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Inhomogeneous broadening effects in a multiharmonic wiggler based optical klystron

Michael G. Kong
Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom
(Received 26 January 1998

Multiharmonic wiggler based optical klystrons driven by a monoenergetic electron beam are known to be
capable of producing a considerably higher gain than conventional optical klystrons. In this contribution,
inhomogeneous broadening effects due to electron energy spread are considered for these multiharmonic
optical klystrons. A modification to a recently developed convolution technique is derived to formulate the
inhomogeneously broadened interaction gain in the small signal regime, taking account of the energy spread
effects on electron bunching in the drift section. Based on the new gain formulation, numerical examples are
used to demonstrate that the beam quality requirement of multiharmonic optical klystrons is essentially the
same as that of their conventional counterparts. Thus for the same interaction gain, the gain enhancement
achieved with a multiharmonic optical klystron configuration can be used to relax requirements for both the
quality and current of the electron beam. In addition, it is suggested that the new formulation may be used to
improve the accuracy of gain spectrum based techniques for beam quality measurement.
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[. INTRODUCTION lation of MHOK's [7] and as a result it remains to be an-
swered whether or not the gain enhancement in a multihar-
Conventional free electron lasefSEL’s) based on wig- Mmonic optical klystron is achieved at the expense of a more
gler magnets of single period are well understood in terms oftringent beam quality requirement. _
their interaction mechanisms and device performance. Their ON€ major consequence of electron energy spread is to

operation has been demonstrated over a very large portion Gpuse the interaction gain to reduce and the gain spectrum to

the spectrum from microwave to ultraviolet with their peak Undergo an inhomogeneous broaderlifig10. Based on a

output power up to gigawatts. To enable a wider range o . .
applications in medicine and industry, however, their perfOrﬁomogeneous broadening effects has recently been obtained

mance for a given accelerator system needs to be imprOViqi1 ki%tthree terz]lelctron ﬂl]aser@lz,ﬁ_ arlutj oriucal tkl;f/]strons f
still further and as such there has been much interest to ex= -3 NEVENNEEss, Mnese analyiica treatments have so far

plore novel beam-wave interaction mechanisms based on u nored the energy spread effects on electron bunching in the

conventional magnet or/and interaction cavity structiiles .d”ft section. Since it is malnly In .the e'?c"on beam bgnch-
ing process that a multiharmonic optical klystron differs

5]. For instance, it was suggested to use a double wiggle i tional " t this effect ds to b
system of similar periods to control the FEL spectrum in the rom 1ts conventional counterpart, nis efiect needs 1o be

" ; ; S taken into account. To this end, an extension of the convo-
high gain Compton regimgl,2]. A quasiperiodic wiggler ) . . ’ :
configuration was also conceived for an effective control Oijutlon technique[11] is suggested here to formulate the in-

both the strength and wavelength of its harmonic radiation i omogeneous broadening effects in muIUharmqmc optical
the low gain Compton regimé¢3]. In addition, a two- lystrons taking account of the electron bunching depen-

sectioned wiggler structure with two constituent parts having?ience on energy spread. Based on the gain formulation de-

different field strengths and periodicities was found useful ved_, Itis shown through n_umerlca_l exar_nples that the_ beam
for mode selection purpose in low gain waveguide FEI_,squal!ty requirement of multiharmonic c_)ptlcal klystrons is es-
[4,5] sentially the same as that of conventional optical klystrons.

The most commonly used unconventional wiggler Con_Ther.eforez the gain enha.nc.ement ac.hleve'd with a MHOK
configuration can be realistically realized in practice, thus

figuration is an optical klystrofOK), which employs a drift . .
section between two essentially identical wiggler magnets t(g)ermlttmg a freedom to relax requirements f_o_r bo'gh _the qual-
% and current of the electron beam. In addition, it is shown

enhance the electron beam bunching and thus increase t ) ; .
at the newly developed gain formulation results in a

small signal gairf6]. To optimize the electron beam bunch- " . . X .

