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TE-polarized waves guided by a lossless nonlinear three-layer structure
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We study TE-polarized electromagnetic waves guided by a three-layer structure consisting of a film sur-
rounded by semi-infinite media. All three media are assumed to be lossless, nonmagnetic, isotropic, and
exhibiting a local Kerr-like dielectric nonlinearity. We present general necessary and sufficient conditions for
the existence of ‘‘physical’’~real, nonnegative, bounded, and consistent with the dispersion relation! field

intensities. As a physical consequence, the parametersan ,ēn,n,E0
2 ,k0d associated with realizable waves can

be specified. To illustrate the procedure, analytical and numerical results for the allowed normalized thickness
of the film and patterns of the field intensities as functions of the effective wave number and the intensity of
the electric field at the lower surface of the nonlinear dielectric film are presented and the occurrence of
singular field intensities is investigated. Finally, the particularization of the results to the three-layer structure
containing a linear substrate and film and a nonlinear cladding is briefly discussed.@S1063-651X~98!13006-4#

PACS number~s!: 03.40.Kf, 42.65.Wi
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I. INTRODUCTION

In the past years, several papers@1–4# have been pub-
lished concerning the propagation of the TE-polarized wa
supported by a lossless isotropic nonlinear three-layer st
tures with the permittivity

en5 ēn1anuEuW 2, ~1!

where

n5H c, z.d,

f , 0,z,d,

s, z,0

andEW denotes the electric field in the layers, assuming t
ēn and an are real constants. As a result, guided station
TE waves are represented by the electric field

EW 5eW yE~n,z,v0!ei ~nk0x2v0t !, ~2!

if the layers are homogeneous perpendicular to thez direc-
tion ~see Fig. 1!. eW y is the unit vector of the axisOy, nk0

denotes the5 effective wave number,k05v0Am0e0 is the
wave number of free space, andv0 is the ~fixed! angular
frequency of the wave. The real amplitude functionE
5E(n,z,v0) must be a solution to the equations@2,4#

S dE

dzD 2

2k0
2S qn

22
an

2
E2DE25k0

2Cn , ~3!
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with the constants of integrationCn to be determined by the
boundary conditions and

qn
25n22 ēn , n5s, f ,c. ~4!

Equation~3! is solved by@4,5#

En6
2 ~n,z,v0!5

2

an
F`~vn6 ik0z;g2n ,g3n!1

qn
2

3 G , ~5!

where

vn5E
~1/2! anEn

2
~n,0,v0!2 ~1/3! qn

2

` dI

A4I 32g2nI 2g3n

,

n5s, f , ~6a!

vc6 ik0d

5E
~1/2! acEc6

2
~n,d,v0!2 ~1/3! qc

2

` dI

A4I 32g2cI 2g3c

, ~6b!

u
u

FIG. 1. Geometry considered in the paper. Three layersn
5s, f ,c with permittivities en5 ēn1anuEW u2 supporting stationary
waves polarized in they direction.
1040 © 1998 The American Physical Society
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g2n52~anCn1 2
3 qn

4!, ~7!

g3n5 2
3 qn

2~anCn1 4
9 qn

4!, ~8!

and `(vn6 ik0z;g2n ,g3n) denotes Weierstrass’s ellipti
function with invariantsg2n and g3n . In consistency with
Eq. ~3!, ` satisfies the equation

S d`~vn6 ik0z!

d~ ik0z! D 2

5`32g2n`2g3n

5~`2I 1n!~`2I 2n!~`2I 3n!. ~9!

The discriminantDn5g2n
3 227g3n

2 of Weierstrass’s function
` can be written as

Dn5an
2Cn

2~2anCn1qn
4!

516~ I 1n2I 2n!2~ I 2n2I 3n!2~ I 1n2I 3n!2, ~10!

where

I 1,3n5
qn

2

6
6Aan

2
Cn1

qn
4

4
, ~11!

I 2n52
qn

2

3
.

As will be seen below,D f and I 1,2,3f are very useful quanti-
ties for the subsequent analysis. For the linear casean

50), the conditions the physically satisfactory solutions
Eq. ~3! must fulfill are well known @6#. The aim of the
present paper is to infer from Eq.~5! the corresponding con
ditions for the nonlinear case. With respect to the dispers
relation ~‘‘mode condition’’! in the linear case@6# it should
be noted that this condition cannot be fulfilled for certa
domains of valuesn,ēn irrespective the values ofk0d @7#.
Below, we present the corresponding conditions of solva
ity ~CS! of the dispersion relation~DR! in the nonlinear case
En6

2 (n,z,v0), according to Eq.~5!, must be real nonnegativ
and bounded for allz. To find the associated condition
~CRNB!, for obvious reasons the well-known properties of`
@8# must be used. The CS can be derived in the same man
To be ‘‘physical’’ the field intensitiesEn6

2 must obey CRNB
and DR~subject to CS!. As a result, all these conditions an
the allowed normalized thicknessesk0d can be expressed i
terms of Weierstrass’s functioǹ, its half-periods, and the
associated quantitiesD f ,v f ,w6 ,I 1 f ,I 2 f ,I 3 f . Since they are
necessary and sufficient, CRNB, DR, and CS specify all
pels $an ,ēn ,n,E2(n,0,v0),k0d% that are associated wit
physical solutions according to Eq.~5!. Thus, the physica
significance of CRNB, DR, and CS is the possibility to d
termine the realizable parameters$an,ēn,n,E2(n,0,v0),k0d%
corresponding to guided waves.

