third section formulas
the WKB eigenvalues for Dirichlet and Neumann bounda
conditions are derived and a comparison between the W
and exact eigenfunctions is presented. The fourth sec
contains a derivation of approximate WKB solutions whi
are valid for small values ofm/n. Finally, an approximate
formula for the WKB normalization constant consistent w
WKB assumptions is derived in section five.

II. THE GENERAL SOLUTION

The angular part of the wave equation in the sphero-co
coordinate system are expressed by the two angular L´
differential equations@2,1#:

*Present address: Propagation Division, SPAWAR Systems C
ter, D881, 53560 Hull Street, San Diego, CA 92152-500l.
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A12k2cos2q
d

dqFA12k2cos2q
d

dq
Q~q!G

1@n~n11!k2sin2q1m#Q~q!50 ~1!

and

A12k82cos2w
d

dwFA12k82cos2w
d

dw
F~w!G

1@n~n11!k82sin2w2m#F~w!50, ~2!

where the sphero-conal coordinate system variablesq andw
are related to the Cartesian coordinate variables,x, y, andz
by

x5r cosqA12k82cos2w,

y5r sin q sin w, ~3!

z5r coswA12k2cos2q,

where

k5cosS b

2 D ,

b is the corner angle andk85A12k2. The range of the
variables is

0<q<p, 0<w<2p, r>0.

The geometry of the sphero-conal coordinate system
shown in Fig. 1. The construction of this coordinate syst
is described, and its orthogonality proved, in@2#. The WKB
solution of Eqs.~1! and ~2! are respectively given by@1#

n-
1051 © 1998 The American Physical Society
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Q~q!5
1

A4 ~n1 1
2 !2k2sin2q1m

3cosH E
q t

qS ~n1 1
2 !2k2sin2q1m

12k2cos2q
D 1/2

dq1dqJ ,

~4!

and

F~w!5
1

A4 ~n1 1
2 !2k82sin2w2m

3cosH E
w t

wS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw1dwJ .

~5!

Notice that theF solution can be obtained from theQ solu-
tion by replacingq with w, m with 2m, andk with k8. This
is also evident in the differential equations, Eqs.~1! and~2!.
For m.0, the turning point for theQ equation,q t50, and
the turning point for theF equation isw t5f t(n,2m,k8).
For m,0, w t50 andq t5f t(n,m,k), where

f t~n,m,k!5arcsinS 2m

k2~n1 1
2 !2D 1/2

.

The above solutions are valid forp2q t.q.q t and p
2w t.w.w t . For the regionsq t.q.p2q t and w t.w
.p2w t the solutions are given by

Q~q!5
1

A4 umu2~n1 1
2 !2k2sin2q

3expH 2E
0

qS umu2~n1 1
2 !2k2sin2q

12k2cos2q
D 1/2

dqJ ,

m,0. ~6!

FIG. 1. The geometry of the sphero-conal coordinate systemr
is the distance from the origin to the pointp.
A similar solution for theF equation which is valid form.0
can be obtained from the above equation by replacingumu, k,
andq with m, k8, andw, respectively. The solutions given by
Eqs. ~4! and ~6! are separated by the turning points where
they are both singular. To match these solutions at the turn
ing points, the Lame´ equation is approximated by another
differential equation at the turning point and then the
asymptotic solution of this differential equation is matched
with the WKB solution of the Lame´ equation. By this pro-
cess the phase constantsdq anddw are obtained.

Although the WKB solutions obtained in this paper are
general, we are particulary interested in those solutions tha
correspond to the small absolute values of the eigenvaluem.
The reason for this is that the expression for the scatterin
amplitude for a PAS, derived in a separate paper@3#, con-
tains either the eigenfunctions or their derivatives evaluate
at the surface of the PAS or its edges. Observe that the su
face of the PAS in the sphero-conal coordinate system i
q5p and its edges arew50 and w5p. Since the WKB
eigenfunctions are decaying exponentials to the left of th
turning point near zero and to the right of the turning point
nearp, significant contribution to the solution comes from
those eigenfunctions that have a turning point near the su
face or near the edges. They correspond to eigenfunction
with small absolute values of the eigenvaluem.

To derive a differential equation that approximates the
Lamé equation at the turning points, we use the following
transformation:

y~q!5A4 12k2cos2~q!Q~q!.

For n@m@1 this transformation converts Eq.~1! to
d2

dq2y~q!1p~q!y~q!50, ~7!

with

p~q!5
~n1 1

2 !2k2sin2q1m

~12k2cos2q!
.

By using the Liouville transformation@4#

y~x!5S dx

dq D 1/2

y~q!,

Eq. ~7! can be transformed to

d2y

dx2 5H 2S dq

dx D 2

p~q!1S dq

dx D 1/2 d2

dx2F S dq

dx D 21/2G J y.

