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Intensity distribution for waves in disordered media: Deviations from Rayleigh statistics
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We study the intensity distribution functionP(I ) for monochromatic waves propagating in a quasi-one-
dimensional disordered medium, assuming that a point source and a point detector are embedded in the bulk of
the medium. We find deviations from the Rayleigh statistics at moderately largeI and a logarithmically normal
asymptotic behavior ofP(I ). When the radiation source and the detector are located close to the opposite edges
of the sample~on a distance much less then the sample length!, an intermediate regime with a stretched
exponential behavior ofP(I ) emerges.@S1063-651X~98!51306-2#

PACS number~s!: 05.40.1j, 42.25.Bs, 71.55.Jv, 78.20.Bh
,
h

i

tis
m

,

e

e

a-

e-

ep

ca

is

t
ffi
is
d
p
in

oth
d in
tri-

d-

he
ical

r-
a

for

t

d-
s

When a wave propagates through a random medium
undergoes multiple scattering from inhomogeneities. T
scattered intensity pattern~speckle pattern! is highly irregu-
lar and should be described in statistical terms. One of
characteristics is the intensity distributionP(I ) at some point
r . Almost a century ago Lord Rayleigh, using simple sta
tical arguments, proposed a distribution that bears his na

P0~ Ĩ !5exp~2 Ĩ !, ~1!

where Ĩ is the intensity normalized to its average valueĨ

5I /^I &. The Rayleigh distribution has moments^ Ĩ n&5n!
and it provides, in many cases, a rather accurate fit to exp
mental data, as long asI is not too large@1#. For largeI ,
however, the data show large deviations from Eq.~1! @1–3#.
Various extensions of Eq.~1! have been proposed in th
literature. Jakeman and Pusey@4# proposed to fit the data
with the K distribution. It contains a phenomenological p
rameterh and its moments are given bŷĨ n&5n!h2nG(n
1h)/G(h). The experimentally relevant situation corr
sponds toh@1. In this case moments up ton&h can be
approximated as

^ Ĩ n&.n!exp~n2/h!, ~2!

where only the leading term in the exponent has been k
Thus, only low moments (n!Ah) are close to the Rayleigh
valuen!. Some theoretical support to the phenomenologi
formula Eq.~2! has been given by Dashen@5#, who consid-
ered smooth disorder~the typical size of inhomogeneities
much larger than the wavelength!.

More recently, there has been a considerable amoun
theoretical study of the statistics of the transmission coe
cientstab of a one-dimensional sample with short-range d
order@6–9#. In this formulation of the problem, a source an
a detector of the radiation are located outside the sam
The source produces a plane wave injected into an incom
channela, and the intensity in an outgoing channelb is
measured. It was shown in@7–9# that the distribution of the
normalized transmission coefficientssab5tab /^tab& crosses
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over from the Rayleigh distributionP(sab)5e2sab to a
stretched-exponential oneP(sab);e22Agsab, whereg is the
dimensionless conductance.

In this paper we consider a different situation, where b
the source and the detector of the radiation are embedde
the bulk of the sample, and we calculate the intensity dis
bution P(I ) in this case. We prove that, for not too largen,
the moments can indeed be described by Eq.~2!, and we
compute the parameterh phenomenologically introduced in
@4#. We further compute the whole distribution functionP(I )
and show that its asymptotic behavior at largeI is of a loga-
rithmically normal form, in contrast to the stretche
exponential asymptotics ofP(tab) found in Refs.@7–9#. Fi-
nally, we discuss how these two different forms of t
asymptotic behavior match each other and describe phys
mechanisms governing both of them.

We assume a quasi-one-dimensional~1D! geometry, i.e.,
we consider a tube of transverse dimensionW and lengthL
@W, filled with scattering medium~Fig. 1!. The monochro-
matic source of radiation is placed at pointr0. The field at
some pointr is given by the~retarded! Green’s function
GR(r ,r0) and the radiation intensity is defined asI (r ,r0)
[uGR(r ,r0)u2. The average intensitŷI (r ,r0)& is represented
diagrammatically in Fig. 2. It consists of a diffusion ladder~a
diffuson! T(r1,r2) attached to two external vertices. The ve
tices are short-range objects and can be approximated byd
function times (l /4p), so that^I (r ,r0)&5(l /4p)2T(r ,r0).
For the quasi-one-dimensional geometry, the expression
the diffuson reads

T~r ,r0!5S 4p

l
D 2 3

4p

@z,~L2z.!#

Al L
, ~3!

wherel is the elastic mean free path,A is the cross section
of the tube, thez axis is directed along the sample, andz,

5min(z,z0) andz.5max(z,z0). We assume, of course, tha
uz2z0u@W.

The intensity distributionP(I ), in the diagrammatic ap-
proach, is obtained by calculating the moments^I n& of the
intensity. In the leading approximation@10#, one should draw
n-retarded andn-advanced Green’s functions and insert la
ders between pairs$GR ,GA% in all possible ways. This lead
to ^I n&5n! ^I &n and, thus, to Eq.~1!.
R6285 © 1998 The American Physical Society
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Corrections to the Rayleigh result come from diagra
with intersecting ladders, which describe interaction betw
diffusons. The leading correction is due to pairwise inter
tions. The diagram in Fig. 3 represents a pair of ‘‘colliding
diffusons. The algebraic expression for this diagram is

C~r ,r0!52S l

4p D 4E S )
ı51

4

d3r ıD
3T~r ,r1!T~r ,r2!T~r3,r0!T~r4,r0!

