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Scattering of the f4 kink with an interface
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Laboratoire de Me´canique, Faculte´ des Sciences, Universite´ de Yaounde´ I, Boı̂te Postale 812 Yaounde´, Cameroun

~Received 1 May 1996; revised manuscript received 10 February 1998!

We study the scattering of a kink at the interface of twof4 systems with different substrate potential barriers
using collective coordinate method and a direct numerical simulation of the wave equation. During the scat-
tering, it is found that the kink internal mode is excited and the kink emits reflected and transmitted small
vibrational waves. For an incoming kink with already excited internal mode, the final velocity after the
scattering depends on the amplitude and the phase of the initially existing mode.@S1063-651X~98!02006-6#

PACS number~s!: 42.81.2i
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I. INTRODUCTION

The study of the motion of topological Klein-Gordon so
tons or kinks is one of the interesting problems in the mod
theory of nonlinear waves. This is due to the fact that su
waves ensure the transport of information in various fields
physics, such as dislocations in crystalline lattices@1–3#, at-
oms adsorbed on metal surfaces@4#, domain walls in ferro-
electric and ferromagnetic materials@5–7#, and fluxons in
Josephson transmission lines@8#.

During their motion, kinks interact with inhomogeneitie
of various types: localized impurities, spatial modulated a
periodic impurities, localized thermal and stochastic nois
or disorders of several kinds. These inhomogeneities m
give some special properties to the physical systems; e.g.
mechanical properties such as plastic deformation of crys
are particularly determined by the concentration of impu
ties @3,9#. It is also known that the nonlinear conductivi
and the diffusion coefficient of one dimensional systems
accounted for by the action of impurities@10,11#.

In recent years, particular attention has been devote
the study of the interaction of nonlinear waves with inhom
geneities. In general the kink can be either captured,
flected, or transmitted by the impurity with a distortion of i
structure and a change of its dynamical behavior. In so
cases the inhomogeneities can generate new degrees of
dom, such as the so-called impurity mode@12–14# and can
excite the kink internal mode@14,15#. This leads to a reso
nant interaction due to energy exchange mechanism betw
the kink, the impurity mode, and eventually the intern
mode@12–15#. In the case of a spatially periodic paramet
perturbation, the sine Gordon kink can propagate stea
and mostly undisturbed and can suffer the phenomeno
length scale competition@16#. For thef4 model, different
types of kink behavior can be distinguished: radiation at h
velocity, strong resonant beating and almost periodic beh
ior for intermediate velocities, and trapping at low veloc
@15#.

In this paper we consider another type of situation w
practical interest. We study the interaction of af4 kink with
an interface generated by an abrupt change of the subs
potential barrier. A similar problem was considered
Yamamoto for two sine Gordon systems with different d
persion coefficients@17#. We also mention the works don
by Sakai, Samuelsen, and Olsen for kinks@18# and recently
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by Kenfack and Kofane´ for breathers@19# in Josephson
transmission lines whose inductance is a spatially vary
function having asymptotic values. It is worth mentionin
that for other types of solitons such as envelope solitons
the nonlinear Schro¨dinger equation, the scattering with th
mass interface has also been considered by several au
~see Ref.@20#, and references therein!.

Section II of this paper contains the description of t
problem and the collective coordinate method analysis. S
tion III deals with the direct numerical simulation of th
scattering. It is found that the kink internal mode is excit
by the interface and in the case of transmission~reflection! of
the kink at the interface, reflected~transmitted! small vibra-
tional waves are emitted. Some dynamical quantities of k
such as the final velocity after the interface and the criti
velocity below which the kink is reflected by a repulsiv
interface are computed. When the kink internal mode d
exist before the scattering, it is found that the final veloc
depends on the amplitude of the initially existing mode. W
give concluding remarks and discuss some physical app
tions of the model in Sec. IV.

II. PROBLEM AND THE COLLECTIVE
COORDINATE METHOD

We consider an inhomogeneousf4 system with the La-
grangian

L5E dx@ 1
2 ~ut

22ux
2!2 1

4 @12eu~x!#~u221!2#, ~1!

whereu(x) is the Heaviside step function defined byu(x)
50 for x,0 u(x)51 for x>0. The integration in Eq.~1!
is over the length~assumed infinite! of the system. The sub
scriptst andx denote, respectively, the time and spatial d
rivatives.e is a small parameter which characterizes the
terface. Forx,0, the barrier of the substrate potential is 0.
while for x>0, it is equal to 0.25(12e). The equation of
motion of the spatiotemporal fieldu(x,t) is

utt2uxx1@12eu~x!#~u32u!50. ~2!