The first term in the curly brackets can be set equal to an
smooth function ofx @4#, and for smallm/n the second term
can be ignored. Near the turning points~q!1! we set

S dq

dx D 2

p~q!5S x2

4
1aD , ~8!

resulting in

d2y

dx2 1S x2

4
6aD y50, ~9!

.
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which is the Weber equation. In the above equation the p
sign is applicable to theQ equation and the minus sign
applicable to theF equation. The parametera is determined
from Eq.~8! by requiring that the turning points of the Lam´
equation and the Weber equation occur at the same t
thus ensuring the regularity ofdq/dx at the turning points:

E
0

q tS ~n1 1
2 !2k2sin2q1m

12k2cos2q
D 1/2

dq5E
0

2A2aS x2

4
1aD 1/2

dx.

~10!

A similar equation is obtained for theF equation by replac-
ing q t by w t , k by k8, m by 2m, anda by 2a. Oncea is
determined from the above equation,q andw can be related
to x by

E
0

q tS ~n1 1
2 !2k2sin2q1m

12k2cos2q
D 1/2

dq5E
0

xS x2

4
1aD 1/2

dx.

~11!

and

E
w t

wS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw5E
2Aa

x S x2

4
2aD 1/2

dx.

~12!

a is found to be

a5
2

pH ~n1 1
2 !2k822m

k8A~n1 1
2 !2k21m

3FPS p

2
,

m

~n1 1
2 !2k82

,eD 2K~e!G J , ~13!

where

e5
1

k8S m

~n1 1
2 !2k21m D 1/2

, m.0,

andP is the elliptic integral of the third kind. Form,0 a can
be obtained from the above equation by replacingm by umu
and interchangingk8 andk. Equation~13! has a power serie
expansion given by

a5
1

2kk8
x1

k22k82

16k3k83~n1 1
2 !

x2

1
328k2k82

128k5k85~n1 1
2 !2

x31O~x4!,

where

x5
m

n1 1
2

.

If only the first term in the above expansion is retained,
s

e,

a5
m

2kk8~n1 1
2 !

. ~14!

If this value of a is used in Eqs.~11! and ~12!, near the
turning points~small q and w! the above equations respe
tively yield

x5A2k/k8A~n1 1
2 !q, x5A2k8/kA~n1 1

2 !w. ~15!

Equation ~9! is the desired differential equation. Th
asymptotic solution of this equation will be used to det
mine dq anddw .

A. The WKB phase constantsdq and dw

The Weber equation

d2y

dx2 1S x2

4
2aD y50 ~16!

has solutions@5#

W~a,6x!5223/4~AG1 /G3ye7A2G3 /G1yo!, ~17!

where

ye~x,a!511a
x2

2!
1S a22

1

2D x4

4!

1S a32
7

2
aD x6

6!
1•••, ~18!

yo~x,a!5x1a
x3

3!
1S a22

3

2D x5

5!

1S a32
13

2
aD x7

7!
1•••, ~19!

and

G1~a!5uG~ 1
4 1 1

2 ia !u,

G3~a!5uG~ 3
4 1 1

2 ia !u.

For x@uau the Weber equation has asymptotic solutions@5#

W~a,x!5S 2h~a!

x D 1/2

cosH 1

4
x22a ln x1

p

4
1

1

2
f2~a!J

and

W~a,2x!5S 2

h~a!xD 1/2

sinH 1

4
x22a ln x1

p

4
1

1

2
f2~a!J ,

where

h~a!5A11e2pa2epa, f2~a!5argG@ 1
2 1 ia#.

From these two solutions we construct an even solution
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ỹe~x,a!5A4 2S G3~a!

G1~a! D
1/2S 11h2~a!

h~a! D 1/2S 1

xD 1/2

3cosH x2

4
2a ln x1

p

4
1

1

2
f2~a!2g~a!J ,

~20!

and an odd solution

ỹo~x,a!52A4 2S G1~a!

2G3~a! D
1/2S 11h2~a!

h~a! D 1/2S 1

xD 1/2

3cosH x2

4
2a ln x1

p

4
1

1

2
f2~a!1g~a!J ,

~21!

where

tang~a!5
1

h~a!
5A11e2pa1epa.