ing, it was proposed recently to replace the first wiggler ofSIlghtly d|ﬁer9nt stpectrlémt broad(te;:wl\g fromdth;at den(\j/gd with

usually single periodicity with an alternative modulator hay-S0ME approximations but NEVErNEIess widely used in prac-
tice [8,16]. Discussion suggests that the new gain formula-

ing a series of harmonically related periodicitigd. With i b d to deri te di ic tool
the same drift section and radiatthe second wiggler it lon may be used 1o derive a more accurate diagnostic oo
Jpr beam quality measurement.

was shown that this alternative arrangement is capable
increasing the small signal gain up to 75%. Such an arrange- Il. THE EEEECTS OF INITIAL ELECTRON ENERGY

ment is known as a multiharmonic optical klystrgiHOK) SPREAD ON BEAM BUNCHING

and one of its advantages is to use the elevated gain to relax

the beam quality requirement. However the electron energy The dependence of electron bunching on the beam’s ini-
spread effects were not taken into account in the gain formutial energy spread in optical klystrons has not been analyti-

1063-651X/98/581)/1011(8)/$15.00 PRE 58 1011 © 1998 The American Physical Society



1012 MICHAEL G. KONG PRE 58

cally formulated, possibly because it is considered to make a Naynasnl ® ~ [nAkL
relatively small contribution to the inhomogeneous broaden- M”:Tyz,@_ (kwt k)= 2 Bz|sing ——1, (4b)
z

ing effects in OK device$8,10,14. However, since a finite

initial energy spread will alter, to some degree, the electroRyhere sinck) = sin(x)/x. It is worth mentioning thag/(AKL)
bunching process in the drift section of an optical klystron, itrepresents the strength of the electron bunching and as such
is possible that such an alteration may become significant js referred to as the bunching strength function.

under some operation conditions. Thus for a more complete To maximize the interaction gain, an optical klystron is
assessment of the inhomogeneous broadening effects in OBsually operated witiAkL=0 (at the resonant electron en-
tical klystrons, it is in general desirable to take account of theyrgy ,) and sing,=1 (the optimum phase at the radiator

initial energy spread in the formulation of electron beamentrance satisfied simultaneousfy7]. Note that
bunching. This is particularly important for the analysis of

the inhomogeneous broadening effects in multiharmonic op- wD D

tical klystrons since it is predominately in the electron JZ[AkﬂL(kﬂL Kw)]D=(AKL) -+ (k+ky)D, (5

bunching process that they differ from conventional optical z

klystrons. thus sindy=sink+k,)D=1 needs to be satisfied atkL
To demonstrate the initial energy spread effects on elec=0. So fory+ v,, sin 6, may be expressed as

tron bunching in multiharmonic optical klystrons, we con-

sider a simple case in which the modulator contains the fun- ) )

damental and the second harmonics only. The methodology Sin 6p=sin

developed below should, however, apply to any multihar-

monic wiggler based optical klystron, albeit with a more Similarly M ,6, of Eq. (4) may be expressed as

complicated algebra. Suppose such a modulator of lehgth

™

AkL b
( )E+2

D
=co{(AkL) d. (6)

has an on-axis magnetic field of M, 00=xnE(y) sind AKL/2), (7
Bw=Y(By1c0sk,z+ By,c0s X,2), (1)  where the superscript denotes resonance and
with its dimensionless field strength parametess,, r _ M8wndsn w_'— 2 E 8a)
=eB,,/mc(nk,) (n=1,2), and an on-axis laser field of T2y e U
Be= ~X(E1C05 P+ E,0080,), (23 E(v)= 7 Bo(1= BB v* B (8b)
Bs=—Y(B1cos®;+B,cos®,), (2b)  Consequently Eq(3) becomes
with E,=(nw/nk)B,, ®,=newt—nkz+¢,, and the di- a,as oL AKL mAKL
mensionless field strength parametgf=eE,/mc(nw) (n (Ay)=- B, 2¢ SNt~ cos— g(AkL) (9)

=1,2). In addition, the drift section is assumed to be a
straightforward free space of lengih Furthermore, we as- with m=2D/L and
sume that the radiator consists of a conventional wiggler of
period \,,=2/k,, and lengthL=N,\,,, and a radiation 1 (2= 2
field atf = w/27 with its dimensionless field strength param- g(AkL)=5— fo COS( X+ 21 xné(y)
etera;=eE,/mco. "

