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TE-polarized waves guided by a lossless nonlinear three-layer structure
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We study TE-polarized electromagnetic waves guided by a three-layer structure consisting of a film sur-
rounded by semi-infinite media. All three media are assumed to be lossless, nonmagnetic, isotropic, and
exhibiting a local Kerr-like dielectric nonlinearity. We present general necessary and sufficient conditions for
the existence of “physical”(real, nonnegative, bounded, and consistent with the dispersion reléigth
intensities. As a physical consequence, the paramam%,n,Eg,kod associated with realizable waves can
be specified. To illustrate the procedure, analytical and numerical results for the allowed normalized thickness
of the film and patterns of the field intensities as functions of the effective wave number and the intensity of
the electric field at the lower surface of the nonlinear dielectric film are presented and the occurrence of
singular field intensities is investigated. Finally, the particularization of the results to the three-layer structure
containing a linear substrate and film and a nonlinear cladding is briefly disciS4€3-651X98)13006-4

PACS numbg(s): 03.40.Kf, 42.65.Wi

[. INTRODUCTION with the constants of integratiod, to be determined by the
boundary conditions and
In the past years, several pap¢is-4] have been pub-

lished concerning the propagation of the TE-polarized waves q§= nz—?v, v=s,f,c. (4)
supported by a lossless isotropic nonlinear three-layer struc-
tures with the permittivity Equation(3) is solved by[4,5]
e,=€,+a,|E[%, (D . a
ES.(n.z,w0)= | 9(w,%keZ:82,.95,)+ 5|, (5
where v
¢, z>d, where
p=+< f, 0<z<d, foo dl
(DV: —!
s, z<0 (112 a,E2(n.0w0) ~ (13 & \J413—g,,| —ga,
and E denotes the electric field in the layers, assuming that v=s,f, (63)
€, anda, are real constants. As a result, guided stationary
TE waves are represented by the electric field wcFikod
R . _ % dl
E=6,E(n,2,w)€ (Tox o), (2 _ f 2 S
(112) acE.. (nd,wg) ~ (13) dg \/413—g,cl —gae

if the layers are homogeneous perpendicular tozlurec-

tion (see Fig. 1 éy is the unit vector of the axi®y, nky
denotes the= effective wave numbeky= wgv g€ is the
wave number of free space, arg, is the (fixed) angular substrate film cladding
frequency of the wave. The real amplitude functi@n

. . . = €, 2 ENTY 2 .= €. 2
=E(n,z,w,) must be a solution to the equatiof4] G atalbl) g =gtalBl) e =é+alk]

dE\? a
(E) ko ‘ﬁ‘sz)EZ:"%C“ © ! :
Y
*FAX: +49+0)541-9692406. Electronic address:
hwschuer@physik.uni-osnabrueck.de FIG. 1. Geometry considered in the paper. Three layers

TFAX: +7-095-9392596. Electronic address: serov@cmc.msk.su=s,f,c with permittivities €,=¢€,+a,|E|? supporting stationary
*FAX: +7-095-9392596. Electronic address: shestop@cs.msu.swaves polarized in thg direction.
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Il. REAL, NONNEGATIVE, AND BOUNDED
92,=2(a,C, + %q?’)' @ FIELD INTENSITIES
0s,= 20%(a,C,+ 3%, (8) The electric fieldE must satisfy

and g(w,*ikyz;95,,03,) denotes Weierstrass's elliptic E~0, [z—e. (12

function with invariantsg,, andgs,. In consistency with

Eq. (3), ¢ satisfies the equation Equations(3) and (12) imply

C,=C.=0, 13
dp(w,*ike2)\? s= e (13
d(ikoz) 9 92w Gsy and, according to E¢(10),
:(z@_llv)(z@_IZV)(z@_l?:v) (9) AS:ACZO (14)
The discriminantA ,=g3 — 2793, of Weierstrass’s function Evaluating Eq.(5), using Eqs(13) and (14), we obtain[9],
@ can be written as subject to the condition
A,=a2C%(2a,C,+q% 93>0, (15)
=16(|1V_|2v) (IZV_|3V)2(I1V_|3V)21 (10) Zqi
E2.(2)= , v=s,c. (16
where a, st Vg2 (w,+ iko2)]
q’ @ |a q, If 92<0, E2. (2) does not satisfy conditiofi2). Straightfor-
l13= 6 7Cv+ b (1) ward evaluation of Eq(16) yields the necessary and suffi-
cient conditions forE,Z,i(z), v=s,C to be real and nonnega-
92 tive:
|2 = — _V
3 NG, a,<0

Rew,=

14

(17)

