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Intensity distribution for waves in disordered media: Deviations from Rayleigh statistics
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We study the intensity distribution functioR(l) for monochromatic waves propagating in a quasi-one-
dimensional disordered medium, assuming that a point source and a point detector are embedded in the bulk of
the medium. We find deviations from the Rayleigh statistics at moderatelyllange a logarithmically normal
asymptotic behavior dP(l). When the radiation source and the detector are located close to the opposite edges
of the sample(on a distance much less then the sample length intermediate regime with a stretched
exponential behavior dP(1) emerges[S1063-651X98)51306-3

PACS numbgs): 05.40+j, 42.25.Bs, 71.55.Jv, 78.20.Bh

When a wave propagates through a random medium, ibver from the Rayleigh distributiorP(s,,)=¢€ % to a
undergoes multiple scattering from inhomogeneities. Thestretched-exponential orfe(s,;,) ~e 2¥%%b, whereg is the
scattered intensity pattefispeckle pattemnis highly irregu-  dimensionless conductance.
lar and should be described in statistical terms. One of its In this paper we consider a different situation, where both
characteristics is the intensity distributi®{l) at some point the source and the detector of the radiation are embedded in
r. Almost a century ago Lord Rayleigh, using simple statis-the bulk of the sample, and we calculate the intensity distri-
tical arguments, proposed a distribution that bears his namdution P(1) in this case. We prove that, for not too lame

the moments can indeed be described by @3. and we
~ ~ compute the parameter phenomenologically introduced in
Po(l)=exp(—1), @) [4]. We further compute the whole distribution functiBil )
and show that its asymptotic behavior at laigse of a loga-

whereT is the intensity normalized to its average vallie, 'thmically normal form, in contrast to the stretched-
~1/(I}. The Rayleigh distribution has momeru(t?;“):n! exponential asymptotics d#(t,,) found in Refs[7-9]. Fi-

' . . ' nally, we discuss how these two different forms of the
and it provides, in many cases, a rather accurate fit to experi-

; asymptotic behavior match each other and describe physical
mental data, as long dsis not too large[1]. For largel, . .
L mechanisms governing both of them.
however, the data show large deviations from &g.[1-3]. We assume a quasi-one-dimensiofid) geometry, i.e
Various extensions of Eq.l) have been proposed in the d 9 Y, 1€,

literature. Jakeman and PusBy| proposed to fit the data Z>V?/vcofirlllselgev:/itaht:s:ttzfritr:anri\é%rii?(lg:melr;g{?r%nriclni%gctﬁo-
with the K distribution. It contains a phenomenological pa- ’ 9 9- b

. ) ~on i matic source of radiation is placed at poit The field at
rametery and its moments are given ly")=n!%""I'(N  gome pointr is given by the(retarded Green's function
+7)IT(n). The exp_erlmentally relevant situation corre- Gg(r,ry) and the radiation intensity is defined &&,ro)
sponds_ toy>1. In this case moments up to< » can be =|GR(r,ro)|% The average intensigl (r,ro)) is represented
approximated as diagrammatically in Fig. 2. It consists of a diffusion laddar

diffuson) T(r4,r,) attached to two external vertices. The ver-
<~I“>:n!exp(n2/ 7, ) tices are ;hort-range objects and can be approximatedéby a
function times ¢/4w), so that{I(r,ro))=(/14m)T(r,ry).
For the quasi-one-dimensional geometry, the expression for
where only the leading term in the exponent has been kepthe diffuson reads

Thus, only low momentsr(<+/7) are close to the Rayleigh

valuen!. Some theoretical support to the phenomenological 4m\23 [z-(L-2.)]

formula Eq.(2) has been given by Dash¢h], who consid- T(r.ro)= v ar AL )
ered smooth disorddthe typical size of inhomogeneities is ‘

much larger than the wavelength where/ is the elastic mean free path,is the cross section

More recently, there has been a considerable amount aff the tube, thez axis is directed along the sample, and
theoretical study of the statistics of the transmission coeffi=min(z,z,) andz..=max(z,z,). We assume, of course, that
cientst,, of a one-dimensional sample with short-range dis-|z— zy|>W.
order[6—9]. In this formulation of the problem, a source and  The intensity distributiorP(l), in the diagrammatic ap-
a detector of the radiation are located outside the sampl@roach, is obtained by calculating the mome(ity of the
The source produces a plane wave injected into an incominigptensity. In the leading approximati¢f0], one should draw
channela, and the intensity in an outgoing chanrelis  n-retarded andh-advanced Green’s functions and insert lad-
measured. It was shown [7—9] that the distribution of the ders between paifGr,G,} in all possible ways. This leads
normalized transmission coefficiensg,=t.n/(ta,) crosses to (I"y=n!{I)" and, thus, to Eq(l).
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FIG. 1. Geometry of the problem. Points=(Xq,Yq,25) andr