In the small signal regime, the energy exchange between
an electron beam and its amplifying laser field in an optical X sing AkL/2)sin nx) dx. (10
klystron is usually considered to be significant only at the
second, or higher, order of the laser fi¢&+-10]. However, . o e
with a sizeable density modulation formed in the drift sectionIt should be mentioned that ;=0 is sp(_acmed n E_q(lO), .
of the OK, the beam-wave interaction in its radiator can beEq.' (9) may be u_sed to c_alculate the flrs_t-order_ interaction
significant at the first order of the laser fidid,17]. For a gain ofa coqvennonal optical !(Iystro_n _havmg a sizeable den-
monoenergetic electron beam in a MHOK, its energy loss sity modulation in the small signal limit.

to the first order of the radiation field may be expressed a% Equation (9) is derived for a monoenergetic electron
[7] eam. If the electron beam has an initial energy spread, how-

ever, the gain will be reduced through terms dependent upon

; the electron energy, which, in the case of B9}, are namely

(Ay)=— ds oL SINAKLI2) o 0,9(AKL), (3)  (yBy) L sinc(AkL/2), cosmAkL), andg(AkL). Of these

vB, 2¢ (AkL/2) four terms, (/8,) ! affects the gain magnitude only and for

relativistic electron beams its dependence on the electron en-

ergy spread may be considered negligibl@—15].
sinc(AkL/2) represents the electron beam’s spontaneous

emission in one wiggler section, whereas ocaskL/2) rep-
resents the interference between radiations from the two wig-
dx, (4a) gler sections and it depends crucially on the electron phase at
the entrance of the second wiggler section. These two terms

where AkL=(w/v,—k—k,)L is the FEL detuning param-
eter in one wiggler sectiorfy= wD/cf, is the electron tran-
sit angle through the drift section, and

1 27 2
g(AkL)=—f co X+E M, 60Sin nXx
2w Jo n=1
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are affected by the electron energy spread considerably and 1

they have been considerg8,10,14. g(AkL), on the other ((A)’)):J E(AkLt)dt, (12
hand, contains information about the electron bunching in 0

the drift section and its dependence on the initial energythe required convolution of an infinite integral may alterna-
spread has been ignored in previous analytical studieively be expressed by a finite integrill], permitting a
[8,10,14. This dependence will be considered here to undermuch more efficient numerical estimate of the convolution
stand possible differences in the inhomogeneous broadenirghd hence the interaction gain for nonmonoenergetic electron
effects between multiharmonic and conventional opticalbeams. It has been shown that many sinusoidal functions can

klystrons. be expressed by a finite parametric intedrhl, 13,14 and
Suppose the initial energy spread of the electron beam hahis technique has been applied to both FE[14-13 and
a Gaussian distribution conventional optical klystrongl4,15.
For multiharmonic optical klystrons, howevey(AkL) of
fle)= 1 _ € 11 Eqg. (10 is not a sinusoidal function and so it is found not
(€)= 2o, ex R ' 1D possible to express the exact bunching strength function in

the form of Eq.(12). To overcome this, we first consider
where e=(y— vy,)/ v, is the relative deviation from the g(AKL) as a function of two variable§=sinc(AkL/2) and
nominal electron energyy,, and o, is the rms energy T=sinc(2AkL/2), and Taylor expand it,
spread. The gain for a honmonoenergetic electron beam is _ ,
the convolution of the gain for a monoenergetic beam, Eq. 9(AkL)~g(AkeL)+g;1(AkeL)(S—Sp)
(9_), on the energy dls.tr|but|on of E_((ll). Matiematlcally +g(AkoL)(T—=Ty), (13)
this convolution is an integral frora= —« to e= +o0. But
if the gain for a monoenergetic electron beam can be exaround its nominal value af=Sy=sinc(Aky,L/2) and T
pressed by a parametric integral of =Ty=sinc(AkyL/2) with AkyL calculated aty, and

r 2
&(yo) 27 _ ~ [nAkoL] .
g((AkOL):—XI Yo f sinIx sin x+2 Xn€(yo)sin 0 sin(nx) | dx (14
2w 0 A=1 2
|
with [=1,2. If we denote and thus the actual FEL detuning parameter can be calcu-
lated usingAkL=AkyL+ 8(AkL). This may be used to
A(AKoL)=0(Sp,To) —S091(Sp. To) — Tog5(So. To), compare the bunching strength function of Ef0) and its