As will be seen belowA; andl, , 5 are very useful quanti- (3 7+ wl)/\/q—f, a,>0,

ties for the subsequent analysis. For the linear case (

=0), the conditions the physically satisfactory solutions towith | € Z (Z denoting the set of whole numbg=nd subject

Eq. (3) must fulfill are well known[6]. The aim of the to q,2,>0. If q,2,=0, only the case,<0 is possible withl

present paper is to infer from E¢p) the corresponding con- =0 in Eq.(17).

ditions for the nonlinear case. With respect to the dispersion Subject to Eqs(15) and(17) Egs.(16) represent bounded

relation (“mode condition”) in the linear cas¢6] it should E2.(2),v=s.c, if a,>0. If a,<0 only E2_(z) andEZ, (2)

be noted that this condltlon cannot be fulfilled for certamare bounded, since l@,>0 (Cf Appendnb Before deriving

domains of values, e, irrespective the values déod [7].  the CRNB for EZ,(2), it is suitable to make use of the

Below, we present the corresponding conditions of solvabilhoundary conditions at the interfaces0 andz=d. Since

|ty (CS) of the dispersion relatiofDR) in the nonlinear case. poth E2,, v=s,c, and its derivatives with respect tare
V+(n z,wy), according to Eq(5), must be real nonnegative continuous, we obtaif4]

and bounded for alz. To find the associated conditions

(CRNB), for obvious reasons the well-known propertiegof 1

[8] must be used. The CS can be derived in the same manner. ws= ——arcsin \ [ —, (18)

To be “physical” the field intensitieE,z,t must obey CRNB \/q—g aSE(Z)

and DR(subject to C$ As a result, all these conditions and

the allowed normalized thicknesskgd can be expressed in

terms of Weierstrass’s functiop, its half-periods, and the we+ikod= —=arcsin # (19)
associated quantities; ,ws , W ,l1¢,15¢,13¢. Since they are \/q_c acEg.(d)

necessary . and sufficient, CRNB, DR, and CS specify all tu-

pels {a, e, ,n,EX(n,0w0),kod} that are associated with With Eg=Eg(n,0,05)>0 and

physical solutions according to E¢6). Thus, the physical _

significance of CRNB, DR, and CS is the possibility to de- Ci=Ej[ e1—est3 (a;—ag) Ej]. (20)
termine the realizable parametegas, €,,n,E2(n,0,00),kod} , , ,
corresponding to guided waves. Equationg18) and(19) must be consistent with Eg&l7).

The paper is organized as follows. In Sec. I, we deriveH€nce, we obtain, evaluatmg arcsi) (n Egs.(18) and(19)
the CRNB. Section Ill contains solutiofigd of the DR and  [10], additionally tog;=0, the conditions
conditions for its solvabilityCS). Applications are given in
Sec. IV. Finally, Sec. V summarizes the results. The Appen-

a
2 S =2

: . . . >—FE 21

dix contains mathematical details of Secs. Il and Ill. 9s 2 21)
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, A, Since —o=<p(i(Im wt*koz);9¢,931)=<Imin. EQ. (30) rep-
qc>~ Ec=(d) (22)  resents bounded solutions. If and only if
where E2, (d) must be determined by Ed37) below. It >0 and Iyr>max(ly,ls) (3D
should be noted that conditioni$5), (21), and(22) are gen-
eralizations of the corresponding conditions in the linear case
[6]. Turning to the CRNB forE?, and using properties of a;<0 and 5>y (32)

Weierstrass’s functiop the following necessary and suffi-
cient conditions folE?, being real can be derivgd 1]: these solutions are nonnegative. If Rg=0 (A;>0), EZ,
reads, according to Eg5),

Rewi=lw for A¢>0 (23

2
and Ef. = a_f[sﬂ(l(lm w1 *Ko2); 921,031~ l2r]. (33

Re wi=lw, for A;<O (24

Obviously,Efzi is nonnegative if and only i&;<0, because
must hold.,w, denote the associated real half-periodgof the upper bound of (i(Im @;*kez); 921,931 IS I min [11].
[8]. The caseA;=0 has been disregarded for reasons of The necessary and SUfflCIent_conqmon 7. (2) to be
simplicity. Subject to the conditions for the field intensities PoundedCB) is (»’ denotes the imaginary half-period of
to be real(CR) Egs.(21)-(24) w,, v=s,f,c can be written if A1>0)
down explicitly (cf. Appendix. This implies that conditions

(23) and(24) containing elliptic integrals, can be simplified
considerably by using the roots;,l,¢,l3¢ defined in Egs.