=(x,Y,2) are the positions of the source and the observation point,
respectively.

r

FIG. 2. Diagram for the average intensity. The diffusion ladder
gs inserted between two solid lines that represent the average

Corrections to the Rayleigh result come from diagram
rQreen s functions.

with intersecting ladders, which describe interaction betwee
diffusons. The leading correction is due to pairwise interac-
tions. The diagram in Fig. 3 represents a pair of “colliding”
diffusons. The algebraic expression for this diagram is

n<vy. Equation(7) represents the leading exponential cor-
rection to the Rayleigh distribution. Let us now discuss the
effect of higher-order “interactions” of diffusons. Diagrams
y with three intersecting diffusons will contribute a correction

) f(l_[ d3r ) of n®/y2 in the exponent of Eq7), which is small compared

to the leading correction in the whole regior< y, but be-

comes larger than unity far= y%3. Likewise, diagrams with
four intersecting diffusons producerd/y® correction, etc.
Restoring the distributiof®(l), we find that

T3
? +... .

It should be realized that Ed8) is applicable only forl
wherekg is the wave number an¥, acts onr,. The factor <vy~g and thus does not determine the far asymptotics of
(/147)* comes from the four external vertices of the dia- P(l). The latter is inaccessible by the perturbative diagram
gram, theT’s represent the two incoming and two outgoing technique and is handled below by the supersymmetry
diffusons, and the expression in the curly brackets corremethod.

sponds to the interndinteraction vertex[11]. Finally, the In the supersymmetry formalism, averaging over disorder
factor 2 accounts for the two possibilities of inserting a pairis replaced by functional integration over supermatrix fields
of ladders between the outgoing Green’s functions. IntegratQ(r) that satisfy the constrair?=1 [12]. For technical

ing by parts and employing the quasi-one-dimensional geonmsimplicity, we will assume that the time reversal symmetry is
etry of the problem, we obtaiffor z;<z) broken by some magneto-optical effects. The integration is
done with a weight function exp-SQ}], whereS{Q} is the

C(r,rg)=2

XT(r,ry) T(r,r)T(rs,ro) T(rg,ro)

X{(4&Tk2)fd3p[ Vi+V,)-(V3+Vy)

4
+2(V1'V2)+2(V3'V4)]£[l s(p—r)

®

~ ~ 2...2
P(l)=ex _|+?y| +0
4

C(2,20)=2{1(2,20))?| 1+ Siy) (5) o-model action,

D
where(l(z,2y)) = (3/4m)[zo(L—2)/A/L] is the average in- S{Q}=— _77: j & trg(VQ)?, ©
tensity,

L3 r
y=e >1, (6)

L2(3z+29) — 2L z(z+ 2g) + 225(2— Zo)

andg= k /Al3mL>1 is the dimensionless conductance of
the tube. For simplicity, we will assume that the source and
the detector are located relatively close to each other, so that
|z—z5|<L, in which case Eq(6) reduces toy=gL%/2z(L v m REERREER v
—2). (All the results are found to be qualitatively the same in 0 SEEEREEE
the generic situatio@dy~z—2zy~L—2z~L.)

In order to calculatél™) one has to compute a combina-
torial factor that counts the numbé¥; of diagrams withi
pairs of interacting diffusons. This number {$] N;
=(n!)2/[2%i1(n—2i)!]=(n!/i!)(n/2)?, so that

n [n/2] 2\ i
am | E(Zi) =nlexp(2n?/3y). (7)

il Ey
FIG. 3. Diagram for a pair of interacting diffusons. The external
Although i cannot exceed/2, the sum in Eq(7) can be vertices contribute the factor{4w)*. The shaded region denotes
extended toe, if the value ofn is restricted by the condition the internal interaction vertefsee Eq(4)].
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trs denotes the supertrada, is the diffusion constant, ane ~ Yoo \/ = \/ =
is the average density of states. In the considered quasi-1D P(l)=exp — §[|” (V1+2i/y+N2ly)]. (16
geometry,mvD=gL/2A, and the fieldQ depends on the

coordinate only, yieldings{Q} = — (gL/8)fdz trs(dQ/dz)2. T .
Following the derivation outlined if13—-15, the moments Forl <y, Eq.(16) reproduces the perturbative expansigp

of the intensity at point due to the source aj are given by while for I > vy it implies the log-normal asymptotic behavior

