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Scattering of the ¢* kink with an interface
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We study the scattering of a kink at the interface of #fbsystems with different substrate potential barriers
using collective coordinate method and a direct numerical simulation of the wave equation. During the scat-
tering, it is found that the kink internal mode is excited and the kink emits reflected and transmitted small
vibrational waves. For an incoming kink with already excited internal mode, the final velocity after the
scattering depends on the amplitude and the phase of the initially existing h$dd¥3-651X98)02006-9

PACS numbds): 42.81—i

[. INTRODUCTION by Kenfack and Kofandor breathers[19] in Josephson
transmission lines whose inductance is a spatially varying
The study of the motion of topological Klein-Gordon soli- function having asymptotic values. It is worth mentioning
tons or kinks is one of the interesting problems in the moderiihat for other types of solitons such as envelope solitons of
theory of nonlinear waves. This is due to the fact that suctihe nonlinear Schuinger equation, the scattering with the
waves ensure the transport of information in various fields omass interface has also been considered by several authors
physics, such as dislocations in crystalline lattifes3], at-  (see Ref[20], and references theregin

oms adsorbed on metal surfadd3d, domain walls in ferro- Section Il of this paper contains the description of the
electric and ferromagnetic materigl§—7], and fluxons in  problem and the collective coordinate method analysis. Sec-
Josephson transmission lings. tion Il deals with the direct humerical simulation of the

During their motion, kinks interact with inhomogeneities scattering. It is found that the kink internal mode is excited
of various types: localized impurities, spatial modulated andy the interface and in the case of transmissiefiectior of
periodic impurities, localized thermal and stochastic noisesthe kink at the interface, reflectettansmitted small vibra-
or disorders of several kinds. These inhomogeneities mafjonal waves are emitted. Some dynamical quantities of kink
give some special properties to the physical systems; e.g., tis¢ich as the final velocity after the interface and the critical
mechanical properties such as plastic deformation of crystarelocity below which the kink is reflected by a repulsive
are particularly determined by the concentration of impuri-interface are computed. When the kink internal mode does
ties [3,9]. It is also known that the nonlinear conductivity exist before the scattering, it is found that the final velocity
and the diffusion coefficient of one dimensional systems arglepends on the amplitude of the initially existing mode. We
accounted for by the action of impuriti¢$0,11]. give concluding remarks and discuss some physical applica-

In recent years, particular attention has been devoted tions of the model in Sec. IV.
the study of the interaction of nonlinear waves with inhomo-
geneities. In gengral the kink can be. eithe( cap.tured,. re- Il. PROBLEM AND THE COLLECTIVE
flected, or transmitted by thg impurity ywth a d|stc_>rt|on of its COORDINATE METHOD
structure and a change of its dynamical behavior. In some
cases the inhomogeneities can generate new degrees of free-We consider an inhomogeneoyé system with the La-
dom, such as the so-called impurity mdde—14 and can grangian
excite the kink internal modgl4,15. This leads to a reso-
nant interaction due to energy exchange mechanism between
the kink, the impurity mode, and eventually the internal sz dx(3(uf—uf)—i[1-€ed(x)](V*=1)2], (1)
mode[12—-15. In the case of a spatially periodic parametric
perturbation, the sine Gordon kink can propagate steadil . - : )
and mostly undisturbed and can suffer the phenomenon o_%e;e 6(x)0|s the_Hlez?V|S|d>eoste_[l3_hfuncuon d?f'n.edEW)i)
length scale competitiofil6]. For the ¢* model, different . orx<0 6(x)=1 for x=0. € integration in Eqc)

types of kink behavior can be distinguished: radiation at higHscﬁvtesrttgiéinggft’zurrgid ér;?icg)le()ft:\hee tfr%:satzr;(-j EthiSatjlbd-e-
velocity, strong resonant beating and almost periodic behav:C P )  esp Y, SP .
rivatives. e is a small parameter which characterizes the in-

|[(:)Lr5]for intermediate velocities, and trapping at low velocity terface. Fox<<0, the barrier of the substrate potential is 0.25

while for x=0, it is equal to 0.25(% €). The equation of

In this paper we consider another type of situation with ) ; . :
pap P motion of the spatiotemporal field(x,t) is

practical interest. We study the interaction op#é kink with
an interface generated by an abrupt change of the substrate 3

potential barrier. A similar problem was considered by U= Uyy+[1—€6(x)](u®—u) =0. (2
Yamamoto for two sine Gordon systems with different dis-

persion coefficient$17]. We also mention the works done  When e=0, Eq. (2) supports the propagation of a topo-
by Sakai, Samuelsen, and Olsen for kifk8] and recently logical soliton, the so-called kink given by
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FIG. 1. (8 Amplitude A(7) of the excited internal mode in the case of transmission of kink through the intesfalie line for e=
—0.2 and dashed line with squares for 0.2) with V;=0.5. (b) A(7) in the case of reflection of kink by the interfatée= — 0.5 and

where 7 and z are moving coordinates defined fay y(x
, 3 —vut) and 7= y(t—vX).