20’
0<Im wftk0d<i— , (34)

(11). Ordering the rootd 4,155,153 according tol pyin<lm,
<Imax @nd introducing

lor= 3 aE5+ 151, (25

the following conditions necessary and sufficient E)%i
being real can be derived. #>0,A¢>0 hold, then

I m< I Ofg I max (26)

is necessary and sufficient for re@Ff.. If a;<0, A;>0
hold, then

Lot <!I'min (27
or
Im=lof<lmax (28)
is necessary and sufficient. af <0, A;<0 the condition
lof<<lof (29)
must hold.A;<0 anda;>0 is impossible, because E@4)

cannot be fulfilled cf. Eq. (A6)].
Taking into account the previous GEqgs.(26)—(29)], we

can specify the bounded and nonnegative field intensitie
Due to the periodicity ofy, we reduce the consideration in

the following to the fundamental period parallelogrériPP
[8] if A;#0. Only the following cases are possilild. Ap-
pendix.

If Re w;= w, the field intensity can be written §&1]

E2, (2)= 24 1 |
r(z) as max ' 2f

(I max I m)(l max I min)
P((IMm 01*Ko2);92¢,031) I may

(30

due to the location of the poles gf in the FPP[8]. If
Re w¢= w5, evaluation of Eq(5) yields, using the addition
formula for g,

2 10— 11¢]?

2)=— — ,
- ar p(I(Im w;*Koz);92¢,031) — 1 2

(39

and this is non-negative and bounded if and onha &0
and

[Im w;xkod|<|w)|, (36)

becausey(w;;9,1,931) =12¢, Where w; is the imaginary
half-period ofp if A;<<0. The physical content of the fore-
going analysis can be summarized as follows. Real, non-
negative and bounded solutions to E8). [according to Eq.
(5)] are given by(i) Eq. (30), if A;>0 andl ,<lg;<Iyax. If
a;>0, | =11 must hold. Ifa;<0, | a=12 must hold. In
both case€?, are boundedii) Eq. (33) if A;>0 andl
<lmin @nd a;<0. In this case &Im w;xkyd<(2w'/i)
must hold for boundecEZi(z); (iii) Eq. (35), if A;<0 and
lor<lp and a;<0. EZ,(z) are bounded iflim w¢+kqd|
<|wé|.

The field intensities in the substrate and in the cladding

are represented by EqglL6), if conditions (15), (21), and

(22) hold. E. are bounded i&,>0. If a,<0, onlyE2_ and
EZ. are bounded.

If the parameters,, ¢, ,n,E3,kod do not fulfill the fore-
going conditions no guided waves according to &j.exist.
In particular, there are no guided waves if, irrespective of
kod, the parameters are such tlzat>0 andA;<<0 hold.

Subject to the above CRNB we now specify those nor-
malized thicknes&,d (depending ora,,,ev,n,Eg) that are
associated to field intensitieEfi(z) obeying the boundary
conditions. As a result, we get necessary and sufficient con-
ditions for the existence of guided waves.
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Ill. SOLUTIONS OF THE DISPERSION RELATION

If the boundary conditions are satisfied, then, additionall
to Egs.(19), (19), and(20), the equation

2 2 : 2
Ef.(d)=-[p(wrxiked,gar,9ar) ~lar]= ~N =
f f

(37)
must be fulfilled[12], where[13]
___ee
Ne= 2(1—aclaf)i\/5’ (38)
_ ?f_?c asCs
D= 2(1—ac/a;)|  2(1—aglag)” (39

Thus, condition22) readsg>>(a/a) A .

Subject to the CR of the previous section the imaginar

part of p (w;+ikod;g,¢,93¢) vanishes, so that the right-hand
side of

9 (01 xikod;gos,93r) = N+ +1 5 (40)
must be real. Hence,
D=0 (41)
must hold and, sincE?i(d) is non-negative,
sgn\.=sgnas. (42

TE-POLARIZED WAVES GUIDED BY A LOSSLES . ..
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where 2w and 2w’ denote thgin general complex periods
of p and M,N are integers. Since Eq&3) must hold for
real and positivékyd it is convenient to write Eqg43) as a
system,[14]

Re(zwW.—w;+2Mw+2Nw’)=0, (459

and, forE?, andE?_ respectively,
Im(zw, —w;+2Mw+2Nw’)=kd, (45b)
—IM(£W_—w;+2Mw+2No’)=ked, (450

that must hold for certait,N.

To find the CS for Eq(40) represented in the forr®3)
(with kod real and positive or Egs. (45) thus the allowed
kod, it is useful to consider the CR of the previous section,
since the CS are analogous to the CR.