The paper is organized as follows. In Sec. II, we der
the CRNB. Section III contains solutionsk0d of the DR and
conditions for its solvability~CS!. Applications are given in
Sec. IV. Finally, Sec. V summarizes the results. The App
dix contains mathematical details of Secs. II and III.
n

l-

er.

-

-

e

-

II. REAL, NONNEGATIVE, AND BOUNDED
FIELD INTENSITIES

The electric fieldE must satisfy

E→0, uzu→`. ~12!

Equations~3! and ~12! imply

Cs5Cc50, ~13!

and, according to Eq.~10!,

Ds5Dc50. ~14!

Evaluating Eq.~5!, using Eqs.~13! and ~14!, we obtain@9#,
subject to the condition

qn
2>0, ~15!

En6
2 ~z!5

2qn
2

ansin2@Aqn
2~vn6 ik0z!#

, n5s,c. ~16!

If qn
2,0, En6

2 (z) does not satisfy condition~12!. Straightfor-
ward evaluation of Eq.~16! yields the necessary and suffi
cient conditions forEn6

2 (z), n5s,c to be real and nonnega
tive:

Re vn5H p l /Aqn
2, an,0

~ 1
2 p1p l !/Aqn

2, an.0,
~17!

with l PZ ~Z denoting the set of whole numbers! and subject
to qn

2>0. If qn
250, only the casean,0 is possible withl

50 in Eq. ~17!.
Subject to Eqs.~15! and~17! Eqs.~16! represent bounded

En6
2 (z),n5s,c, if an.0. If an,0 only Es2

2 (z) andEc1
2 (z)

are bounded, since Imvn.0 ~cf. Appendix!. Before deriving
the CRNB for Ef 6

2 (z), it is suitable to make use of th
boundary conditions at the interfacesz50 andz5d. Since
both En6

2 , n5s,c, and its derivatives with respect toz are
continuous, we obtain@4#

vs5
1

Aqs
2

arcsinA 2qs
2

asE0
2
, ~18!

vc6 ik0d5
1

Aqc
2

arcsinA 2qc
2

acEc6
2 ~d!

, ~19!

with E0
25Es

2(n,0,v0).0 and

Cf5E0
2@ ē f2 ēs1

1
2 ~af2as!E0

2#. ~20!

Equations~18! and~19! must be consistent with Eqs.~17!.
Hence, we obtain, evaluating arcsin (•) in Eqs.~18! and~19!
@10#, additionally toqn

2>0, the conditions

qs
2.

as

2
E0

2 , ~21!
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qc
2.

ac

2
Ec6

2 ~d! , ~22!

where Ec6
2 (d) must be determined by Eq.~37! below. It

should be noted that conditions~15!, ~21!, and~22! are gen-
eralizations of the corresponding conditions in the linear c
@6#. Turning to the CRNB forEf 6

2 and using properties o
Weierstrass’s functioǹ the following necessary and suffi
cient conditions forEf 6

2 being real can be derived@11#:

Re v f5 lv for D f.0 ~23!

and

Re v f5 lv2 for D f,0 ~24!

must hold.v,v2 denote the associated real half-periods o`
@8#. The caseD f50 has been disregarded for reasons
simplicity. Subject to the conditions for the field intensiti
to be real~CR! Eqs.~21!–~24! vn , n5s, f ,c can be written
down explicitly ~cf. Appendix!. This implies that conditions
~23! and ~24! containing elliptic integrals, can be simplifie
considerably by using the rootsI 1 f ,I 2 f ,I 3 f defined in Eqs.
~11!. Ordering the rootsI 1 f ,I 2 f ,I 3 f according toI min,Im
,Imax and introducing

I 0 f5
1
2 afE0

21I 2 f , ~25!

the following conditions necessary and sufficient forEf 6
2

being real can be derived. Ifaf.0,D f.0 hold, then

I m,I 0 f<I max ~26!

is necessary and sufficient for realEf 6
2 . If af,0, D f.0

hold, then

I 0 f,I min ~27!

or

I m<I 0 f,I max ~28!

is necessary and sufficient. Ifaf,0, D f,0 the condition

I 0 f,I 2 f ~29!

must hold.D f,0 andaf.0 is impossible, because Eq.~24!
cannot be fulfilled@cf. Eq. ~A6!#.

Taking into account the previous CR@Eqs.~26!–~29!#, we
can specify the bounded and nonnegative field intensit
Due to the periodicity of̀ , we reduce the consideration i
the following to the fundamental period parallelogram~FPP!
@8# if D fÞ0. Only the following cases are possible~cf. Ap-
pendix!.

If Re v f5v, the field intensity can be written as@11#

Ef 6
2 ~z!5

2

af
H I max2I 2 f

1
~ I max2I m!~ I max2I min!

`„i ~ Im v f6k0z!;g2 f ,g3 f…2I max
J . ~30!
e

f

s.