When e50, Eq. ~2! supports the propagation of a topo
logical soliton, the so-called kink given by
1033 © 1998 The American Physical Society
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FIG. 1. ~a! Amplitude A(t) of the excited internal mode in the case of transmission of kink through the interface~solid line for e5
20.2 and dashed line with squares fore50.2! with Vi50.5. ~b! A(t) in the case of reflection of kink by the interface~e520.5 and
Vi50.5!.
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uk5tanhFg@x2X~ t !#

&
G , ~3!

whereg5(12V2)21/2 is the Lorentz contraction factor,V
being the constant velocity.X(t)5Vt is the kink coordinate.
Linearizing Eq.~2! around the kink structure~with e50!,
one obtains an eigenvalue problem which has two disc
modes and a continuum spectrum@5,21#. The discrete modes
correspond to the translation mode with an angular
quencyw50 and to localized deformations or internal osc
lations of the kink shape. This last mode is defined by

y25A0exp~ iv2t! f 2~z!, ~4a!

with v25A3/2 andA0 being a constant. The correspondin
eigenfunction is

f 2~z!5F9

8G1/4

tanhF z

&
GsechF z

&
G , ~4b!
te

-

where t and z are moving coordinates defined byz5g(x
2vt) andt5g(t2vx).

When the kink approaches the interface, its motion lo
its translational invariance. The kink velocity becomes a ti
dependent function. Moreover, it is seen, after the numer
simulations, that the interface excites the kink internal mo
as in the case of a pointlike impurity@13,14# or a spatially
periodic parametric perturbation@15#. Thus, to give a tenta-
tive analytical description of the dynamics of kink collidin
with the interface, we use the following collective coordina
ansatz:

u~z,t!5tanh@z2Z0~t!#1y2~t!, ~5a!

where

y2~t!5A~t! f 2„z2Z0~t!…. ~5b!

Z0(t) andA(t) are two unknown dynamical variables. The
equations of motion are obtained through the effective
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PRE 58 1035SCATTERING OF THEf4 KINK WITH AN INTERFACE
FIG. 2. Kink final velocityVf after the inter-
face as a function ofe for Vi50.5: Solid line for
the principle of conservation of energy withou
the excitation of the internal mode, dashed lin
with squares for the collective coordinate equ
tions, and crosses for the direct numerical sim
lation.
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grangian approach which has been recognized to be
useful for studying the kink dynamics@13–15#. OnceZ0(t)
has been obtained, the coordinateX(t) of the kink center in
the original (x,t) reference frame can be obtained by reve
ing the Lorentz transformationZ0(t)5g@X(t)2Vt#. Let us
note that one could also tackle the problem by the pertu
tive method of Fogelet al. @22#.

Inserting the ansatz~5! in the Lagrangian~1!, we obtain
the effective Lagrangian

L5
1

2
MkŻ0

21
1

2
@Ȧ22v2

2A2#1
e

4
@21sech2Z1tanhZ1

12 tanhZ1#2e&F9

8G1/4F2
1

4
sech3Z1tanhZ1

1
1

8
sechZ1tanhZ12

1

4
arctan@exp~2z1!#1

p

8 GA,

~6!

whereZ15(Z01Vt)/& and the dot refers to the derivativ
with respect tot. Mk52&/3 is the kink mass. The equation
of motion for the collective coordinatesZ(t) and A(t) de-
rived from the Lagrangian~6! are

MkZ̈05
e

4
sech4Z12eF9

8G1/4S 2sech5Z11sech3Z1

2
1

4
sechZ1DA, ~7a!

Ä1v2
2A52

&

4 F9

8G1/4

eS 2sech3Z1tanhZ1

1
1

2
sechZ1tanhZ12arctan@exp~2Z1!#1

p

2 D .

~7b!