When the kink approaches the interface, its motion loses
12 ; , its translational invariance. The kink velocity becomes a time
where y=(1—V") " is the Lorentz contraction factok  yenendent function. Moreover, it is seen, after the numerical
being the constant velociti(t) =Vt is the kink coordinate.  gimyations, that the interface excites the kink internal mode
Linearizing Eq.(2) around the kink structuréwith €=0), 5 in the case of a pointlike impurifiL3,14 or a spatially
one obtains an elgenvalue problem which _has two d'scretﬁeriodic parametric perturbatidd5]. Thus, to give a tenta-
modes and a continuum spectri&?21]. The discrete modes e analytical description of the dynamics of kink colliding

correspond to the ftranslation mode with an angular freyit, the interface, we use the following collective coordinate
quencyw=0 and to localized deformations or internal oscil- 5ysatz:

lations of the kink shape. This last mode is defined by

~ {y[x—xm]
Ug=tanh ——
V2

yzoneXF(isz)fz(Z), (43) U(Z,T):tanr[Z_ZO(T)]+y2(T), (sa)
. _ : . where
with w,=/3/2 andA, being a constant. The corresponding
eigentunction s Ya(7)=A(7)f2(2=Z(7)). (5b)
1/4
fo(2)= 9 tan Zz sec Zz ’ (4b)  Zo(7) andA(r) are two unknown dynamical variables. Their
8 v2 V2 equations of motion are obtained through the effective La-
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FIG. 2. Kink final velocityV; after the inter-
face as a function of for V;=0.5: Solid line for
the principle of conservation of energy without
the excitation of the internal mode, dashed line
with squares for the collective coordinate equa-
tions, and crosses for the direct numerical simu-
lation.

04

grangian approach which has been recognized to be veifpre use the principle of conservation of energy to establish
useful for studying the kink dynamid43—-15. OnceZy(7) that the kink final velocity/;, far after the interface, is given
has been obtained, the coordinaté) of the kink center in by the relation

the original ,t) reference frame can be obtained by revers-

ing the Lorentz transformatioB,( ) = y[ X(t) — Vt]. Let us Vi=V2+e, 8

note that one could also tackle the problem by the perturba-

tive method of Fogeet al. [22]. _ _ whereV,; is the kink initial velocity(far before the interfade
Inserting the ansat®) in the Lagrangiar(1), we obtain  Thys for negativee or repulsive interfacépositive e or at-

the effective Lagrangian tractive interfacgthe kink velocity decreasdincreasepsaf-

ter it has passed through the interface.
R Let us now consider Eq(7b), which is similar to the
L=5 MZo+ 5 [A"—w2AT]+ 7 [2+seciZytanhZ, equation of a harmonic oscillator with an external pulse
force. As the kink moves towards the interface, its internal
mode is excited and two possible outcomes can be ob-
tained: reflection and transmission. In the case of reflec-
tion, the external pulse force of E€Zb) reduces to zergas
Z,— —x) but after having set the oscillaté«( 7) in motion
[see Fig. 1b)]. We may, however, note that depending on
©) the value ofe, the soliton needs a sufficient velocity to come
close to the interface. Otherwise its reflection occurs at a
~distance(before the interfagewhere the value of the pulse
whereZ; =(Zo+V7)/v2 and the dot refers to the derivative force is nearly zero. In this case, the internal mode is not or
with respect tor. My = 2v2/3 is the kink mass. The equations js slightly excited. When the kink passes through the inter-
of motion for the collective coordinate&(7) andA(7) de-  face, the external pulse force gradually tends to a constant