(i) A:>0, Rews=w, iw'elR. Without loss of general-

}jty we assume thab +i(Im w;*xkgd) € FPP. Since function

p(o+i(lm w;=ked);0-¢,93:) decreases monotonically
from | t0 Iy if Im w;=kode[0,w'/i] and increases
monotonically from 1, to I, if Im w;Eked
elw'/i,20'li], each valuep e[|, mad is taken twice if
Im ws+kode[0,20"/i]. Thus, the CS is
Ims)\t"Hzfslmaxa

(46)

which is identical to conditior{26) with %afES replaced by
\. . Equations(45) read

Equation(40) constitutes a compact representation of the

DR. If some of the parametess,, €,, n, E2, andk,d are

prescribed, the rest of the parameters must be determin

consistently with Eqs(40)-(42). Sinceas, a;, €5, €;, N,
and ES are embedded withim;, g,¢, andgs;, it is rather
hopeless to determine one of these quantities by (EQ).
analytically. In this case, E¢40) can serve for verifying the
existence of solutiongreal tupels{a, e, ,n,E3,kod}) and
testing the consistency numerically.

Nevertheless, due to the fact thaf, g»¢, 93¢, A+, and
I s are independent dfyd in Eq. (40), it is appropriate to
solve Eq.(40) with respect tkod and find the associated CS
as follows.

Formal inversion of Eq(40) yields the mode equations

[4]

ikod=+W, — w;+2Mo+2Nw’, (433
for EZ, and
Cikgd=*w_ —w;+2Mw+2Ne’, (43D
for E2_, with
wt=f S — (44)
A tlog m

Rezw.—w+2Mw)=0, (473
Im(xw, —w;+2Nw’)=kqd, (47b
—Im(zw_—wi+2Nw’)=Kkgd. (470

%‘omparing Eq(46) with Egs.(26) and(28) it is obvious that

Eq. (46) is equivalent to

Rew. =w. (48)
HenceM=0 or M=1 is necessary in EqQ478 and the
positive normalized thicknesses are given by E43b) and
(470 according to

kod=4{ Im(w,—w;+2Nw’), if N=1,2,3...
IM(—w, —w;+2Nw’), if N=234...,
(49
associated withEZ, , and
Im(—w_+wy), if 3aEG>N_
kod=3 Im(—w_+w;+2Nw’), if N=123...
Im(W_+w;+2No’), if N=—1,01,2,3...,
(50

associated witlE2_ and subject to Eq946), (31) or (32),
and without further restrictions with respectkgd sinceE’li
are bounded if Rev;= .
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(i) A;>0, Rew;=0, welR, io' elR. We assume that E]?_ is bounded.

i(Im ;= kod)eFPP. In this  case p(i(Im wy In order to find physical solutior&2, , v=s,f,c, the nor-
+Kod); 021 ,93r) increases monotonically from-o to Imin  malized thicknesk,d must be given by Eq$49), (50), (54),

and then decreas,es monotonically fram;,, to —« as (55), (59), and(60) (for Efz+ andE?_, respectively and then

Im ‘."f.ikode[o'zw /i]. Hence we get the necessary andthe appropriateEﬁﬂ v=s,C (satisfying the CRNBmust be
sufficient CS matched withEZ, or EZ_ (or both at the boundaries. In

Aot loe<I 51 general, the appropriate combination of signs in the sequence
* 2f="min ( ) 2 2 2 . .
Es., Ef., andEZ. conveniently can be found by using
which is equivalent to

dES.
Rew. =0, (52 SgN 42 == sgna,
z=0
in analogy to the equivalence of Rg=0 and condition dE§+
(27). Similar considerations as in the previous c@séead to sg dzf =% sgna, (62
M =0 in Eq. (459 and thus to the possible mode equations z=d
, dEf. 2kolg'|
Im(xw, —w;+2Nw’) for Ef, 4z == a ie ,
kod= 53 = f -
o= _im(+w_—w+2Nw’) for E2. OO 2=0d 2=0d

wherep’' =dp(u;g,,93)/du ande=(p'/|p’]).

For u=Rews+i(Im w;*kyz), Rew;=0,w,w,, € is
given by Fig. 2[16]. Obviously, the sign oflE?./dz at z
=0,d depends on the magnitude of l@ and of Imw;
(54) +kod and thus on the appropriate mode equatioh3).

Evaluating the CHEQq. (34)] the positive normalized thick-
nesses associated to boundgd are thus

{Im(w+—wf) if A,>1a(E2
od=

Im(—w, —w¢+2w'). Evaluation is facilitated by using the associated inequalities
for Im w¢ and Imw.. (cf. AppendiX. An example is given
EZ_ is bounded if the thickness is given by in the next chapter.
With reference to the summary at the end of the previous
Kod=Im(—w_+ wy), (55  section the results of this section can be summarized. In or-
der to match the field intensities at the boundaries according
subject tox _ <3aE}. to (i)—(iii) of Sec. Il [Egs. (16), (30), (33), and (35)] the