In the course of analyzing Eqs.~7!, let us first assume tha
the effects of the internal mode are negligible. One can th
ry

-

a-

e-

fore use the principle of conservation of energy to estab
that the kink final velocityVf , far after the interface, is given
by the relation

Vf
25Vi

21e, ~8!

whereVi is the kink initial velocity~far before the interface!.
Thus for negativee or repulsive interface~positive e or at-
tractive interface! the kink velocity decreases~increases! af-
ter it has passed through the interface.

Let us now consider Eq.~7b!, which is similar to the
equation of a harmonic oscillator with an external pu
force. As the kink moves towards the interface, its inter
mode is excited and two possible outcomes can be
tained: reflection and transmission. In the case of refl
tion, the external pulse force of Eq.~7b! reduces to zero~as
Z1→2`! but after having set the oscillatorA(t) in motion
@see Fig. 1~b!#. We may, however, note that depending
the value ofe, the soliton needs a sufficient velocity to com
close to the interface. Otherwise its reflection occurs a
distance~before the interface! where the value of the puls
force is nearly zero. In this case, the internal mode is no
is slightly excited. When the kink passes through the int
face, the external pulse force gradually tends to a cons
and the amplitudeA(t) of the internal mode has the analyt
cal form

A~t!52
&

12 F9

8G1/4

e@12cos~v2t!#. ~9!

We have solved numerically the set of equations~7! as-
suming first that the internal mode does not exist before
scattering. The main aim was to find the kink final veloc
after the interaction with the interface, the critical veloci
under which the kink is reflected by the interface, and
time evolution ofA(t). As concerns the above mentione
velocities, the results are reported in Figs. 2, 5, and 6 w
the results of a direct numerical simulation~see Sec. III!. We
report in Fig. 1 the time variations of the amplitudeA(t) of
the excited internal mode in the following cases: transm
sion with positivee, transmission with negativee, and reflec-
tion with negativee. In the case of transmission,A(t) varies
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FIG. 3. Excited internal modey2 for Vi50.5 withe50.2 ~solid line! ande520.2 ~squares! obtained when the kink is atX512 after the
interface.
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around a negative~positive! value for e.0 (e,0). In the
case of reflection,A(t) oscillates around thet axis.

III. DIRECT NUMERICAL SIMULATION

We have solved the wave equation~2! with the fourth
order Runge-Kutta algorithm@23#. The accuracy of the nu
merical calculation is tested~for the homogeneous system!
using the fact that the energy of the system should rem
constant during the computation. The length of the system
equal to 70@235 to 35# with discrete step sizesDx50.1 and
Dt50.05. Some dissipation is imposed on the last 20 spa
steps at each end of the system to prevent end effects. A
position x5n Dx ~n being an integer! of the system, the
displacement field is defined byun(t). The initial conditions
for the displacementu(x,t) and velocityut (x,t) are

u~x,t !5tanhFg~x2X0!

&
G , ~10a!

ut~x,t !52
gVi

&
sech2Fg~x2X0!

&
G , ~10b!

whereX0 ~X0525 in our study! and Vi are, respectively,
the kink initial coordinate and velocity. The interface is l
in
is

al
he

cated atx50. During the numerical simulation, we compu
the kink center by the interpolation

X~ t !5F 2un~ t !

un11~ t !2un~ t !
1nGDx, ~11!

whereun(t),0 andun11(t).0. The kink velocity follows
the simple differentiation

V~ t !5
X~ t1Dt !2X~ t !

Dt
. ~12!

The results of the numerical simulation are the followin
For an attractive interface, the kink velocity increases a
the interface and finally attains a final constant value wh
increases withe and Vi ~see Fig. 2!. As it appears in this
figure, the values ofVf obtained from the collective coordi
nate equations~7! and from the direct numerical simulatio
are lower than that predicted by the principle of conservat
of energy~without including the excitation of internal mode!.
This is due to the excitation of the kink internal mode, b
also to the reflection of small vibrational waves at the int
face. The excited internal mode obtained from the numer
simulation of the wave equation~2! is reported in Fig. 3 for
two values ofe and for a kink at the distanceX.12 after the
interface. The shape and the amplitude of the internal m
s-
FIG. 4. Time dependent behavior of the di
placement at the lattice pointn5220 for Vi

50.5 with e50.3 ~solid line! ande50.6 ~dashed
with squares!.
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FIG. 5. Critical velocityVC below which the
kink is reflected by the interface as a function
e: collective coordinate method~dashed with
crosses!, numerical simulation ~dashed with
squares!.
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are consistent with the results of the collective coordin
method~showing the effects of the type of the interface; no
also that the amplitude of the internal mode increases w
the strengthe of the interface!.