Since2`<`„i (Im v f6k0z);g2 f ,g3 f…<I min , Eq. ~30! rep-
resents bounded solutions. If and only if

af.0 and I 1 f.max~ I 2 f ,I 3 f ! ~31!

or

af,0 and I 2 f.I 1 f ~32!

these solutions are nonnegative. If Rev f50 (D f.0), Ef 6
2

reads, according to Eq.~5!,

Ef 6
2 5

2

af
@`„i ~ Im v f6k0z!;g2 f ,g3 f…2I 2 f #. ~33!

Obviously,Ef 6
2 is nonnegative if and only ifaf,0, because

the upper bound of̀ „i (Im v f6k0z);g2 f ,g3 f… is I min @11#.
The necessary and sufficient condition forEf 6

2 (z) to be
bounded~CB! is (v8 denotes the imaginary half-period of`
if D f.0)

0,Im v f6k0d,
2v8

i
, ~34!

due to the location of the poles of̀ in the FPP@8#. If
Re v f5v2, evaluation of Eq.~5! yields, using the addition
formula for `,

Ef 6
2 ~z!5

2

af

uI 2 f2I 1 f u2

`„i ~ Im v f6k0z!;g2 f ,g3 f…2I 2 f
, ~35!

and this is non-negative and bounded if and only ifaf,0
and

uIm v f6k0du,uv28u, ~36!

becausè (v28 ;g2 f ,g3 f)5I 2 f , where v28 is the imaginary
half-period of` if D f,0. The physical content of the fore
going analysis can be summarized as follows. Real, n
negative and bounded solutions to Eq.~3! @according to Eq.
~5!# are given by~i! Eq. ~30!, if D f.0 andI m,I 0 f<I max. If
af.0, I max5I1f must hold. Ifaf,0, I max5I2f must hold. In
both casesEf 6

2 are bounded;~ii ! Eq. ~33! if D f.0 and I 0 f

,I min and af,0. In this case 0,Im v f6k0d,(2v8/ i )
must hold for boundedEf 6

2 (z); ~iii ! Eq. ~35!, if D f,0 and
I 0 f,I 2 f and af,0. Ef 6

2 (z) are bounded ifuIm v f6k0du
,uv28u.

The field intensities in the substrate and in the cladd
are represented by Eqs.~16!, if conditions ~15!, ~21!, and
~22! hold.En6

2 are bounded ifan.0. If an,0, onlyEs2
2 and

Ec1
2 are bounded.

If the parametersan ,ēn ,n,E0
2 ,k0d do not fulfill the fore-

going conditions no guided waves according to Eq.~2! exist.
In particular, there are no guided waves if, irrespective
k0d, the parameters are such thataf.0 andD f,0 hold.

Subject to the above CRNB we now specify those n
malized thicknessk0d ~depending onan ,ēn ,n,E0

2) that are
associated to field intensitiesEn6

2 (z) obeying the boundary
conditions. As a result, we get necessary and sufficient c
ditions for the existence of guided waves.
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III. SOLUTIONS OF THE DISPERSION RELATION

If the boundary conditions are satisfied, then, additiona
to Eqs.~18!, ~19!, and~20!, the equation

Ef 6
2 ~d!5

2

af
@`~v f6 ik0d,g2 f ,g3 f !2I 2 f #5

2

af
l6

~37!

must be fulfilled@12#, where@13#

l652
ē f2 ēc

2~12ac /af !
6AD, ~38!

D5F ē f2 ēc

2~12ac /af !
G2

1
afCf

2~12ac /af !
. ~39!

Thus, condition~22! readsqc
2.(ac /af) l6 .

Subject to the CR of the previous section the imagin
part of`(v f6 ik0d;g2 f ,g3 f) vanishes, so that the right-han
side of

`~v f6 ik0d;g2 f ,g3 f !5l61I 2 f ~40!

must be real. Hence,

D>0 ~41!

must hold and, sinceEf 6
2 (d) is non-negative,

sgnl65sgnaf . ~42!

Equation~40! constitutes a compact representation of
DR. If some of the parametersan , ēn , n, E0

2, andk0d are
prescribed, the rest of the parameters must be determ
consistently with Eqs.~40!–~42!. Since as , af , ēs , ē f , n,
and E0

2 are embedded withinv f , g2 f , andg3 f , it is rather
hopeless to determine one of these quantities by Eq.~40!
analytically. In this case, Eq.~40! can serve for verifying the
existence of solutions~real tupels$an ,ēn ,n,E0

2 ,k0d%) and
testing the consistency numerically.

Nevertheless, due to the fact thatv f , g2 f , g3 f , l6 , and
I 2 f are independent ofk0d in Eq. ~40!, it is appropriate to
solve Eq.~40! with respect tok0d and find the associated C
as follows.

Formal inversion of Eq.~40! yields the mode equation
@4#

ik0d56w12v f12Mv12Nv8, ~43a!

for Ef 1
2 and

2 ik0d56w22v f12Mv12Nv8, ~43b!

for Ef 2
2 , with

w65E
l61I 2 f

` dI

A4I 32g2 f I 2g3 f

, ~44!
y

y

e

ed

where 2v and 2v8 denote the~in general! complex periods
of ` and M ,N are integers. Since Eqs.~43! must hold for
real and positivek0d it is convenient to write Eqs.~43! as a
system,@14#

Re~6w62v f12Mv12Nv8!50, ~45a!

and, forEf 1
2 andEf 2

2 respectively,

Im~6w12v f12Mv12Nv8!5k0d, ~45b!