(i) Af<0, Rewt=w,, wyelR,iw,elR. The primi- following necessary and sufficient conditions must hold ad-
tive periods ofp are 2w, and w,+ w5 [15]. Assumingw,  ditionally: | ;<\« + 1511 pa for (i), Ao +1:=<I, for (i),
+i(Im w;xkoyd) e FPP, in this case p(w,+i(lm w;  AN.<O0 for (ii). The associated normalized thicknesses are
+kod);g2,031)=A=+15 must be solved forked. For  given by Eqs(49),(50) for (i), by Egs.(54),(55) for (ii), by
Im wi=kod e[ —wh/i,0], @(wo+i(lm wi=kod);0-¢,03;)  EQs.(50),(60) for (iii), respectively. Inserting the appropriate
increases monotonically from = to |,; and then decreases Ppositivekqd into Egs.(16), (30), (33), and(35), respectively,
monotonically from l,; to —e for (Im wi*kyd)e[0, and making use of Eq$61) the possible combinatiors?, ,

+ w,/i]. Hence, we get the necessary and sufficient CS EZ., E2. are obtained. In this way all realizable guided
waves(2) as well as necessary and sufficient conditions for
A . =<0, (56)  their existencé CRNB and C$ are found.
) It should be noted that thk,d obeying the DR can be
equivalent to expressed by elliptic integrals whereas the CRNS are alge-
REW. = o 57) braic, only containing\¢,lg¢,115,12¢,13;. Thus, these con-
% ditions can easily be evaluatédf. (i) and(ii) of Sec. IV].

Equations(45) read[16]

Re(xw.—w;+(2M+N)w,)=0 (589 m W)

2w

Hence, M+N=0 or 2M+N=2 is necessary and the v

positive thicknesses associated with bounéd are v et
€= -1 €=1
|m(W —wf) if la.fE2<)\ ) w 9 o
kod= + 2 0 + (59) 2w R iy
Im(—w, — wy) A0 Ap<o
if [Im w¢+kod|<|w;| is evaluated. If FIG. 2. Fundamental period parallelografPP for positive

and negative discriminant&;. e=gp’'/|p’| denotes the normalized
kod=Im(—w_+w;) and 3aE5>\_, (60)  derivative of Weierstrass’s functign(u).
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f’ c b and
< 4, >
i S\ MA,OW _ a
J\ : < n?>e.+ a_fLr if —6<a;E53<0 (62b
G and
2 Af>0
WP>et h_ if aE2<0 (620
N c as - f=0 .
Ar=0
In particular, this means th£,2,+, (v=s,c), must be ex-
! cluded if a;E3<—6 (domain Q. These conditions specify
zrz]  {ES.n} associated with real and nonnegatig. , v=s,c. If

4 34107 60l7 0

v="f the conditions for the different regions designated in
FIG. 3. Subseté&—G (discriminated byA,) of the (E2,n) plane  Fig. 3 are associated as followthe equations for Re; and
with patterns of physical field intensitig¢anscalegl Re w. in brackets represent the corresponding equivalent
CR and C$
The customary way to investigate the B&R)) (cf. [1,4])
is to prescribe the normalized thickndggl and the material
pare_xmeters'a,,, €,, v=s,f,c 2nd t_hen to solve Eo(.40)_nu- (B) lgr=<lg<ly;<lo (Rew;=0), A;>0,
merically with respect tm, Ej. This procedure works if and
only if the CRNS are satisfied for a certain domain in the (C\/D) lgi<l<lz<ly; (Rew;=0), A;>0,
(E3,n) plane. If sokyd, according to Eqs(49), (50), (54), (63
(565), (59), and(60) can be plotted as a function Eﬁ,n and
then it can be checked whether or not the prescribed value (EVF) loi<lz (Rewi=wp), A<O,
kod is taken by this function.
In principle, this procedure can be used for any subset of

the set of tupelda, ,€,,n,E3 kod}, v=s,f,c if certain pa- As follows from Egs.(A3)—(A10), the field intensities
rametersa,, €, (v=s,f,c), n, E2, andk,d are prescribed. EZ.(z) corresponding to the different subsets of th& (n)
plane, given by Eqgs(30), (33), and (35) are all real and

nonnegative.
IV. APPLICATIONS . e . .
(i) Verifying CS and solving DR with respect tgdk Due

to the special choice of the parametees fnda, are given,
To illustrate the above results we choose the material paso that Eq.(40) must not be solved with respect to these
rameters as in Ref1] a;=a.=0, a;= = 10"} (m?/V?) ;f parameterkand subject to the corresponding CS,

(A) I3i<lysslgi<ly (Rewi=w), A;>0,

(G) |0f<|3f$|2f<|1f (Rewf=0), Af>0

A. A numerical example

=4, e;=€.=1 but with a;=a,=10"2°m?/V? instead of (A) la<ly <N\, +1p<ly (REW, =),
a;=a.,=0. A negative Kerr coefficient a;=

—10"Y(m?/v?) was selected because the cage-0 is (B) A_+1y=<I3<Iy<ly (Rew_=0),

rather simple, since the conditicax>0 and A;<0 is not

consistent with Eq(24). ThusE?. are always bounded if (CVD) No+l<lz<Iz<ly (Rew.=0), (64

a;>0, because Re;= w in this casdcf. Eq.(A2)]. To find
the parameter&3, n, k,d associated to physical solutions
Eﬁi(z) the following procedure seems appropriate.