In Fig. 2 a divergence also appears between the resul
the collective coordinate method and that of the direct
merical simulation whene increases~Vf from the numerical
simulation being lower than that of the collective coordina
method!. Besides the fact that the collective coordina
method is limited in its capacity to account quantitatively f
the results of the numerical simulation whene increases, an
explanation of the divergence is due to the fact that dur
the collision, the kink loses a part of its energy to gener
reflected waves. Indeed, after the incident kink collides w
the interface, it emits small vibrational reflected waves~see
Fig. 4!. With an increase ofe or of the initial velocity, the
amplitude of the reflected waves increases and the co
sponding energy also increases.

For a repulsive interface, we have been particularly int
ested by the evaluation of the critical velocityVC below
e

th

of
-

g
e
h
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r-

which the kink is reflected by the interface. The results
reported in Fig. 5. As can be expected,VC increases withueu.
We have found here that after the reflection of the kin
small vibrational waves are transmitted through the interf
and with a sufficient initial velocity, the kink goes back wit
its internal mode excited.

We have also considered the case where the kink inte
mode is excited prior to the scattering@this is done in the
collective coordinate equations by settingA05A(0) differ-
ent from zero and for the direct numerical simulation
adding to the initial conditions ~10! term y2(t)
5A0cos(v2t)f„g(x2X0)/&… and the corresponding time de
rivative#. The simulation shows that the kink final velocit
decreases asA0 moves from negative to positive values~Fig.
6!. Another interesting point is the role that the phase of
internal mode plays during the scattering. By adding a ph
u in the cosine factor of the above expression ofy2 , the
direct numerical simulation indicates that the kink final v
locity is a function ofu. Although the form of the function
FIG. 6. Kink final velocity after the interface as a function of the amplitude of the initially excited internal mode fore50.5 andVi

50.20: collective coordinate method~dash with crosses!, direct numerical simulation~dashed with squares!.
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Vf(u) depends on the value ofA0 , it is found that for each
A0 , Vf(u) varies aroundVf(0) asu sweeps the range 0 t
2p.

IV. CONCLUDING REMARKS
AND SOME PHYSICAL IMPLICATIONS

We have studied analytically and numerically the co
sion of thef4 kink with an interface. The analytic treatme
uses the collective coordinate method which takes into
count the kink coordinate and the amplitude of the inter
mode of thef4 kink. The results obtained show the excit
tion of the kink internal mode and the emission of reflec
or transmitted small vibrational waves. The interaction b
tween these generated excitations and the kink explains
energy lost during the scattering. The kink final velocity af
the interface and the critical velocity below which the kink
reflected by the interface have been computed as functione.
The study also shows that the final velocity depends on
initial amplitude and the initial phase of the kink intern
mode~when we consider an excited kink before the scat
ing!.

We have limited ourselves to the interface with differe
strengths of substrate potential barriers. However, one
extend the study to the case of twof4 systems with different
masses or different dispersion coefficients.

We think it will be possible to apply the results obtain
here in general to various mesoscopic condensed matter
tems in which kink solitons play an important role@24#. In
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particular, our results can be applied to devices made b
junction of two ferroelectric materials such as lead g
manate and antimony sulphoiodide whose technolog
properties are well known@25,26#. Moreover, our work can
shed some light on the study of the dynamics of dom
walls separating two coexisting phases in symmetric bin
systems or in ferroelectric materials~see Ref.@27# for sym-
metric binary systems!. Indeed, for such systems, the su
strate potential has the general formV(u)5(A2/4B)@1
2(B/A)u2#2 whereA.0 is a temperature dependent coe
ficient @e.g., A(T)5a(T2Tc) where Tc is the Curie tem-
perature# andB is a constant. If we assume the ratioB/A to
be constant~this assumption is always consistent in t
above quoted ferroelectric materials!, then our study is com-
parable to the physical situation where, as a result of a t
perature gradient, the value ofA is changed from a certain
point of the physical system. We must note, however, tha
various ferroelectric materials, we should take into acco
the discreteness effects@26#.
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