(15) approximation of Eq(16). In Fig. 1, the bunching strength
function and its Taylor expansion are plotted against the

then the bunching strength function becomes nominal FEL detuning parametefkoL, for yo=100, N,
=10, 8y/y=5x10"3, x;=1.92, andy,=0.81. It is clear
g(AkL)=A(AkoL)+g;(AkgL)sind AkL/2) from Fig. 1 that Eq(16) represents an excellent approxima-
tion of g(AkL) for 8y/y<5x10"3. It should be noted,
+0g5(AkgL)sing AKL). (16) however, that an identical energy shift of 0.5% is assumed

for all electrons in Fig. 1. For an electron beam with a rms

Note that in the above equatioA{AkgL), gi(AkgL), and

g,(AkgL) are all calculated at the nominal electron energy. 0.5 the bunching strength function
Thus the electron energy spread affects the bunching [ e its first-order Taylot expansion
strength function only through the sinkkL/2) and :
sinc(AkL) terms. When Eq(16) is substituted into Eq(9),

the gain becomes a function of sinusoidal terms only and this
allows the gain to be expressed in the form of EfR), as

will be shown in the next section.

It should be emphasized, however, that although the Tay- =
lor expansion technique allows the gain to be expressed by &§
finite parametric integral, this is essentially an approximation
and therefore its validity needs to be examined first. To this
end, we note that the change AkL due to an electron 1ol . :
energy changegy, is given by 10 5 0 5 10

Nominal FEL detuning parameter in one wiggler section

strength function

Bunc

BAKL) =8 | =

17 FIG. 1. Validation of the Taylor expansion approximation of

4N, [ AkOL} oy
Y g(AKL) for y,=100,N,,= 10, andsy/y=5x10"3.

2 |t aNge
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energy spread ofr.=5x10"3, a large percentage of elec- 1.0[
trons has an energy deviation of less than 0.5% from thei
nominal value. Thus Fig. 1 overestimates the deviation of
Eq. (16) from the actual bunching strength function and so

Eq. (16) should in practice be an even better approximation

than suggested in Fig. 1.

Ill. OPTICAL KLYSTRON GAIN
FOR NONMONOENERGETIC
ELECTRON BEAMS

With the bunching strength function expressed by the two

(AkL) dependent sinusoidal functions in EG6), the aver-
aged electron energy loss of E() has now threeAkL
dependent sinusoidal functions, namely,

K1(AkL)=sinad AkL/2)cogmAKkL/2), (18a
KCo(AKL)=sin@(AkL/2)cog mAKL/2), (18b)
. | AkL mAkL
ICS(AkL)zsmc(AkL)sm{T coz{ 5 }
(180

The gain function

0
FEL detuning parameter in one wiggler section

: .

-10 -5 10

FIG. 2. The gain function withr.=10"2 (solid curve and o,
=0 (dotted curve for y,=100,N,,=10, andD/L=16.

These three sinusoidal functions may be expressed in the

form of Eq.(12). If we introduce

U,(x)zlz fol cogIxt)dt, (199

12 1
V|(x)=zf0(1—t)coqlxt)dt (1=1,2,3),

(19b)
it can be shown that
K1(X)=Ums1(x) =Um_1(x), (209
Ko(X) =Vmi2(X) +Vin—2(X) = Vom(X), (20b)
/Cs(X):[Vm+3(X)+Vm—3(X)—Vm+1(X)—Vm—1(X)]/2-(ZOC)