+2tanhZ;]—ev2

9]¥4 1
g} T— 2 seciiz tanhZ,

1 1 -
+ 3 sechz;tanhz;— 1 arctafiexp(—z;) ]+ 8 A,

rived from the Lagrangiar6) are and the amplitudé\(7) of the internal mode has the analyti-
cal form
L€ 1/4
MiZo=7 secz,— e 5 —secRz,+sechz, V3 [914
A(T)=——=|5| €e[l-coqw,7)]. (9)
1 12|8
2 secth) A, (79
We have solved numerically the set of equati¢isas-
suming first that the internal mode does not exist before the
. 5 V2 [9]Y4 scattering. The main aim was to find the kink final velocity
ATwoA=—7 15| € —sectiZ tanhZ, after the interaction with the interface, the critical velocity

under which the kink is reflected by the interface, and the
1 T time evolution of A(7). As concerns the above mentioned
+t5 sectZ tanhZ, —arctafiexp —Z;) |+ >/ velocities, the results are reported in Figs. 2, 5, and 6 with
the results of a direct numerical simulatitsee Sec. ). We
(7b) report in Fig. 1 the time variations of the amplitudé¢r) of
the excited internal mode in the following cases: transmis-
In the course of analyzing Eq&), let us first assume that sion with positivee, transmission with negative and reflec-
the effects of the internal mode are negligible. One can therdion with negativee. In the case of transmissioA( r) varies
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FIG. 3. Excited internal modg, for V;=0.5 with e=0.2 (solid line) ande= — 0.2 (squaresobtained when the kink is &= 12 after the

interface.

around a negativépositive) value for e>0 (€<0). In the
case of reflectionA(7) oscillates around the axis.

lll. DIRECT NUMERICAL SIMULATION

We have solved the wave equatié®) with the fourth

cated atx=0. During the numerical simulation, we compute

the kink center by the interpolation

- un(t)

XO= G —un0

+n|AX, (11

order Runge-Kutta algorithrf23]. The accuracy of the nu- whereu,(t)<0 andu, ,(t)>0. The kink velocity follows

merical calculation is testeffor the homogeneous systém the simple differentiation
using the fact that the energy of the system should remain
constant during the computation. The length of the system is
equal to 70 — 35 to 35 with discrete step sizesx=0.1 and
At=0.05. Some dissipation is imposed on the last 20 spatial
steps at each end of the system to prevent end effects. At the The results of the numerical simulation are the following.
position x=n Ax (n being an integerof the system, the For an attractive interface, the kink velocity increases after
displacement field is defined hy,(t). The initial conditions the interface and finally attains a final constant value which

for the displacement(x,t) and velocityu, (x,t) are increases withe and V; (see Fig. 2 As it appears in this
figure, the values of/; obtained from the collective coordi-

X(t+AD - X(t)

M At

(12

Y(X—Xo) nate equations$7) and from the direct numerical simulation
u(x,t)=tan 5| (103 are lower than that predicted by the principle of conservation
of energy(without including the excitation of internal mode
This is due to the excitation of the kink internal mode, but
(X, t)=— y_v' ech Y(X=Xo) (10b) also to the reflection of small vibrational waves at the inter-
' V2 V2 ' face. The excited internal mode obtained from the numerical

simulation of the wave equatidi®) is reported in Fig. 3 for
where X, (Xo=—5 in our study andV; are, respectively, two values ofe and for a kink at the distancé=12 after the
the kink initial coordinate and velocity. The interface is lo- interface. The shape and the amplitude of the internal mode

FIG. 4. Time dependent behavior of the dis-
placement at the lattice poim=—20 for V;
=0.5 with e=0.3 (solid line) ande= 0.6 (dashed
with squares

u(-20)
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0.8

05 -

0.45 -

04

Ve

SCATTERING OF THE¢* KINK WITH AN INTERFACE

1037

FIG. 5. Critical velocityV. below which the
kink is reflected by the interface as a function of
e. collective coordinate methoddashed with
crossey numerical simulation (dashed with
squares
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are consistent with the results of the collective coordinateyhich the kink is reflected by the interface. The results are

method(showing the effects of the type of the interface; notereported in Fig. 5. As can be expect&t}, increases withe|.

also that the amplitude of the internal mode increases Withye have found here that after the reflection of the kink,

the strengthe of the interfacg: small vibrational waves are transmitted through the interface
In Fig. 2 a divergence also appears between the results gfq with a sufficient initial velocity, the kink goes back with

the collective coordinate method and that of the direct NUsi5 internal mode excited.