2Im~6w22v f12Mv12Nv8!5k0d, ~45c!

that must hold for certainM ,N.
To find the CS for Eq.~40! represented in the form~43!

~with k0d real and positive! or Eqs. ~45! thus the allowed
k0d, it is useful to consider the CR of the previous sectio
since the CS are analogous to the CR.

~i! D f.0, Rev f5v, iv8PIR. Without loss of general-
ity we assume thatv1 i (Im v f6k0d)PFPP. Since function
`„v1 i (Im v f6k0d);g2 f ,g3 f… decreases monotonicall
from I max to I m if Im v f6k0dP@0,v8/ i # and increases
monotonically from I m to I max if Im v f6k0d
P@v8/ i ,2v8/ i #, each valuè P@ I m ,I max# is taken twice if
Im v f6k0dP@0,2v8/ i #. Thus, the CS is

I m<l61I 2 f<I max, ~46!

which is identical to condition~26! with 1
2 afE0

2 replaced by
l6 . Equations~45! read

Re~6w62v12Mv!50, ~47a!

Im~6w12v f12Nv8!5k0d, ~47b!

2Im~6w22v f12Nv8!5k0d. ~47c!

Comparing Eq.~46! with Eqs.~26! and~28! it is obvious that
Eq. ~46! is equivalent to

Re w65v. ~48!

Hence M50 or M51 is necessary in Eq.~47a! and the
positive normalized thicknesses are given by Eqs.~47b! and
~47c! according to

k0d5H Im~w12v f !, if l1. 1
2 afE0

2

Im~w12v f12Nv8!, if N51,2,3, . . .

Im~2w12v f12Nv8!, if N52,3,4, . . . ,
~49!

associated withEf 1
2 , and

k0d5H Im~2w21v f !, if 1
2 afE0

2.l2

Im~2w21v f12Nv8!, if N51,2,3, . . .

Im~w21v f12Nv8!, if N521,0,1,2,3, . . . ,
~50!

associated withEf 2
2 and subject to Eqs.~46!, ~31! or ~32!,

and without further restrictions with respect tok0d sinceEf 6
2

are bounded if Rev f5v.
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~ii ! D f.0, Rev f50, vPIR, iv8PIR. We assume tha
i (Im v f6k0d)PFPP. In this case `„i (Im v f
6k0d);g2 f ,g3 f… increases monotonically from2` to I min
and then decreases monotonically fromI min to 2` as
Im v f6k0dP@0,2v8/ i #. Hence we get the necessary a
sufficient CS

l61I 2 f<I min ~51!

which is equivalent to

Re w650, ~52!

in analogy to the equivalence of Rev f50 and condition
~27!. Similar considerations as in the previous case~i! lead to
M50 in Eq. ~45a! and thus to the possible mode equatio

k0d5H Im~6w12v f12Nv8! for Ef 1
2

2Im~6w22v f12Nv8! for Ef 2
2 .

~53!

Evaluating the CB@Eq. ~34!# the positive normalized thick
nesses associated to boundedEf 1

2 are thus

k0d5H Im~w12v f ! if l1. 1
2 afE0

2

Im~2w12v f12v8!.
~54!

Ef 2
2 is bounded if the thickness is given by

k0d5Im~2w21v f !, ~55!

subject tol2, 1
2 afE0

2.
~iii ! D f,0, Rev f5v2 , v2PIR,iv28PIR. The primi-

tive periods of` are 2v2 and v21v28 @15#. Assumingv2

1 i (Im v f6k0d)PFPP, in this case `„v21 i (Im v f
6k0d);g2 f ,g3 f…5l61I 2 f must be solved fork0d. For
Im v f6k0dP@2v28/ i ,0#, `„v21 i (Im v f6k0d);g2 f ,g3 f…

increases monotonically from2` to I 2 f and then decrease
monotonically from I 2 f to 2` for (Im v f6k0d)P@0,
1v28/ i #. Hence, we get the necessary and sufficient CS

l6<0, ~56!

equivalent to

Re w65v2 . ~57!

Equations~45! read@16#

Re„6w62v f1~2M1N!v2…50 ~58a!

6Im~6w62v f1Nv28!5k0d. ~58b!

Hence, 2M1N50 or 2M1N52 is necessary and th
positive thicknesses associated with boundedEf 1

2 are

k0d5H Im~w12v f ! if 1
2 afE0

2,l1 ,

Im~2w12v f !
~59!

if uIm v f1k0du,uv28u is evaluated. If

k0d5Im~2w21v f ! and 1
2 afE0

2.l2 , ~60!
Ef 2
2 is bounded.
In order to find physical solutionsEn6

2 , n5s, f ,c, the nor-
malized thicknessk0d must be given by Eqs.~49!, ~50!, ~54!,
~55!, ~59!, and~60! ~for Ef 1

2 andEf 2
2 , respectively! and then

the appropriateEn6
2 , n5s,c ~satisfying the CRNB! must be

matched withEf 1
2 or Ef 2

2 ~or both! at the boundaries. In
general, the appropriate combination of signs in the seque
Es6

2 , Ef 6
2 , andEc6

2 conveniently can be found by using

sgnS dEs6
2

dz
U

z50
D 56 sgnas,

sgnS dEc6
2

dz
U

z5d
D 56 sgnac,

dEf 6
2

dz
U

z50,d

56
2k0u`8u

af
i eU

z50,d

,

~61!

where`85d`(u;g2 ,g3)/du ande5(`8/u`8u).
For u5Re v f1 i (Im v f6k0z), Rev f50,v,v2, e is

given by Fig. 2@16#. Obviously, the sign ofdEf 6
2 /dz at z

50,d depends on the magnitude of Imv f and of Imv f
6k0d and thus on the appropriate mode equations~43!.
Evaluation is facilitated by using the associated inequali
for Im v f and Imw6 ~cf. Appendix!. An example is given
in the next chapter.