For the simplicity of mathematical expression, we further
introduce

N fl [(AkoL)t 12%t d 01
73|—§ . co Tex 8 t, (219
|2 AkgL)t 12t
f(l t)cs{ O)}xp{—ﬂ }dt
(21b
wherel=1,2,3 andu .= ago.. By noting that
AkL~a0<y_yo+yo_yr)Zao(e-i-e,), (229
Yo Yo

ao=(wlc)LI(¥5B3), (22b)

the convolution of the three functions in EO) on the
distribution of Eq.(11),

F|=f+:lc|(AkL)f(e)de (1=1,2,3), (23)
may be shown to be
F1=Pm+1=Pm-1, (2439
FomRumt2=Rm—2—2Rm, (24b
F3=[Rmi3tRm-3=Rm+1~ Rm-11/2.
(249

Consequently the interaction gain for nonmonoenergetic
electron beams is obtained as

a,as
,8z 2c
+01(AKoL)Fo(AKoL, 1)

((Ay)=- ((AkoL){A(AkoL)F (Akol,pee)

+092(AkoL)F3(AkoL, p o)}, (29

where g(AkOL)=1—B§r(AkOL)/4NW77. It should be men-
tioned that although Eq25) is derived for multiharmonic
wiggler optical klystrons, it is also applicable to conventional
optical klystrons wheny,=0 is specified.

IV. APPLICATIONS

To illustrate the inhomogeneous broadening effects on
both the spectrum and the magnitude of the interaction gain
in Eq. (25), we introduce a gain function defined as

—((Ay))
(awas! v, Bz (wL/2c)

We first consider a multiharmonic wiggler based optical kly-

stron driven by an electron beam gf=100 with N,,= 10

andD/L = 16. With the electron beam bunching optimized at
=1.92 andy,=0.81[7], the gain function for this MHOK

is calculated from Eq.26) and plotted as a function dfkgL

for both 0.=0 ando.=10"3 in Fig. 2. It is clear that the

interaction gain is reduced considerably in the presence of a

finite energy spread. At,=10"3, the peak value of the gain

function at AkoL=0 is reduced to 0.01 from 0.74 at,

G(AkoL, o) = (26
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FIG. 3. The optimized gain function fde) a MHOK and(b) its FIG. 4. Peak gain function af}=1.92 againsir, for (a) D/L
conventional counterpart with/L =2. =16 and (b) D/L=0.7. The solid curve is for a MHOK x(,
=0.81), whereas the circles and the dashed curve are for a conven-

=0, a reduction of 87%. For the corresponding conventionalio"@ OK (xz=0) with its g(AkL) calculated using the nominal
OK optimized aty}=1.84 (y,=0), calculation using Eq. "2U€ and Eq(16), respectively.
(26) indicates the same peak gain reduction of 87%. dependences for.=0.04 as indicated in Fig. (4). How-

If the optimized bunchindat x;=1.92 andx;=0.80 is  ever, since it is unlikely to operate an optical klystron with
achieved over a shorter drift length, the inhomogeneoughe electron beam quality worse than=0.04, the peak in-
broadening effects become less severe. In Fig. 3, the optieraction gain for both types of optical klystrons may be
mized gain of a MHOK is plotted fob/L =2 and compared considered to experience the same degradation in practical
to the case of its conventional counterpart. For an energyevyices.
spread ofo,=10"°, the gain function of the MHOK at It is of interest to note that in Fig. 4 the peak gain calcu-
AkoL =0 is reduced to 0.71 from 0.74 for the monoenergetiGated with the nominaty(AkL) is in an excellent agreement
case, representing a reduction of only 4.2%, whereas for thgjith that calculated with the Taylor expansion technique for
conventional OK this reduction is slightly less at 3.4% with 0.<0.04. This implies that atk,L=0 the energy spread
the gain function at\koL =0 decreased to 0.56 from 0.58 at effects on the bunching strength function are negligible. The
0.=0. above observation about the peak gain agrees with the find-

Also shown in Fig. 3 is a very similar trend of gain deg- ings of our previous study reached with a phenomenological
radation for the two different types of optical klystrons. To grgument7]. The implication is that aroundk,L=0 the
illustrate this comparison more clearly, the peak value of thgyresence of an electron energy spread affects the beam-wave
gain function under the optimized bunching conditionx§f  interaction predominately through the ocwekl/2) and
=1.92 andy,=0.81[7] is calculated in the unit of its value sinc(AkL/2) terms in Eq.(9), whereas its effects on
for a monoenergetic electron beam and plotted in Fig. 4 ag(AkL), or the electron beam bunching, are much less sig-
a function of o, for two drift lengths. For the case of nificant.