(i) Verifying CRN With the above prescribed parameters
evaluation yieldsD=0 if afE§<O, A, <0 if —6<afES the DR (40) can be solved folkyd yielding the allowed
<0, A_<O0 if angsO, so that conditiong21) and (22) thicknesses.
combined with Egs.(37) and (41) define subsets of the (iii) Determining the positive thicknessegdkassociated

(EVF) A:<0 (Rew.=w,),

(GIN_+1<l3<I<lys (Rew_=0),

(E3,n) plane(see Fig. 3 by with field intensities &, obeying CRNBSince theE?, are
. = bounded if Rew;=w only the CB (34),(36) must be
n’>e+ 3 asEé if afE§<0 (6239 evaluated subject tkyd>0. We obtain the following results:

(A) EZ, is bounded if and only if

d Im(w, —w;+2Nw’), N=123...
T lIm(—wy —wf+2Nw’), N=2,34...;



1046 H. W. SCHLRMANN, V. S. SEROV, AND YU. V. SHESTOPALOV PRE 58

(B) boundedE?_ do not exist, sinc&k,d=0 according to Eq(55);
(C) EZ, is bounded if and only if
Kod=Im(—w, — wf+2w"),
EZ_ is bounded if and only if
kod=Im(—w_+w¢) and A_<3aE2,
(D) EZ, is bounded if and only if

Im(w,—w;) and \,>3aE}

ClIm(—w, - o+ 20"),
(E) EZ, is bounded if and only if
Kod= Im(—w, —wy),
EZ_ is bounded if and only if
kod=Im(—w_+w;) andx_<3asE3,
(F) EZ, is bounded if and only if
kod={ Im(w; —w¢) and \,>%aE2,
Im(—=w, —wg),

(G) boundedE?, do not exist.

(iv) Finding the appropriate combination of signs in the sequercg . ,E2. obeying CRNBUsing Egs(49), (50), (54),
(55), (59), and(60), the normalized thicknesses given in the foregoing section are associateBwithat can be combined
with E2, andEZ2. as follows[labels a, c, d, e, and f refer to Fig]:3

Im(w, —w;+2Nw’), N=1,23,..;E2, E? ,E2 (ay)
A) kod=
A ko Im(—w, —w+2Nw'), N=234,...;E2 E? ,E2, (a),
Im(—w, —w+20") ; E2, EZ, , E2, (cy)
(C)  kod= . 22 2 2
Im(_W7+wf)= ES+! Ef*' EC+ (CZ)v
Im(w, —wy); E3_, Ef,, EZ_ (dy)
(D) kodz{ ; N =2 ’ 2 2 (66)
|m(—W+—wf+2w ), ES*’ Ef+, EC+ (dz),
Im(—w, —w); Eé, E?‘F’ E§+ (e1)
(B) kod= . =2 2 2
Im(—-w_+w¢); Eg,, Ef_, Eq, (&),
Im(w, —w); EZ_, EZ,, EZ_ (fy)
(F)  kod= L2 2 2
Im(—w, —wy); E2_, E2,, E2, (f,).

Boundary betweefE) and (C): kogd=Im(—w_+wy); E2, , E?_, EZ, (ec).
Boundary betweeiF) and (D): kod=Im(w, —w¢); E2_, EZ, , E2_ (fd).

To sum up, if the parametess, and e, are given, physical [6,7]. They specify, in a manner that is different #f, and
solutionsE2. can be found by choosing the parameters EZ_, a cutoff with respect to the effective wave index
E3, andkod appropriately, as shown in Fig. 3. In particular, depending on the intensitig2. The analogon of the linear-
some results can be compared with those of the linear casgase conditiom?<e; [6,7] seems to be the conditions of
Obviously, Egs.(62) are generalizations af>>max(e,e)  (i)—(iii) in Sec. Il (without the CB containing,d). Remark-
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ably, these conditions depending on the sigaoénd of the  for boundedE?_. EZ, must be matched witk2_ andEZ, ,
discriminantA; can be expressed in terms of the robts  both being unbounded?_ must be matched witk2, and