With reference to the summary at the end of the previo
section the results of this section can be summarized. In
der to match the field intensities at the boundaries accord
to ~i!–~iii ! of Sec. II @Eqs. ~16!, ~30!, ~33!, and ~35!# the
following necessary and sufficient conditions must hold a
ditionally: I m<l61I 2 f<I max for ~i!, l61I 2 f<I min for ~ii !,
l6<0 for ~iii !. The associated normalized thicknesses
given by Eqs.~49!,~50! for ~i!, by Eqs.~54!,~55! for ~ii !, by
Eqs.~50!,~60! for ~iii !, respectively. Inserting the appropria
positivek0d into Eqs.~16!, ~30!, ~33!, and~35!, respectively,
and making use of Eqs.~61! the possible combinationsEs6

2 ,
Ef 6

2 , Ec6
2 are obtained. In this way all realizable guide

waves~2! as well as necessary and sufficient conditions
their existence~CRNB and CS! are found.

It should be noted that thek0d obeying the DR can be
expressed by elliptic integrals whereas the CRNS are a
braic, only containingD f ,I 0 f ,I 1 f ,I 2 f ,I 3 f . Thus, these con-
ditions can easily be evaluated@cf. ~i! and ~ii ! of Sec. IV#.

FIG. 2. Fundamental period parallelogram~FPP! for positive
and negative discriminantsD f . e5`8/u`8u denotes the normalized
derivative of Weierstrass’s functioǹ(u).
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The customary way to investigate the DR~40! ~cf. @1,4#!
is to prescribe the normalized thicknessk0d and the material
parametersan , ēn, n5s, f ,c and then to solve Eq.~40! nu-
merically with respect ton, E0

2. This procedure works if and
only if the CRNS are satisfied for a certain domain in t
(E0

2 ,n) plane. If so,k0d, according to Eqs.~49!, ~50!, ~54!,
~55!, ~59!, and~60! can be plotted as a function ofE0

2,n and
then it can be checked whether or not the prescribed v
k0d is taken by this function.

In principle, this procedure can be used for any subse
the set of tupels$an ,ēn,n,E0

2 ,k0d%, n5s, f ,c if certain pa-

rametersan , ēn (n5s, f ,c), n, E0
2, andk0d are prescribed.

IV. APPLICATIONS

A. A numerical example

To illustrate the above results we choose the material
rameters as in Ref.@1# as5ac50, af5610217(m2/V2), ē f

54, ēs5 ēc51 but with as5ac510225m2/V2 instead of
as5ac50. A negative Kerr coefficient af5
210217(m2/V2) was selected because the caseaf.0 is
rather simple, since the conditionaf.0 and D f,0 is not
consistent with Eq.~24!. Thus Ef 6

2 are always bounded i
af.0, because Rev f5v in this case@cf. Eq. ~A2!#. To find
the parametersE0

2, n, k0d associated to physical solution
En6

2 (z) the following procedure seems appropriate.
~i! Verifying CRN. With the above prescribed paramete

evaluation yieldsD>0 if afE0
2,0, l1,0 if 26,afE0

2

,0, l2,0 if afE0
2<0, so that conditions~21! and ~22!

combined with Eqs.~37! and ~41! define subsets of the
(E0

2 ,n) plane~see Fig. 3! by

n2. ēs1
1
2 asE0

2 if afE0
2,0 ~62a!

FIG. 3. SubsetsA–G ~discriminated byD f) of the (E0
2,n) plane

with patterns of physical field intensities~unscaled!.
e

of

a-

and

n2. ēc1
ac

af
l1 if 26,afE0

2,0 ~62b!

and

n2. ēc1
ac

af
l2 if afE0

2,0. ~62c!

In particular, this means thatEn1
2 , (n5s,c), must be ex-

cluded if afE0
2<26 ~domain G!. These conditions specify

$E0
2 ,n% associated with real and nonnegativeEn6

2 , n5s,c. If
n5 f the conditions for the different regions designated
Fig. 3 are associated as follows~the equations for Rev f and
Re v6 in brackets represent the corresponding equiva
CR and CS!:

~A! I 3 f,I 1 f<I 0 f,I 2 f ~Re v f5v), D f.0,

~B! I 0 f<I 3 f,I 1 f,I 2 f ~Re v f50!, D f.0,

~C~D ! I 0 f,I 2 f,I 3 f,I 1 f ~Re v f50!, D f.0,
~63!