In the region wherew is small so that the Lame´ equation can
be approximated by the Weber equation, yetn is large so that
the WKB solution for the Lame´ equation is valid, and

x5S 2k8

k D 1/2S n1
1

2D 1/2

w@uau,

both Eq.~5! and Eqs.~20! or ~21! are solutions of the sam
differential equation. The phase constantdw can therefore be
determined by matching the phases of the two solutions.
pending on the prescribed boundary conditions, eitherỹe or
ỹo will be employed to obtain these phase constants. F
consider the even solution for theF equation. From Eq.~12!
we have

I w5E
w t

wS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw

5
1

2E2Aa

x
Ax224a dx

5
x

4
Ax224a2a ln@x1Ax224a#1a ln@2Aa#.

Expanding the last expression in powers ofa and keeping
only terms of first order gives

I w5
x2

4
2a ln x1

a

2
lnuau2

a

2
.

The WKB solution, Eq.~5!, thus becomes

F~x!5
AwA4 2

A4 ~n1 1
2 ! kk8Ax

3cosH x2

4
2a lnx1

a

2
lnuau2

a

2
1dwJ .
e-

st

Comparing the phase and amplitude of this equation w
that of ỹe(x,a) we find

dw5
p

4
1

1

2
f2~a!2g~a!2

a

2
lnuau1

a

2

and

Aw5A4 kk8~n1 1
2 !S G3~a!

G1~a! D
1/2S 11h2~a!

h~a! D 1/2

. ~22!

It can be shown that

2g~a!2
3

4
p5arctanF tanhS pa

2 D G[D~a!52D~2a!.

In terms of this new quantity we have

dw52
p

8
1

1

2
f2~a!2

1

2
D~a!2

a

2
lnuau1

a

2
. ~23!

The phase constant for the odd solution is obtained by c
paring I w with the phase of Eq.~21!. It is

dw85
5p

8
1

1

2
f2~a!1

1

2
D~a!2

a

2
lnuau1

a

2
.

A similar analysis gives

dq52
p

8
1

1

2
f2~2a!1

1

2
D~a!1

a

2
lnuau2

a

2
~24!

and

Aq5A4 ~n1 1
2 !kk8S G3~2a!

G1~2a! D
1/2S 11h2~2a!

h~2a! D 1/2

.

~25!

And for the odd solution we find

dq8 5
5p

8
1

1

2
f2~2a!2

1

2
D~a!1

a

2
lnuau2

a

2
.

For m , 0 the role of theF and theQ equations are inter-
changed. In other words, in this case theQ equation is the
one with the turning points. However, the expressions
tained for the phase constants still remain valid. In summ
we have

dw52
p

8
1

1

2
f2~a!2

1

2
D~a!2

a

2
lnuau1

a

2
,

dq52
p

8
2

1

2
f2~a!1

1

2
D~a!1

a

2
lnuau2

a

2
,

dw85
5p

8
1

1

2
f2~a!1

1

2
D~a!2

a

2
lnuau1

a

2
,

dq8 5
5p

8
2

1

2
f2~a!2

1

2
D~a!1

a

2
lnuau2

a

2
.
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The above phase constants were derived for small value
a when the turning points lie close to 0 orp. For large
positive values ofa, D(a)→p/4 andf2(a)→a lnuau2a. In
this limit dw52p/4, dw853p/2, dq50, anddq8 5p/2. For
large negative values ofa, D(a)→2p/4 and f2(a)→
2uau lnuau1uau. In this limit dw50 dw85p/2, dq52p/4, and
dq8 53p/2. These are the phase constants that would h
been obtained had the problem been treated by the reg
WKB method often employed in solving the Schro¨dinger
equation in quantum mechanics. In solving the Schro¨dinger
equation by the WKB method, the phase constants are
tained by matching the phase of the WKB solution with t
phase of the asymptotic solution of the Airy’s equation.

III. THE WKB SOLUTIONS

By determining the phase terms,dq , dw , dq8 , and dw8
we now have the complete WKB solutions of theQ and the
F equations. In this section we derive the WKB eigenva
of

ve
lar

b-

e

equations by applying the boundary conditions and impos
the requirement that the solutions for~q;w! . (q t ;w t) and
those for~q;w! , (p2q t ;p2w t) join each other smoothly
in their common region of validity. This results in relation
ships for the WKB eigenvalues. Both Dirichlet and Neuma
boundary conditions will be considered.

A. Dirichlet boundary condition

For the Dirichlet boundary condition we have@1#

F8~0!50, Q8~0!50,

F8~p!50, Q~p!50.

That is, theF solution must be even at bothw50 andw5p,
where theQ solution must be even atq50 and odd atq5p.
The WKB solution of theF equation valid in the regionw
.w t is
F,~w!5Awh~w!cosH E
w t

wS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw1dwJ , w.w t ,

where

h~w![
1

A4 ~n1 1
2 !2k82sin2w2m

.