”_‘e“?at'_ S'mbUI?‘t'O? Wheﬁ]'nciﬁa?ei‘]:\t/ﬁ frorr|1I thte_ numerlocl_al o We have also considered the case where the kink internal
simulation being lower than that ot the collectiveé CooraiNate,, , o s axcited prior to the scatterifithis is done in the

method. Besides the fact that the collective coordinate . . . AN .
Lo e . - collective coordinate equations by setting=A(0) differ-

method is limited in its capacity to account quantitatively for : : ) .
the results of the numerical simulation wherncreases, an ent _from Zero and_fg_r the dlre_c_t numerical simulation by
explanation of the divergence is due to the fact that duringjaddlng to the initial conditions (10) term YZ(t)
the collision, the kink loses a part of its energy to generate- ~0C0S@2)f(v(x—Xo)/v2) and the corresponding time de-
reflected waves. Indeed, after the incident kink collides withvativel. The simulation shows that the kink final velocity
the interface, it emits small vibrational reflected wayese decreases a&, moves from negative to positive valugsg.
Fig. 4. With an increase ot or of the initial velocity, the 6). Another interesting point is the role that the phase of the
amplitude of the reflected waves increases and the corrdéaternal mode plays during the scattering. By adding a phase
sponding energy also increases. 0 in the cosine factor of the above expressionygf the

For a repulsive interface, we have been particularly interdirect numerical simulation indicates that the kink final ve-

ested by the evaluation of the critical velocitf below locity is a function ofé. Although the form of the function
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FIG. 6. Kink final velocity after the interface as a function of the amplitude of the initially excited internal mode=fé/5 andV;,
=0.20: collective coordinate methddash with crossesdirect numerical simulatiofdashed with squargs
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V;(#) depends on the value &, it is found that for each particular, our results can be applied to devices made by a
Ao, Vi(0) varies around/;(0) as # sweeps the range 0 to junction of two ferroelectric materials such as lead ger-

21 manate and antimony sulphoiodide whose technological
properties are well knowf25,26. Moreover, our work can

IV. CONCLUDING REMARKS shed some light on the study of the dynamics of domain

AND SOME PHYSICAL IMPLICATIONS walls separating two coexisting phases in symmetric binary

] . ] ~ systems or in ferroelectric materiglsee Ref[27] for sym-
We have studied analytically and numerically the colli- metric binary systems Indeed, for such systems, the sub-
sion of the¢? kink with an interface. The analytic treatment gt ate potential has the general fork(u)=(A2/4B)[1
uses the collective coordinate method which takes into ac-(g/A)u2]2 whereA>0 is a temperature dependent coef-

count the kink coordinate and the amplitude of the internakjgjent [e.0., A(T)=a(T—T,) whereT, is the Curie tem-
mode of the¢? kink. The results obtained show the excita- peraturé andB is a constant. If we assume the raBoA to

tion of the kink internal mode and the emission of reflectedye constantithis assumption is always consistent in the
or transmitted small vibrational waves. The interaction be-4pgye quoted ferroelectric materiglthen our study is com-
tween these generated excitations and the kink explains tr’tg\arame to the physical situation where, as a result of a tem-
energy lost during the scattering. The kink final velocity afterperature gradient, the value éfis changed from a certain
the interface and the critical velocity below which the kink is point of the physical system. We must note, however, that in

reflected by the interface have been computed as funcéons yarious ferroelectric materials, we should take into account
The study also shows that the final velocity depends on thge discreteness effedizs].

initial amplitude and the initial phase of the kink internal
mode (when we consider an excited kink before the scatter-
ing).
We have limited ourselves to the interface with different ACKNOWLEDGMENTS
strengths of substrate potential barriers. However, one can The author would like to thank the International Centre
extend the study to the case of twd systems with different  for Theoretical Physic§CTP), Trieste, Italy, and the Swed-
masses or different dispersion coefficients. ish Agency for Research Cooperation with developing coun-
We think it will be possible to apply the results obtained tries (SAREQ for their support. He is indebted to Professor
here in general to various mesoscopic condensed matter sylsk. Peyrard, Professor A. S. Bokosah, and Dr. T. C. Kofane
tems in which kink solitons play an important rdi24]. In  for valuable discussions.