~E~F ! I 0 f,I 2 f ~Re v f5v2!, D f,0,

~G! I 0 f,I 3 f<I 2 f,I 1 f ~Re v f50!, D f.0.

As follows from Eqs.~A3!–~A10!, the field intensities
Ef 6

2 (z) corresponding to the different subsets of the (E0
2 ,n)

plane, given by Eqs.~30!, ~33!, and ~35! are all real and
nonnegative.

~ii ! Verifying CS and solving DR with respect to k0d. Due
to the special choice of the parameters [ēn andan are given,
so that Eq.~40! must not be solved with respect to the
parameters# and subject to the corresponding CS,

~A! I 3 f,I 1 f<l11I 2 f,I 2 f ~Re w15v!,

~B! l21I 2 f<I 3 f,I 1 f,I 2 f ~Re w250!,

~C~D ! l61I 2 f,I 2 f,I 3 f,I 1 f ~Re w650!, ~64!

~E~F ! l6,0 ~Re w65v2!,

~G!l21I 2 f,I 3 f,I 2 f,I 1 f ~Re w250!,

the DR ~40! can be solved fork0d yielding the allowed
thicknesses.

~iii ! Determining the positive thicknesses k0d associated
with field intensities Ef 6

2 obeying CRNB. Since theEf 6
2 are

5 bounded if Rev f5v only the CB ~34!,~36! must be
evaluated subject tok0d.0. We obtain the following results
~A! Ef 1
2 is bounded if and only if

k0d5H Im~w12v f12Nv8!, N51,2,3, . . .

Im~2w12v f12Nv8!, N52,3,4, . . . ;
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~B! boundedEf 2
2 do not exist, sincek0d50 according to Eq.~55!;

~C! Ef 1
2 is bounded if and only if

k0d5Im~2w12v f12v8!,

Ef 2
2 is bounded if and only if

k0d5Im~2w21v f ! and l2, 1
2 afE0

2 ,

~D! Ef 1
2 is bounded if and only if

k0d5H Im~w12v f ! and l1. 1
2 afE0

2

Im~2w12v f12v8!,
~65!

~E! Ef 1
2 is bounded if and only if

k0d5 Im~2w12v f !,

Ef 2
2 is bounded if and only if

k0d5Im~2w21v f ! and l2, 1
2 afE0

2 ,

~F! Ef 1
2 is bounded if and only if

k0d5H Im~w12v f ! and l1. 1
2 afE0

2,

Im~2w12v f !,

~G! boundedEf 1
2 do not exist.

~iv! Finding the appropriate combination of signs in the sequence Es6
2 ,Ef 6

2 ,Ec6
2 obeying CRNB.Using Eqs.~49!, ~50!, ~54!,

~55!, ~59!, and~60!, the normalized thicknesses given in the foregoing section are associated withEf 6
2 that can be combined

with Es6
2 andEc6

2 as follows@labels a, c, d, e, and f refer to Fig. 3#:

~A! k0d5H Im~w12v f12Nv8!, N51,2,3,. . . ; Es2
2 , Ef 1

2 , Ec2
2 ~a1!

Im~2w12v f12Nv8!, N52,3,4,. . . ; Es2
2 , Ef 1

2 , Ec1
2 ~a2!,

~C! k0d5H Im~2w12v f12v8! ; Es2
2 , Ef 1

2 , Ec1
2 ~c1!

Im~2w21v f !; Es1
2 , Ef 2

2 , Ec1
2 ~c2!,

~D! k0d5H Im~w12v f !; Es2
2 , Ef 1

2 , Ec2
2 ~d1!

Im~2w12v f12v8!; Es2
2 , Ef 1

2 , Ec1
2 ~d2!,

~66!

~E! k0d5H Im~2w12v f !; Es2
2 , Ef 1

2 , Ec1
2 ~e1!

Im~2w21v f !; Es1
2 , Ef 2

2 , Ec1
2 ~e2!,

~F! k0d5H Im~w12v f !; Es2
2 , Ef 1

2 , Ec2
2 ~ f 1!

Im~2w12v f !; Es2
2 , Ef 1

2 , Ec1
2 ~ f 2!.

Boundary between~E! and ~C!: k0d5Im(2w21v f); Es1
2 , Ef 2

2 , Ec1
2 (ec).

Boundary between~F! and ~D!: k0d5Im(w12v f); Es2
2 , Ef 1

2 , Ec2
2 ( f d).
r,
a

-

f

To sum up, if the parametersan and ēn are given, physical
solutionsEn6

2 can be found by choosing the parametersn,
E0

2, andk0d appropriately, as shown in Fig. 3. In particula
some results can be compared with those of the linear c
Obviously, Eqs.~62! are generalizations ofn2.max(ēs,ēc)
se.