Since for the Dirichlet boundary conditionF~w! is even at bothw50 andw5p, the WKB solution forw,p2w t is given by

F.~w!5Aw8h~w!cosH E
w

p2w tS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw1dwJ , w,p2w t .
The two solutions,F,(w) andF.(w), must join smoothly
in the regionw t,w,p2w t . Let us define

Jw[E
w t

p2w tS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw

52E
w t

p/2S ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw, ~26!

and

b[E
w

p2w tS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw1dw ,

then
E
w t

wS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw

5E
w t

p2w tS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw

2E
w

p2w tS ~n1 1
2 !2k82sin2w2m

12k82cos2w
D 1/2

dw

5Jw2b1dw .

In terms of these quantities we have

F,~w!5Awh~w!cos$Jw2b12dw%

and

F.~w!5Aw8h~w!cosb.

EquatingF, andF. gives
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Aw$cos$Jw12dw%cosb1sin$Jw12dw%sin b%5Aw8cosb.

The solution to this equation, which givesAw8 , constant and
independent of the parameterb, is obtained by setting

Jw12dw5mp, m50,1, . . . .
t o

s

Substituting fordw , we find

Jw1f2~a!2D~a!2a lnuau1a5~m1 1
4 !p, m50,1, . . . .

For Dirichlet boundary conditionQ~q! is even aroundq50
and odd aroundq5p. Then
Q,~q!5Aqh~q!cosH E
q t

qS ~n1 1
2 !2k2sin2q1m

12k2cos2q
D 1/2

dq1dqJ , q.0,

whereh~q! is h~w! with the appropriate change of variables. The solution forq.p1q t is

Q.~q!5Aq8 h~q!cosH E
p1q t

q S ~n1 1
2 !2k2sin2q1m

12k2cos2q
D 1/2

dq1dq8 J , q.p1q t .

Since this solution is odd with respect toq5p, the solution forq,p2q t is given by

Q.~q!52Aq8 h~q!cosH E
q

p2q tS ~n1 1
2 !2k2sin2q1m

12k2cos2q
D 1/2

dq1dq8 J , q,p2q t .
ty
Requiring thatQ,(q) andQ.(q) join each other smoothly
results in

Jq1dq1dq8 5np, n51,2, . . . .

Note that the reasonn starts from 1 is to guarantee that

np2dq2dq8 .0,

sinceJq is positive. Substituting fordq anddq8 we find

Jq1f2~2a!1a lnuau2a5~n1 1
2 !p, n50,1, . . . .

For Dirichlet boundary condition we therefore have the se
eigenvalue equations

Jw1f2~a!2D~a!2a lnuau1a5~m1 1
4 !p, m50,1, . . . ,

Jq1f2~2a!1a lnuau2a5~n1 1
2 !p, n50,1, . . . .

~27!

The integrals defined byJq andJw can be expressed in term
of elliptic integrals@6#

Jq5
2m

k8A~n1 1
2!

2k21m
H PS p

2
,

~n1 1
2!

2k2

~n1 1
2!

2k21m
,r 1D J ,

and

Jw5
2m

k8A~n1 1
2!

2k21m

3H PS p

2
,
~n1 1

2!
2k822m

~n1 1
2!

2k82
,r 1D 2K~r 1!J
f

for m.0 and

Jq5
22m

kA~n1 1
2!

2k822m

3H PS p

2
,
~n1 1

2!
2k21m

~n1 1
2!

2k2
,r 2D 2K~r 2!J ,

and

Jw5
22m

kA~n1 1
2!

2k822m
H PS p

2
,

~n1 1
2!

2k82

~n1 1
2!

2k822m
,r 2D J

for m , 0. In the above

r 15
k

k8
S ~n1 1

2!
2k822m

~n1 1
2!

2k21m
D 1/2

,

r 25
k8

k S ~n1 1
2!

2k22m

~n1 1
2!

2k821m
D 1/2

,

P is the elliptic integral of the third kind, andK is the elliptic
integral of the first kind. We also have the following identi
for Jq andJw :

Jq1Jw5~n1 1
2 !p. ~28!
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FIG. 2. The top two panels show theQ and theF eigenfunctions for the exact~solid lines!, the WKB ~dashed lines! and the power series
solution to the Weber equation~dotted lines! of the Laméequations, subject to Dirichlet boundary condition. The corresponding e
eigenvalues are~n,m!5~6.282 285,0.442 731!, and the corresponding WKB eigenvalues are~n,m!5~6.282 324,0.441 515!. The bottom two
panels show the same eigenfunctions for Neumann boundary condition with exact eigenvalues~n,m!5~6.792 665,20.632 047! and WKB
eigenvalues~n,m!5~6.792 723,20.630 761!. Note how the power series solutions overlay the exact solutions forq andw close to zero and
p and connect smoothly with the WKB solutions.
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B. Neumann boundary condition

For the Neumann boundary condition we have

F~0!50, Q~0!50,

F~p!50, Q8~p!50.