D/L=16 in Fig. 4a), the gain of the MHOK is seento have = The inhomogeneous broadening effects in optical
an identical energy spread dependence to that of its convellystrons used for storage ring free electron lasers are often
tional counterpart. Further calculation suggests that thigonsidered in terms of the following dependence of the peak
agreement is also true for longer drift lengths. When again on the electron energy spref@j16,18:

shorter drift section oD/L=0.7 is used, the two optical 12 ” 2

klystrons become slightly different in their energy spread Goeexf —8mNy(1+D/L)%o]. 27
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FIG. 6. Peak value of the gain function for an MHQHashed

101 ' {b) ] curve and its conventional counterpafsolid curve, both with
i ] D/L=20, x;=1.92, andy,=0.81.

0.8

I given current may be employed to provide the same interac-
tion gain in a MHOK as what is needed in a conventional

optical klystron arrangement. As suggested in Fig. 6, a gain
function with its peak value at 0.57 requires a beam quality
better thano.=4.4x 10 ° with a conventional optical Kly-

] stron, whereas a MHOK configuration allows the required

- beam quality to be relaxed @,=2.8x 10" *. Such a relax-

] ation on the beam quality requirement should permit the

06}
0.4}

02}

Normalized peak value of the gain function

ool , , S000po— ] same FEL performance to be achieved with a less expensive
0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 accelerator system.
RMS electron energy spread Our discussion thus far has mainly been concerned with

the degradation of the peak interaction géa AkyL =0),

for which it is established that the energy spread effects on
the bunching strength function may be ignored. Such an ap-
proximation, however, is less accurate for the interaction

It is therefore of interest to compare this energy spread de?@" under nonresonance conditiomenen AkoL #0). Fig-

pendence with that in Eq25). Since most storage ring ure 7 illustrates the gain function of a MHOK dtkgyL
FEL's are driven by a high-quality electron beam and the:4'63 calculated with and without the energy spread effects

: on the electron beam bunching. It is shown in Fig. 7 that the
optical klystron arrangement used usually employs a

very large effectiveD/L, we first consider a MHOK and gain degradation foAkgyL # 0 is underestimated markedly if

its conventional counterpart both with a drift section of Fhe energy spread effects on the electron beam bunching are

R : ignored. Calculation for conventional optical klystrons sug-

D/L =30. As shown in Fig. &), th_e exponential dependence g?ests a similar underestimate if the buﬁching sytrength fugc-

of Eq. (27) agrees very well with our calculation. For a

shorter drift section, however, Fig(l§ shows an appreciable

disagreement dd/L =5 at large values of the energy spread _ ]

especially wherr =102, In view of the fact that Eq(27) 0.025 [ ]
is derived under the assumption ®f<1 [8], its application -
to cases with a sizeable initial energy spread appears to oVe;

estimate the actual gain degradation as indicated in . 5

In other words, the newly developed gain formulation of Eq.

(25) represents an improved account, from E2j7), of the

gain degradation in optical klystron devices. One benefit o

this improved formulation is that it may be used to develop ¢ _

more accurate diagnostic tool for measuring the electron er o005}

ergy spread in storage rings for a wider range of energ r \

Spread' 0.000C N i, e ]
Having now established that the degradation of the pea 0.0000 °'°°1°RMSO'°°2° 00030 00040  0.0050
L . . - electron energy spread

gain in a MHOK is no worse than that in its conventional

counterparts, one can take advantage of the gain enhance-F|G. 7. The gain function optimized at;=1.92 andy;,=0.81

ment achieved with a MHOK arrangement to relax require-againsto, for D/L=16 andAk,L=4.63. The solid and dashed

ments on either electron beam quality or electron beam cureurves are obtained with(AkL) calculated from Eq(16) and its
rent. For instance, an electron beam of modest quality at aominal value, respectively.

FIG. 5. Peak gain function in an MHOK against, for (a)
D/L=30 and(b) D/L=5. The solid curve and circles are calculated
from Egs.(26) and(27), respectively.