[1] F. C. Franck and J. H. Van der Merwe, Proc. R. Soc. London[10] G. Griner and A. Zehl, Phys. Repl19, 117 (1985; G.
Ser. A198 205(1949; 201, 261 (1950. Gruner, Rev. Mod. Phys50, 1129(1988.
[2] A. Seeger and P. Schiller, inhysical Acoustigsedited by W.  [11] O. M. Braun and Y. S. Kivshar, Phys. Rev.4B, 1060(1991).
P. Masson(Academic, New York, 1966 A. M. Kosevich, in [12] T. Fraggis, St. Pnevmatikos, and E. N. Economou, Phys. Lett.

Dislocations in Solidsedited by F. R. N. NabarrgNorth- A 142 361(1989; O. M. Braun and Y. S. Kivshaibid. 149,
Holland, New York, 196§ Vol. 1. 119(1990; Phys. Rev. B43, 1060(1991).
[3] J. P. Hirth and J. LotheTheory of DislocationgWiley, New [13] Zhang Fei, Y. S. Kivshar, B. A. Malomed, and L. Vasquez,
York, 1982. Phys. Lett. A159 318(199J); Y. S. Kivshar, Zhang Fei, and
[4] O. M. Braun, Y. S. Kivshar, and A. M. Kosevich, J. Phys. C L. Vasquez, Phys. Rev. Letd7, 1177(199)); Zhang Fei, Y. S.
21, 3881(1988. Kivshar, and L. Vasquez, Phys. Rev.45, 6019(1992.
[5] J. A. Krumhansl and J. R. Schrieffer, Phys. ReviB 3535 [14] Zhang Fei, Y. S. Kivshar, and L. Vasquez, Phys. Rev6\
(19795; M. A. Collins, A. Blumen, J. F. Currie, and J. Ross, 5214(1992.
ibid. 19, 3630(1979. [15] Zhang Fei, V. V. Konotop, M. Peyrard, and L. Vasquez, Phys.
[6] L. P. Regnault, J. P. Boucher, J. Rossat Mignot, J. P. Renard, Rev. E48, 548(1993.
J. Bouillot, and W. G. Stirling, J. Phys. €5, 1261(1982. [16] A. Sanchez, A. R. Bishop, and F. Dominguez Adame, Phys.
[7] V. G. Bar'Yakhtar, B. A. Ivanov, and A. L. Sukstanskii, Zh. Rev. E49, 4603(1994.
Eksp. Teor. Fiz.79, 1509 (1980 [Sov. Phys. JETR1, 757  [17] H. Yamamoto, Prog. Theor. Phyg8, 1209 (1987); 80, 48
(1980]; V. G. Bar'Yakhtar, M. V. Chetkin, B. A. lvanov, and (1988.
S. N. Gadetskii, inDynamics of Topological Magnetic Soli- [18] S. Sakai, M. R. Samuelsen, and O. H. Olsen, Phys. Re36,B
tons. Experiment and Theo($pringer-Verlag, Berlin, 1994 217 (1987.
[8] B. D. Josephson, Phys. Lett, 251 (1962; K. Nakajima, Y.  [19] A. Kenfack and T. C. KofaneSolid State CommurB9, 513
Sawada, and Y. Ondera, J. Appl. Ph¢§, 5272(1979; N. F. (1994.
Pedersen, irSolitons edited by V. L. Pokrovsky, S. E. Trul- [20] T. lizuka and M. Wadati, J. Phys. Soc. Jiii1, 3077(1992);
linger, and V. E. Zakharov(North-Holland, Amsterdam, T. lizuka, H. Amie, T. Hasegawa, and C. Matsuolad. 65,
1986, Vol. 17. 3237(1996.

[9] E. Smith, inDislocations in Solidsedited by F. R. N. Nabarro [21] Y. Wada and J. R. Schrieffer, Phys. Rev1B, 3897(1978.
(North-Holland, New York, 196§ Vol. 4. [22] M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A. Krum-



PRE 58 SCATTERING OF THE¢* KINK WITH AN INTERFACE 1039

hansl, Phys. Rev. B5, 1578(1977). [25] J. F. Currie, A. Blumen, M. A. Collins, and J. Ross, Phys. Rev.
[23] M. Peyrard and M. Remoissenet, Phys. Rev.2B 2886 B 19, 3645(1979.
(1982. [26] P. Woafo, J. Phys. Chem. Soli88, 1147 (1997.

[24] A. R. Bishop and T. SchneideBolitons and Condensed Mat- [27] D. Boyanovsky, D. Jasnow, J. Llambias, and F. Takakura,
ter Physics(Springer-Verlag, Berlin, 19738 Phys. Rev. E51, 5453(1995.