The F solution is thus odd with respect tow50 andw5p
where theQ solution is odd with respect toq50 and even
with respect toq5p. A similar approach yields the eigen
value equations:

Jw1f2~a!1D~a!2a lnuau1a5~m1 3
4 !p, m50,1, . . .

Jq1f2~2a!1a lnuau2a5~n1 1
2 !p, n50,1, . . . .

~29!

Note that Eqs.~27! and ~29! are two parameter eigenvalu
equations. This means that for a given value ofn andm each
set of equations must be solved simultaneously. We used
Newton-Raphson method in two dimensions to compute
he
e

eigenvalues,n andm for each boundary condition. The WKB
eigenvalues agree remarkably well with the exact eigen
ues@1#.

C. The WKB eigenfunctions

Once the eigenvalues are computed, the WKB eigenfu
tions can be obtained from Eqs.~4! and~5!. It is obvious that
either of these solutions multiplied by a constant is stil
solution. However, the amplitudesAq and Aw were deter-
mined in such a way that the WKB solutions can be co
pared with the exact solution and with the solution of t
Weber equation without the need to multiply them by a co
stant. This proves convenient when comparing individ
eigenfunctions. The complete normal mode solution of
wave equation for this problem involves a sum over t
product of all eigenfunctions divided by the normalizatio
constant that removes any amplitude ambiguities@3#. The
WKB normalization constant is derived later in this pap
For even solutions the amplitudesAq andAw given by Eqs.
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~25! and ~22! are determined such thatz(0)51 andz8(0)
50, wherez can be eitherQ or F. For odd solutions, on the
other hand, the initial conditions arez(0)50 and z8(0)
51. Because the derivative of the solution is nonzero at
initial point, Aq and Aw must be multiplied by the scal
factorsdq/dx anddw/dx, respectively. To see this, take, fo
example,Q~q!, which nearq50 reduces to the solution o
the Weber equation,y(x). Then

dQ~q!

dq U
q50

;
dy~x!

dq U
q50

5
dy~x!

dx U
x50

dx

dq
51.

Sincedy/dxux50 is chosen to be unity,Q~q! multiplied by
dq/dx satisfies the above equation. The same is true
F~w!. dq/dx anddw/dx may be obtained from Eq.~15!.

As was pointed out before, we are particularly interes
in those solutions for which the turning points lie close to
or p. In this case near 0 andp the solution can be obtaine
from the power series solution of the Weber equation giv
by Eqs.~18! and~19!. For a given set of eigenvalues$n,m%, a
is determined from Eq.~10!. Then the power series solutio
are obtained by choosingq or w as independent variable
and determiningx from Eqs.~11! or ~12!, which is then used
in Eqs. ~18! and ~19!. The results are shown in Fig. 2. B
only using a few terms, the power series solution overl
the exact solution forq and w close to zero andp and
smoothly connects with the WKB solution in each case.
this way an excellent approximation to the exact solution
be obtained for the entire interval between 0 andp.

IV. SOLUTION FOR LARGE n AND SMALL m

It was pointed out earlier that the main contribution to t
scattering amplitude comes from those eigenfunctions
correspond to small values ofm. It will be shown in this
section that whenm/n2!1, the expressions for the eigenva
ues and the integrals appearing in the phases of the W
solutions can be approximated by simple algebraic functio
First, consider the integral
tio

ly
e

r

d

n

s

n
n

at

B
s.

Jq5E
0

pS ~n1 1
2!

2k2sin2q1m

12k2cosq
D 1/2

5
2k

k8 S n1
1

2D E
0

p/2 Asin2q1a

A11z sin2q
dq,

where

a5
m

k2~n1 1
2!

2
5

2ak8

k~n1 1
2!

, z5S k

k8
D 2

.

For small values ofa this integral is approximated by@7#

Jq52~n1 1
2 !arctan

k

k8
1a ln@8kk8~n1 1

2 !#

2a lnuau1a1O~a2!. ~30!

Similarly,

Jw52~n1 1
2 !arctan

k8

k
2a ln@8kk8~n1 1

2 !#

1a lnuau2a1O~a2!. ~31!

By adding the eigenvalue equations for the Dirichlet boun
ary condition, Eq.~27!, and using Eq.~28! we find

n5m1n1
1

4
1

D~a!

p
. ~32!

For Neumann boundary condition we similarly find

n5m1n1
3

4
2

D~a!

p
. ~33!