I ¢, I3t according to Eq(11). In addition to these conditions E2, , E2, being unbounded. Thus, there is no combination
the CB lead to specific exclusiopdomains(B),(G)] not ap- o the field intensities€2.. with all E2, being bounded.
pearing in the linear case because<e; implies bounded If kod=1r (E§=5>< 1616, n:1.588?) is selected, evalua-
field intensities in the linear filny6] ( it would be intriguing  tion of Im w+k,d in Eq. (36) yields boundedE?, and un-

to investigate whether the occurrence of the cutoﬁEét boundedEZ_ [since Eq.(36) is not satisfiedlin agreement

=6x 10" is specific for the parameters chosen or whether it,ii Ref. [1]. The field intensitie€2_, E2, , andE2, fit at

is a general consequence of the )CBquations(66) show the boundaries, bLEﬁ, and E§+ are not boundedE?, fits
that the CRNB and the CS specify two mode equations fo(/vith E2

. 5 . : 2., andEZ_ (both are bounded But, according to
Kod with Eg, n in the allowed domainA),(C),(D),(E).(F). Egs.(67) and(68), kod= 7 is not the appropriate thickness.

This means that exactly twdn general, differentnormal- Changing slightly the parameters; and a, (a,=a,=
ized thicknessek,d are determined for ead3,n. Since the —0.2a;), we obtain, using Eqs(67) and (68), that kod
mode equations defirlgd as a continuous function (ﬁé,n —1.346 for E]g+ and kod=1.769 for E]? _ Ef+ remains
in each of the allowed domains, there must be a lower angl; ;nded and now fits with boundeEﬁ_ and E§+. Efz_ is

upper bound okyd for the corresponding domain. Thus a bounded ifkyd=1.769 and fits with boundeE§+ and E§+

lower and an upper cutoff with respect_k@d can be deter- in this case. Thus, we have demonstrated that by changing

mined numerically(for the parametera, e, chosen and for  rea| parametera, anda, of the substrate and of the cladding
the corresponding domain in th&g,n plane. It seems that  and selecting the appropriate thicknégd=1.769, one can
these results could be of practical importance due to theifemove the singularity oEfz,.
potential use in designing optical waveguides. It may be that a singularity of the field intensity is an
Finally, it should be noted that we included the limiting artifact due to the use of a real local permittivity. But this has
caseA;=0 in Fig. 3. It is rather interesting, that ta@n-  not yet been proved analytically. On the other hand, the as-
scaled intensity patterns éc and c,, fd and d;) are the sumed local Kerr-like real permittivity is not unphysical,
same though the corresponding mode equations in @65. since it gives rise to well-known phenomena in nonlinear

are different. optics.
To conclude, the solutions obtained according to Efk.
B. On the origin of singular field intensities are generally singular, and it is necessary to restrict the

. ) choice of parameters by certain conditions given above to
As the second application, we address the question: Is Yyoid singular solutions. As shown abofef. Egs. (A1)-

necessary to explain the occurrence of singular field intensiag)] there are no singular solutions at all if the Kerr coef-
ties by neglecting absorption within the nonlinear media? 'tficientsav are positive. In particular, #,<0 andA;<0, the

seems to be nontrivial to extend the foregoing analysis t‘?hicknesskod must be determined appropriately with param-

include absorption. Apparently, an analytical solution to the 2 .
nonlinear Helmholtz equation for absorbing dielectric Iayersetersa'“ €, N, andEg according to CNR and Eq#58) and

is not known in the literature. Nevertheless, it has been art39): Thus, & possible explanation for the existence of singu-

gued that singularities of electric fields "can be weakened b))ar field intensities is as follows: the thickne®f the film is
the presence of dampind’17]. Physical intuition is not very "ot appropriate.
reliable in nonlinear problems, so that it seems appropriate to

try a different explanation of the occurrence of singular . . .
ry P 9 C. Guided waves in a structure with linear substrate

fields. . ) .
Considering the example in Refl] (a;=a.=0, a;= and film and nonlinear cladding
~10°Y7 m¥V2, =4, e;=e,=1, a;E3=—05, andn _As athird application the case=a;=0, a;>0 [17.18
—1.589, cf.[4]), we obtainA;<0 and is briefly discussed. 1&4=0, the discriminantA; vanishes,
this case has been excluded in the above analysis. A basic
Re w;= Rew.=w,=1.749, assumption of Sec. Il was #0. If a;=0 some of the results
of Sec. Il become meaningless. For examplebecomes
w,=3.141, infinite in the CR EQ.(23) and in the CS Eq(49) if a;=0,
qf2<0, sincel ;:=1,; in this case. Henceay; in Eq. (37) is
Im w¢=Im w, =—0.665, not defined. It seems rather involved to evaluate the results
of Sec. Il in the limita;— 0. Thus it is appropriate to go back
Imw_=-2.476, \.<O0. to Eq. (3) and solve it subject to the constraints3), (15),