@6,7#. They specify, in a manner that is different forEf 1
2 and

Ef 2
2 , a cutoff with respect to the effective wave indexn

depending on the intensityE0
2. The analogon of the linear

case conditionn2, ē f @6,7# seems to be the conditions o
~i!–~iii ! in Sec. II~without the CB containingk0d). Remark-
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ably, these conditions depending on the sign ofaf and of the
discriminantD f can be expressed in terms of the rootsI 1 f ,
I 2 f , I 3 f according to Eq.~11!. In addition to these condition
the CB lead to specific exclusions@domains~B!,~G!# not ap-
pearing in the linear case becausen2, ē f implies bounded
field intensities in the linear film@6# ~ it would be intriguing
to investigate whether the occurrence of the cutoff atE0

2

5631017 is specific for the parameters chosen or whethe
is a general consequence of the CB!. Equations~66! show
that the CRNB and the CS specify two mode equations
k0d with E0

2, n in the allowed domains~A!,~C!,~D!,~E!,~F!.
This means that exactly two~in general, different! normal-
ized thicknessesk0d are determined for eachE0

2,n. Since the
mode equations definek0d as a continuous function ofE0

2,n
in each of the allowed domains, there must be a lower
upper bound ofk0d for the corresponding domain. Thus
lower and an upper cutoff with respect tok0d can be deter-
mined numerically~for the parametersanēn chosen and for
the corresponding domain in the (E0

2 ,n plane!. It seems that
these results could be of practical importance due to t
potential use in designing optical waveguides.

Finally, it should be noted that we included the limitin
caseD f50 in Fig. 3. It is rather interesting, that the~un-
scaled! intensity patterns (ec and c1, f d and d1) are the
same though the corresponding mode equations in Eqs.~66!
are different.

B. On the origin of singular field intensities

As the second application, we address the question:
necessary to explain the occurrence of singular field inte
ties by neglecting absorption within the nonlinear media?
seems to be nontrivial to extend the foregoing analysis
include absorption. Apparently, an analytical solution to
nonlinear Helmholtz equation for absorbing dielectric lay
is not known in the literature. Nevertheless, it has been
gued that singularities of electric fields ’’can be weakened
the presence of damping’’@17#. Physical intuition is not very
reliable in nonlinear problems, so that it seems appropriat
try a different explanation of the occurrence of singu
fields.

Considering the example in Ref.@1# (as5ac50, af5

210217 m2/V2, ē f54, ēs5 ēc51, afE0
2520.5, and n

51.589, cf.@4# !, we obtainD f,0 and

Re v f5 Re w65v251.749,

v253.141i ,

Im v f5Im w1520.665,

Im w2522.476, l6,0.

According to Eqs.~59! and ~60!, the following possibilities
remain:

k0d5Im~2w12v f !51.331 ~67!

for boundedEf 1
2 and

k0d5Im~2w21v f !51.810 ~68!
it

r

d

ir

it
i-

It
o
e
s
r-
y

to
r

for boundedEf 2
2 . Ef 1

2 must be matched withEs2
2 andEc1

2 ,
both being unbounded.Ef 2

2 must be matched withEs1
2 and

Ec1
2 , Ec1

2 being unbounded. Thus, there is no combinat
of the field intensitiesEn6

2 with all En6
2 being bounded.

If k0d5p (E0
25531016, n51.5887) is selected, evalua

tion of Im v f1k0d in Eq. ~36! yields boundedEf 1
2 and un-

boundedEf 2
2 @since Eq.~36! is not satisfied# in agreement

with Ref. @1#. The field intensitiesEs2
2 , Ef 1

2 , andEc1
2 fit at

the boundaries, butEs2
2 andEc1

2 are not bounded.Ef 2
2 fits

with Es1
2 , and Ec2

2 ~both are bounded!. But, according to
Eqs.~67! and ~68!, k0d5p is not the appropriate thickness
Changing slightly the parametersas and ac (as5ac5
20.2af), we obtain, using Eqs.~67! and ~68!, that k0d
51.346 for Ef 1

2 and k0d51.769 for Ef 2
2 . Ef 1

2 remains
bounded and now fits with boundedEs2

2 and Ec1
2 . Ef 2

2 is
bounded ifk0d51.769 and fits with boundedEs1

2 andEc1
2

in this case. Thus, we have demonstrated that by chan
real parametersas andac of the substrate and of the claddin
and selecting the appropriate thicknessk0d51.769, one can
remove the singularity ofEf 2

2 .
It may be that a singularity of the field intensity is a

artifact due to the use of a real local permittivity. But this h
not yet been proved analytically. On the other hand, the
sumed local Kerr-like real permittivity is not unphysica
since it gives rise to well-known phenomena in nonline
optics.

To conclude, the solutions obtained according to Eqs.~5!
are generally singular, and it is necessary to restrict
choice of parameters by certain conditions given above
avoid singular solutions. As shown above@cf. Eqs. ~A1!-
~A6!#, there are no singular solutions at all if the Kerr coe
ficientsan are positive. In particular, ifaf,0 andD f,0, the
thicknessk0d must be determined appropriately with param
etersan , ēn, n, andE0

2 according to CNR and Eqs.~58! and
~36!. Thus, a possible explanation for the existence of sin
lar field intensities is as follows: the thicknessd of the film is
not appropriate.

C. Guided waves in a structure with linear substrate
and film and nonlinear cladding

As a third application the caseas5af50, ac.0 @17,18#
is briefly discussed. Ifaf50, the discriminantD f vanishes,
this case has been excluded in the above analysis. A b
assumption of Sec. II wasafÞ0. If af50 some of the results
of Sec. II become meaningless. For example,v becomes
infinite in the CR Eq.~23! and in the CS Eq.~48! if af50,
qf

2,0, sinceI 1 f5I 2 f in this case. Hence,v f in Eq. ~37! is
not defined. It seems rather involved to evaluate the res
of Sec. II in the limitaf→0. Thus it is appropriate to go bac
to Eq. ~3! and solve it subject to the constraints~13!, ~15!,
~21!, and~2!. Hence

Es~z!5E0eqsk0z, z<0 ~69!