By subtracting the eigenvalue equations for the Dirich
boundary condition and using Eqs.~30!, ~31!, and ~32! we
find
2S m1n1
3

4
1

D~a!

p D S p

2
2b D12a lnF8kk8S m1n1

3

4
1

D~a!

p D G22f2~a!1D~a!5S n2m1
1

4Dp. ~34!

In the same way we find for the Neumann boundary condition

2S m1n1
5

4
2

D~a!

p D S p

2
2b D12a lnF8kk8S m1n1

5

4
2

D~a!

p D G22f2~a!2D~a!5S n2m2
1

4Dp. ~35!
e

on

ee-
KB
In the above equations use has been made of the rela
ships

arctan
k8

k
5

b

2
, arctan

k

k8
5S p

2
2

b

2 D .

Equations~34! and ~35! have the advantage that they on
n-depend on the parametera. This allows one to solve thes
equations fora by performing a search in one dimension~as
opposed to two dimensions when the equations dependn
as well! and then use Eqs.~32! and~33! to determinen. The
eigenvalues obtained in this way are still in excellent agr
ment with the exact eigenvalues. The phase of the W
solution for theQ equation, Eq.~4! is
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f ~q!5E
q t

qS ~n1 1
2!

2k2sin2q1m

12k2cos2q
D 1/2

dq1dq .

This can be written as
f~q!5f~p/2!2u~q!, ~36!

where

f S p

2 D5E
q t

p/2S ~n1 1
2!

2k2sin2q1m

12k2cos2q
D 1/2

dq1dq ,

and

u~q!5E
q

p/2S ~n1 1
2!

2k2sin2q1m

12k2cos2q
D dq

5kS n1
1

2D E
q

p/2 Asin2q1v

A12k2cos2q
dq,

where

v5
m

k2~n1 1
2!

2
.

Using the WKB eigenvalue equations and the express
for dq and dw , we find for both Dirichlet and Neuman
boundary conditions

f S p

2 D5
1

2S n1
1

4Dp1
D~a!

2
.

Similarly the phase of theF equation can be written as

g~w!5gS p

2 D2u~w!.

For the Dirichlet boundary condition we find

gS p

2 D 5
mp

2
,

and for the Neumann boundary condition we find

gS p

2 D5
1

2S m1
1

2Dp2D~a!.

In the aboveg~w! is f ~q! with k replaced byk8, m by 2m,
anddq by dw . For smallv it may be shown that@7#

u~q!5S n1
1

2Darcsin@k cosq#

1a lnU A12k2cos2q1k8cosq

sinq
U, ~37!

wherea5m/2kk8(n1 1
2). A similar solution can be obtaine

for u~w! by replacingk with k8 anda with 2a.
ns

V. THE WKB NORMALIZATION

In this section we derive an approximate formula for t
WKB normalization coefficient that is valid for small value
of m and large values ofn. The normalization coefficent fo
the solution of the wave equation in the sphero-conal co
dinate system is given by@2#

N5E
0

pE
0

p

uQLamé~q!FLamé~w!u2sdq dw, ~38!

where

s5
k2sin2q1k82sin2w

A~12k2cos2q!~12k82cos2w!
.

Let us define

xLamé~q![QLamé
2 ~q! and xLamé~w![FLamé

2 ~w!,

then by submitting these quantities in Eq.~38!, we find

N5E
0

p

xLamé~q!
k2sin2q

A12k2cos2q
dq

3E
0

p

xLamé~w!
1

A12k82cos2w
dw

1E
0

p

xLamé~w!
k82sin2w

A12k82cos2w
dw

3E
0

p

xLamé~q!
1

A12k2cos2q
dq. ~39!

The above integrals are of the general form

E xLamé~f!y~f!df,

wheref can be eitherq or w andy~f! represents the othe
functions appearing in Eq.~39!. Now let us write
*0

pxLamé(q)y(q)dq as

E
0

p

xLamé~q!y~q!dq5E
0

p

@xLamé~q!2xLamé
WKB~q!#y~q!dq

1E
0

p

xLamé
WKB~q!y~q!dq, ~40!

wherexLamé
WKB~q! is the WKB solution of the Lame´ equation.

The first integral can be written as
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E
0

p

@xLamé~q!2xLamé
WKB~q!#y~q!dq

5E
0

D

@xLamé~q!2xLamé
WKB~q!#y~q!dq

1E
D

p2D

@xLamé~q!2xLamé
WKB~q!#y~q!dq

1E
p2D

p

@xLamé~q!2xLamé
WKB~q!#y~q!dq.