L of the distributionP(T):
k0 _
<|n>:( - 772) J [DQ][QEQ(Z)]n[Qg?(Zo)]ne S, InP(T)=—(y/8)In%(81/y). (17)
(19 The log-normal “tail” (17) should be contrasted with the
where QES(Q‘;?) is the retarded-advance@espectively, stretched-exponential asymptotic behavior of the distribution
advanced-retardédnatrix element in the boson-boson sector of transmission coefficien{¥—9]. Let us briefly discuss how
of Q. Assuming again that the two pointsandr, are suf-  these two results match each other. Analyzing the expression
ficiently close to each othejz— zy| <L, and taking into ac- for the momentg10), we find that when the pointsandz,
count the slow variation of th® field along the sample, we approach the sample edges=L —z<L, an intermediate
can replace the produ@?2(z)Q5%(zy) by Q°2(2)Q5%(z).  regime of stretched-exponential behavior emerges:
We then get the following result for the distribution of the

2 S ~
dimensionless intensity= (16m2/k3 K B Sl T [<g
39
P(y)—f dQ 8(y+Q3Q8)Y(Q), 11 ~ = ~ L)\?

Q20 InPM)={ —2gT, g<T=g| -
whereY(Q) is a function of a single supermatr@y, which is L 2 L2
defined as follow$13,15: _ 9t 16 Z) L T>g(—> .

\ 820 L g ' Zy

18
Y(Qo)= JQ( [DQJexd — S{Q}]. 12 (19

Thus, when the source and the detector move toward the

In general, the functiory(Q) depends only on the param- sample edges, the region of validity of the stretched-
eters I\;<», —1<\,<1 entering into the standard pa- €Xponential behavior becomes broader, while the log-normal
rametrization of the matrices16]. Performing the integra- tail gets pushed further away. In contrast, when the source

tion over the other degrees of freedom, we find that and the detector are located deep in the bedks L —z~L,
the stretched-exponential regime disappears, and the Ray-

leigh distribution crosses over directly to the log-normal one
Jd)‘ldkz ati~g.
Let us now describe the physical mechanisms behind

1 2 these different forms ofP(l). The Green’s function
(M )Y()‘l* A2)8(y+1-1Y). 13 GR(ro,r) can be expanded in eigenfunctions of a non-
Hermitian (due to open boundarigs‘Hamiltonian” as
The evaluation of(Qg) = Y(\J,\)) involves, by its defini-  GR(ro,r)==4* (ro) ¢i(r)(K3—E; +i7;) . Since the level
tion (12), an integration over all supermatrix fields, which widths y; are typically of the order of the Thouless energy
assume a given valug, at pointz, and satisfy the boundary E.~D/L?, there is typically~g levels contributing appre-
conditionsQ|,-o. =A, whereA=diag{1,1,—1,—1}. Since  ciably to the sum. In view of the random phases of the wave
g>1, this calculation can be done by the saddle-pointunctions, this leads to a Gaussian distributionG3t(rq,r)
method, as suggested by Muzykantskii and Khmelnitskiiwith zero mean, and thus to the Rayleigh distribution of
[17]. The result ig15] I(ro,r)=|GR(ro,r)|?, with the moments(I")=n!. The
stretched-exponential behavior results from the disorder re-
(14) alizations, where one of the statgshas large amplitudes in
both pointsry andr. Considering bothy;(rp) and ¢,;(r) as
independent random variables with Gaussian distribution,
and taking into account that only orfeut of g) term con-

d2

Ty —

P
(y)= dy ay?

Y()\l,)\z):exp[ - %[a§+ 63]¢,

where A ;=coshf;, \,=c0s6, (0<0;<x, 0<6f,<7). In

fact, the dependence of on 6, is not important, within the R n
exponential accuracy, because it simply gives a prefactor ait”bUtei in th'ﬁ cr?se to the Sct;m th t’hwe gnd tha;n(lt>h d
ter the integration in Eq{(13). Therefore, up to a pre- g", which corresponds to the above stretched-

exponential factor, the distribution functid(y) is given by ~ €xponential form oP(T). Finally, the log-normal asymptotic
behavior corresponds to those disorder realizations, where

P(y)~Y(A1=\1+y\,=1)~exp — y63/2), (15 GR is dominated by an anomalously localized state, which
have an atypically small width; (the same mechanism de-
where 6,=In(\/1+y+\Jy). Finally, after normalizingy to  termines the log-normal asymptotics of the distribution of
its average valuéy)=2/y, we obtain local density of stateésee Refs[15,18).
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