According to Eqs(59) and (60), the following possibiliies (>0 and(@)- Hence
remain: Eq(z)=Eqedsko?, z<0 (69

kod=Im(—w, —w;)=1.331 (67)

2
for boundedEy, and E1(2) = Eo| coshyskoz+ %sinhqfkoz), 0<z=d,
f

kod=IMm(—W_+ w;)=1.810 (69) (70)
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2q§ 1 where the upper and the lower signs refelsia andE,._,
E.o(2)=\/— , z=d, 71 respectively. The nonlinear dispersion relatigi2) re-
c=(2) =1/ 80 S Va2 oot iko?)] (77) P y P on2)

sembles the linear one with the exception that
where o, is given by Eq.(19). According to Sec. Il both =i~ (ac/2) Ef(d) was introduced. According to E(R2)

solutionsE.. (z) are bounded. Using E(q19)'the continuity  q, is real.q. is equal tog. if a,=0 and, since onlfE._(2)
of dE/dz at z=d can be evaluated leading t@f. Refs. s consistent with Eq(12) in this case, Eq(72) is reduced to

[17,18) the linear dispersion relatidi20]. Equation(72) can be writ-
P ten as
tanhyskod + qf2q_5—+5° =0, (72)
s +0s0c

2
— (q¢sinhgkod + gscoshkod)?

qﬁ( coshykod + %sinrqfkod
ac 2_ as
2507

q Z (73
(coshqfkodJr q—ssinl'qfkod)
f

This version may be useful for finding parametersity conditions are satisfied. Akyd consistent with the dis-
{a, €,.N E3,kod} compatible with the nonlinear dispersion persion relation and associated with real, non-negative, and

pally

relation. bounded field intensities are specified. Thus it seems that the
description of TE waves guided by a lossless Kerr-like non-
V. CONCLUSION linear three-layer structure has been broqght to a certain
close. Unsolved problems refer to absorbing layers and a
TE-polarized waves according to Eq®) and (12) sup-  stability analysis of the guided waves.
ported by a lossless Kerr-like nonlinear three-layer structure
have been investigated. Necessary and sufficient conditions
for the existence of real, non-negative, and bounded field
intensities and a general dispersion relation have been ob- We gratefully acknowledge support of the Deutsche For-
tained. It has been shown that, subject to certain necessagghungsgemeinschaldFG) Grant No. 436 RUS 17/150/96.
and sufficient solvability conditions, the dispersion relation
has solutions(certain domains in the parameter space

{a,.e, .n,E3 kod} that are consistent with the dispersion re-
lation). In particular, the dispersion relation can be solved Subject to the constraint21)—(24) evaluation of Eqs(6)
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APPENDIX: EXPRESSIONS FOR w,,, v=s,f,C

with respect to the normalized thickndggd if the solvabil-  yields
|
(1 202
a
—| —+iln(a+Va?-1)|, a>0, a= *>1
\/—2 2 E2
qs ag 0
Ws= ¢ (A1)
i 23 203
2In St 1- 1k a;<o0,
\ \/q—s _asEo asEO
1| arq: asq>
2 4iln \/ fOIC+\/ Al —1) . a.>0
\/Eg 2 ach + ach +
wetikod= (A2)

. 2 2

| a a
_Zln( \/ qu + \/1_ﬂ), ac<0,
A\ qC _ac)\t ac)\i

Imx dt
wf=w+f 420, A0, a0, |<lg<I (A3)
|

of VA —gyt—gg
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- dt
o=+ | e, i A>0, 2<0, lof<Imp, (A4)
lor VA" — 0ot —gas
I max dt
wimot | e +20', i A>0, 3<0, 11=10t<lmax, (A5)
lof m
I 2f dt
o=t | if A,<0, a;<0, lo<ly. (A6)

lor VA —gait—gar

Due to conditiong46), (51), and(56), w-. is given by the above expression fek if %ang is replaced by\ .., respec-
tively. The above expressions; imply, in particular, since

’ Imax dt
w = B —
Im VAt —gort — gay
Im wi=Im w’'>0, (A7)
if a;<0, | =<Ip;<Imaxand
Im wi>Im w'=0, (A8)
if a;>0, | <lgi=<I|nax, @nd, since
;. I'min dt
o' =i 5 ,
= \]4°—gart— gl
0<Im w;<Im o', (A9)
if a;<0 andly;<l - Finally, since
R dt
w,=i = ,
—» |43 — gt — gl
[Im ¢ <Im|wj], (A10)

if a;<<0 andly;<l,;. The same conditions hold, i is replaced byw. andl; is replaced byn . +1,;.
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