Since forq close to 0 orp the Laméequation reduces to th
Weber equation,D is chosen to be small enough such that
0,q,D andp2D,q,p, the solution of the Lame´ equation
can be represented by the solution of the Weber equa
denoted byxWeber, and the WKB solution of the Lame´ equa-
tion can be represented by the WKB solution of the We
equation, denoted byxWeber

WKB , and given by Eqs.~20! or ~21!.
In the regionD,q,p2D, both the solution of the Lame´
equation and the solution of the Weber equation can be
resented by their WKB solutions:

xLamé~q!5xLamé
WKB~q!, xWeber~q!5xWeber

WKB ~q!.

Based on this argument the middle integral in the ab
equation is zero and in the other integralsxLaḿe can be re-
placed byxWeber, resulting in

E
0

p

@xLamé~q!2xLamé
WKB~q!#y~q!dq

5E
0

D

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

1E
p2D

p

@xWeber~q!2xWeber
WKB ~q!#y~q!dq.

Substituting these in Eq.~40! we find

E
0

p

xLamé~q!y~q!dq

5E
0

D

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

1E
p2D

p

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

1E
0

p

xLamé
WKB~q!y~q!dq.

In the second integral in the above equation letq85p2q, so

E
p2D

p

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

5E
0

D

@xWeber~q8!2xWeber
WKB ~q8!#y~q8!dq8.

Next, let us write
r

n,

r

p-

e

E
0

D

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

5E
0

`

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

2E
D

`

@xWeber~q!2xWeber
WKB ~q!#y~q!dq.

For q.D, xWeber~q!5xWeber
WKB ~q! and thus the second integra

in the above equation is zero and

E
0

D

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

5E
0

`

@xWeber~q!2xWeber
WKB ~q!#y~q!dq.

Thus

E
0

p

xLamé~q!y~q!dq

5E
0

`

@xWeber~q!2xWeber
WKB ~q!#y~q!dq

1E
0

`

@xWeber~q8!2xWeber
WKB ~q8!#y~q!8dq8

1E
0

p

xLamé
WKB~q!y~q!dq. ~41!

Note that in the first integral the functions in the squa
brackets are valid nearq50 and in the second integral the
are valid nearq5p. In the equation for the normalization w
either have

y~q!5
k2sin2q

A12k2cos2q

or

y~q!5
1

A12k2cos2q
.

In the first case we have

E
0

p

xLamé~q!
k2sin2q

A12k2cos2
dq

5E
0

`

@xWeber~q!2xWeber
WKB ~q!#

k2sin2q

A12k2cos2q
dq

1E
0

`

@xWeber~q8!2xWeber
WKB ~q8!#

k2sin2~q8!

A12k2cos2q8
dq8

1E
0

p

xLamé
WKB~q!

k2sin2q

A12k2cos2q
dq.
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There is negligible contribution from the first two integra
on the right hand side because for small values ofq, sinq
'0 and for large values ofq, xWeber(q) 5 xWeber

WKB (q).
Therefore, we find

E
0

p

xLamé~q!
k2sin2q

A12k2cos2q
dq

5E
0

p

xLamé
WKB~q!

k2sin2q

A12k2cos2q
dq.

In the second case

E
0

p

xLamé~q!
1

A12k2cos2q
dq

5E
0

`

@xWeber~q!2xWeber
WKB ~q!#

1

A12k2cos2q
dq

1E
0

`

@xWeber~q8!2xWeber
WKB ~q8!#

1

A12k2cos2q8
dq8

1E
0

p

xLamé
WKB~q!

1

A12k2cos2q
dq.

Here again there is negligible contribution from the first tw
integrals for large values ofq sincexWeber(q)5xWeber

WKB (q).
For small valuers ofq

1

A12k2cos2q
'

1

k8
,

and thus we have

E
0

p

xLamé~q!
1

A12k2cos2q
dq

5
1

k8
E

0

`

@xWeber~q!2xWeber
WKB ~q!#dq

1
1

k8
E

0

`

@xWeber~q8!2xWeber
WKB ~q8!#dq8

1E
0

p

xLamé
WKB~q!

1

A12k2cos2q
dq.

Let us define

eq5E
0

`

@xWeber~q!2xWeber
WKB ~q!#dq,

and

eq8 5E
0

`

@xWeber~q8!2xWeber
WKB ~q8!#dq8,

then
E
0

p

xLamé~q!
1

A12k2cos2q
dq

5
eq1eq8

k8
1E

0

p

xLamé
WKB~q!

1

A12k2cos2q
dq.

Following a similar procedure using integrals involving th
variablew and substituting in Eq.~38! yields

N5E
0

p k2sin2~q!xLamé
WKB~q!

A12k2cos2q
dq

3FCw

ew1ew8

k
1E

0

p xLamé
WKB~w!