Ef~z!5E0S coshqfk0z1
qs

qf
sinhqfk0zD , 0<z<d,

~70!
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Ec6~z!5A2qc
2

ac

1

sin@Aqc
2~vc6 ik0z!#

, z>d, ~71!

where vc is given by Eq.~19!. According to Sec. II both
solutionsEc6(z) are bounded. Using Eq.~19! the continuity
of dE/dz at z5d can be evaluated leading to~cf. Refs.
@17,18#!

tanhqfk0d1
qf~qs7q̃c!

qf
27qsq̃c

50, ~72!
rs
n

ur
io
e
o

sa
on
ce
e-
ed
where the upper and the lower signs refer toEc1 andEc2,
respectively. The nonlinear dispersion relation~72! re-

sembles the linear one with the exception thatq̃c

5Aqc
22 (ac/2) Ef

2(d) was introduced. According to Eq.~22!

q̃c is real.q̃c is equal toqc if ac50 and, since onlyEc2(z)
is consistent with Eq.~12! in this case, Eq.~72! is reduced to
the linear dispersion relation@20#. Equation~72! can be writ-
ten as
ac

2
E0

25

qc
2S coshqfk0d1

qs

qf
sinhqfk0dD 2

2~qfsinhqfk0d1qscoshqfk0d!2

S coshqfk0d1
qs

qf
sinhqfk0dD 4 . ~73!
and
t the
n-

tain
d a

or-
.

This version may be useful for finding paramete

$ac ,ēn ,n,E0
2 ,k0d% compatible with the nonlinear dispersio

relation.

V. CONCLUSION

TE-polarized waves according to Eqs.~2! and ~12! sup-
ported by a lossless Kerr-like nonlinear three-layer struct
have been investigated. Necessary and sufficient condit
for the existence of real, non-negative, and bounded fi
intensities and a general dispersion relation have been
tained. It has been shown that, subject to certain neces
and sufficient solvability conditions, the dispersion relati
has solutions~certain domains in the parameter spa

$an ,ēn ,n,E0
2 ,k0d% that are consistent with the dispersion r

lation!. In particular, the dispersion relation can be solv
with respect to the normalized thicknessk0d if the solvabil-
e
ns
ld
b-
ry

ity conditions are satisfied. Allk0d consistent with the dis-
persion relation and associated with real, non-negative,
bounded field intensities are specified. Thus it seems tha
description of TE waves guided by a lossless Kerr-like no
linear three-layer structure has been brought to a cer
close. Unsolved problems refer to absorbing layers an
stability analysis of the guided waves.
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APPENDIX: EXPRESSIONS FOR vn , n5s,f ,c

Subject to the constraints~21!–~24! evaluation of Eqs.~6!
yields
vs55
1

Aqs
2
S p

2
1 i ln~a1Aa221!D , as.0, a5A 2qs

2

asE0
2
.1

i

Aqs
2

lnSA 2qs
2

2asE0
2
1A12

2qs
2

asE0
2D , as,0,

~A1!

vc6 ik0d55
1

Aqc
2Fp

2
1 i lnSAafqc

2

acl6
1Aafqc

2

acl6
21D G , ac.0

i

Aqc
2

lnSA afqc
2

2acl6
1A12

afqc
2

acl6
D , ac,0,

~A2!

v f5v1E
I 0 f

I max dt

A4t32g2 f t2g3 f

12v8, if D f.0, af.0, I m,I 0 f<I max, ~A3!
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v f5v81E
I 0 f

I min dt

A4t32g2 f t2g3 f

, if D f.0, af,0, I 0 f,I min, ~A4!

v f5v1E
I 0 f

I max dt

A4t32g2 f t2g3 f

12v8, if D f.0, af,0, I m<I 0 f,I max, ~A5!

v f5v21E
I 0 f

I 2 f dt

A4t32g2 f t2g3 f

, if D f,0, af,0, I 0 f,I 2 f . ~A6!

Due to conditions~46!, ~51!, and~56!, w6 is given by the above expression forv f if 1
2 afE0

2 is replaced byl6 , respec-
tively. The above expressionsv f imply, in particular, since

v85E
I m

I max dt

A4t32g2 f t2g3 f

,

Im v f>Im v8.0, ~A7!

if af,0, I m<I 0 f,I max and

Im v f.Im v8>0, ~A8!

if af.0, I m,I 0 f<I max, and, since

v85 i È I min dt

Au4t32g2 f t2g3 f u
,

0,Im v f,Im v8, ~A9!

if af,0 andI 0 f,I min . Finally, since

v285 i E
2`

I 2 f
5

dt

Au4t32g2 f t2g3 f u
,

uIm v f u,Imuv28u, ~A10!

if af,0 andI 0 f,I 2 f . The same conditions hold, ifv f is replaced byw6 and I 0 f is replaced byl61I 2 f .
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@14# H. W. Schürmann, Z. Phys. B97, 515 ~1995!, Eq. ~37!.



ith
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