0.030 : j ' ! T
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0.020F \

funct

0.015}
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0015 T : B ' ' ] electron beam bunching have been formulated into the inter-
E ] action gain analytically. Based on the newly developed gain
0.010:— E formulation, numerical examples have been used to demon-
- ¥ : strate that the degradation of the peak interaction gain in a
% 0.005 3 E MHOK is very similar to that in its conventional counterpart,
5 E suggesting that MHOK'’s have essentially the same beam
=  0.000F ‘ . ) ,
g, y quality requirement as that of conventional OK'’s. Therefore,
2 o005k E for the same interaction gain, the gain enhancement achieved
= [ ] with the multiharmonic wiggler arrangement may be used to
o0t0f ] relax the requirements on either the quality or the current of
C ] the electron beam used, permitting the possibility of achiev-
0,015t ) ! . ; ] ing the same FEL performance with a less expensive accel-

) -4 o2 0 2 4 6 erator system.
FEL detuning parameter in one wiggler section The multiharmonic wiggler configuration was originally

FIG. 8. The gain spectrum foB/L=4, o,=5X1073, x| conceived for optical klystron applicatiog] and thus its
~0.4, andy,=0.2. The solid and dashed cuVes are obta’ineé withfeasibility has been discussed for optical free electron lasers

g(AKL) calculated from Eq(16) and its nominal value, respec- €MPloying high-energy electron beams. However the basic
tively. concept may be easily extended to FEL devices driven by
lower electron energies. One example is its possible imple-

tion is calculated using the nominal electron energy. Therementation in the waveguide optical klystron configuration
fore when considering the gain degradationAdqL #0, the  typically driven by electron beams of less than 1 MY (
energy spread effects on the bunching strength function do-3) [15]. It is worth noting that compact FEL’s driven by
need to be taken into account using the gain formulation ifower energy electron beams are in general operated in the
Egs. (16), (24), and (25). This is important for an accurate frequency range of 1-300 GHz where other radiation
picture of the FEL gain spectrum covering a wide range ofsources are available. Therefore, if such electromagnetic
AkoL as illustrated in Fig. 8, and as a result it bears arfields are chosen to be multiharmonically related, they may
interesting implication to gain spectrum based diagnostié)e used as the modulation signals to achieve the function of
techniques. For instance, the spectrum of either the spont#e multiharmonic wiggler configuration for lower beam en-
neous emission or the interaction gain in optical klystronergy deviceg20].

devices is often used to measure beam quality in storage The small signal gain formulated is applicable to both
rings [16,18. It is of interest to note that there are experi- multiharmonic and conventional optical klystrons. The em-
mental conditions under which the existing beam quality di-Ployment of the Taylor expansion technique has allowed the
agnostic technique based on HE7) is not very accurate inclusion of the energy spread effects on beam bunching in
[19]. The formulation of the energy spread effects on bean®ur analytical formulation of the interaction gain, thus avoid-
bunching developed in this study should permit a more acing the otherwise time-consuming and less explicitly infor-
curate measurement of beam quality. In fact, one can nownative approach of large scale numerical simulation. This
measure the beam quality over a wider rarifpr an rms  extension of the convolution technique should be applicable
energy Spread as |arge ax 50_3 in the case of Fig_Beven to other two-sectioned nggler SyStemS for a similar analyti-

with a compact optical klystrorishorter drift section and cal formulation of their interaction gairi,3,5]. Furthermore,
hence smalley?). it has been shown that under some operation conditions the

gain spectrum obtained with such an extended convolution
technique can be appreciably different from that predicted
previously[8]. Since the latter was derived under some re-

The inhomogeneous broadening effects in multiharmonicstrictive approximation, the newly developed gain formula-
optical klystron devices have been analyzed. With a Taylotion should give a more accurate assessment of the inhomo-
expansion technigue, it has been demonstrated that one cganeous broadening effects in optical klystrons. This may be
express the bunching strength function in terms of sinusoidalsed to improve the accuracy of gain spectrum based tech-
functions and as a result the energy spread effects on th@ques for beam quality measurement.

V. CONCLUSION
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