A12k82cos2w
dwG

1E
0

p k82sin2~w!xLamé
WKB~w!

A12k82cos2w
dw

3FCq

eq1eq8

k8
1E

0

p xLamé
WKB~q!

A12k2cos2q
dqG , ~42!

where

ew5E
0

`

@xWeber~w!2xWeber
WKB ~w!#dw,

and

ew85E
0

`

@xWeber~w8!2xWeber
WKB ~w8!#dw8,

andCq andCw are proportionality constants given by

E cLamé~q!2dq5CqE cWeber
2 ~x!dx, ~43!

and

TABLE I. Comparison between the exact and WKB normaliz
tion coefficients.

(n,m) aexact aWKB Nexact NWKB

~1,1! 0.465 255 0.324 84 3.8244 3.3266
~2,1! 20.452 788 20.348 023 2.9522 3.0724
~2,2! 0.530 210 0.504 450 5.0025 4.8042
~3,1! 20.549 215 20.537 476 8.4871 8.7563
~3,2! 0.057 476 0.055 747 1.3784 1.3586
~3,3! 0.617 823 0.611 585 19.0350 18.5510
~4,1! 20.652 852 20.651 458 41.9459 41.1747
~4,2! 20.126 564 20.124 423 1.4276 1.4592
~4,3! 0.204 048 0.201 308 2.2521 2.2066
~4,4! 0.691 944 0.694 140 98.7856 93.2777
~5,1! 20.720 185 20.725 213 229.3953 211.8818
~5,2! 20.251 494 20.244 911 3.7883 3.8674
~5,3! 0.029 370 0.029 055 0.8805 0.8758
~5.4! 0.309 851 0.308 281 7.8471 7.7465
~5,5! 0.745 515 0.752 932 539.3419 480.618
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E cLamé~w!2dw5CwE cWeber
2 ~x!dx. ~44!

Expressions forCq andCw are derived in the Appendix. Th
evaluation of the integrals appearing in the expressions
e’s is quite lengthy. In this paper we only report the resu
The interested reader may refer to Ref.@7# for a detailed
derivation. We find the WKB normalization coefficient

N5
Aq

2 Aw
2p

2~n1 1
2!

2kk8
F1

2
lnH 8kk8S n1

1

2D J
2

1

2
ReH cS 1

2
1 ia D J 6

arcsink

epa1e2paG , ~45!

where c is the digamma function defined byc(z) 5
dG(z)/dz In the above equation the plus sign is used for
Dirichlet boundary condition and the minus sign is used
the Neumann boundary condition. Table I shows a comp
son between the exact and the WKB normalization coe
cients for a 90° PAS subject to Dirichlet boundary conditio
In Table I

aexact5
mexact

~nexact1
1
2!

2k2
, aWKB5

mWKB

~nWKB1 1
2!

2k2
,

and n and m are defined in Eq.~27!. As can be seen from
Table I, for large values ofn, where the WKB solution is
a

or
.

e
r
i-
-
.

accurate, and smalla, where the approximation leading t
Eq. ~45! is valid, NWKB matchesNexact very closely.

APPENDIX: THE DERIVATION OF Cq and Cw

We use the fact that for small angles the Lam´ e and the
Weber equations have the same solution up to a multipl
tive constant. First, note that the WKB solution of the Web
equation using the amplitude factors in Eqs.~20! and~21! in
Eq. ~17! is given by

cWeber~x!5A2S 11h2~2a!

h~2a! D 1/2 1

A4 x214a

3cosS E0

x
Ax214a

2
dxD .

Then

E cWeber~x!2dx52
11h2~2a!

h~2a!
E 1

Ax214a

3cos2S 1

2 E
0

x
Ax214adxD dx. ~A1!

On the other hand we have
E cLamé
2 ~q!dq5Aq

2 E
cos2S E

0

qF ~n1 1
2!

2k2sin2q1m

12k2cos2q
G 1/2

dq D
A~n1 1

2 !2k2sin2q1m
dq.
The arguments of the cosines in the above two equations
the same according to Eq.~11!. For small q, we replace
sinq by q and use

q5S k8

2k
D 1/2 x

A~n1 1
2!

,

to get

E cLamé
2 ~q!dq

5
Aq

2

~n1 1
2!k

E 1

Ax214a
cos2S 1

2 E
0

x
Ax214a dxD dx.

~A2!
reComparing Eqs.~A1! and ~A2! with Eq. ~43! yields

Cq5
Aq

2

2k~n1 1
2!

h~2a!

11h2~2a!
,

wherea5m/2kk8(n1 1
2). In a similar manner we find

Cw5
Aw

2

2k8~n1 1
2 !

h~a!

11h2~a!
.
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