3H S l 5

48pk0
2D E d3r@~“11“2!•~“31“4!

12~“1•“2!12~“3•“4!#)
ı51

4

d~r2r ı!J , ~4!

wherek0 is the wave number and“ ı acts onr ı. The factor
(l /4p)4 comes from the four external vertices of the d
gram, theT’s represent the two incoming and two outgoin
diffusons, and the expression in the curly brackets co
sponds to the internal~interaction! vertex @11#. Finally, the
factor 2 accounts for the two possibilities of inserting a p
of ladders between the outgoing Green’s functions. Integ
ing by parts and employing the quasi-one-dimensional ge
etry of the problem, we obtain~for z0,z)

C~z,z0!.2^I ~z,z0!&2S 11
4

3g D , ~5!

where^I (z,z0)&5(3/4p)@z0(L2z)/Al L# is the average in-
tensity,

g52g
L3

L2~3z1z0!22Lz~z1z0!12z0
2~z2z0!

@1, ~6!

and g5k0
2l A/3pL@1 is the dimensionless conductance

the tube. For simplicity, we will assume that the source a
the detector are located relatively close to each other, so
uz2z0u!L, in which case Eq.~6! reduces tog5gL2/2z(L
2z). ~All the results are found to be qualitatively the same
the generic situationz0;z2z0;L2z;L.!

In order to calculatêI n& one has to compute a combin
torial factor that counts the numberNi of diagrams withi
pairs of interacting diffusons. This number is@6# Ni
5(n!) 2/@22i i !(n22i )! #.(n!/ i !)(n/2)2i , so that

^I n&

^I &n
5n! (

ı50

[n/2]
1

i ! S 2n2

3g D i

.n!exp~2n2/3g!. ~7!

Although i cannot exceedn/2, the sum in Eq.~7! can be
extended tò , if the value ofn is restricted by the condition

FIG. 1. Geometry of the problem. Pointsr05(x0 ,y0 ,z0) and r
5(x,y,z) are the positions of the source and the observation po
respectively.
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n!g. Equation~7! represents the leading exponential co
rection to the Rayleigh distribution. Let us now discuss t
effect of higher-order ‘‘interactions’’ of diffusons. Diagram
with three intersecting diffusons will contribute a correctio
of n3/g2 in the exponent of Eq.~7!, which is small compared
to the leading correction in the whole regionn!g, but be-
comes larger than unity forn*g2/3. Likewise, diagrams with
four intersecting diffusons produce an4/g3 correction, etc.
Restoring the distributionP(I ), we find that

P~ Ĩ !.expF2 Ĩ 1
2

3g
Ĩ 21OS Ĩ 3

g2D 1•••G . ~8!

It should be realized that Eq.~8! is applicable only forĨ
!g;g and thus does not determine the far asymptotics
P(I ). The latter is inaccessible by the perturbative diagr
technique and is handled below by the supersymme
method.

In the supersymmetry formalism, averaging over disor
is replaced by functional integration over supermatrix fie
Q(r ) that satisfy the constraintQ251 @12#. For technical
simplicity, we will assume that the time reversal symmetry
broken by some magneto-optical effects. The integration
done with a weight function exp@2S$Q%#, whereS$Q% is the
s-model action,

S$Q%52
pnD

4 E d3r trS~“Q!2, ~9!

t,

FIG. 2. Diagram for the average intensity. The diffusion ladd
is inserted between two solid lines that represent the ave
Green’s functions.

FIG. 3. Diagram for a pair of interacting diffusons. The extern
vertices contribute the factor (l /4p)4. The shaded region denote
the internal interaction vertex@see Eq.~4!#.
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trS denotes the supertrace,D is the diffusion constant, andn
is the average density of states. In the considered quas
geometry,pnD5gL/2A, and the fieldQ depends on thez
coordinate only, yieldingS$Q%52(gL/8)*dz trS(dQ/dz)2.
Following the derivation outlined in@13–15#, the moments
of the intensity at pointr due to the source atr0 are given by

^I n&5S 2
k0

2

16p2D nE @DQ#@Q12
bb~z!#n@Q21

bb~z0!#ne2S$Q%,

~10!

where Q12
bb(Q21

bb) is the retarded-advanced~respectively,
advanced-retarded! matrix element in the boson-boson sec
of Q. Assuming again that the two pointsr and r0 are suf-
ficiently close to each other,uz2z0u!L, and taking into ac-
count the slow variation of theQ field along the sample, we
can replace the productQ12

bb(z)Q21
bb(z0) by Q12

bb(z)Q21
bb(z).

We then get the following result for the distribution of th
dimensionless intensityy5(16p2/k0

2)I :

P~y!5E dQ d~y1Q12
bbQ21

bb!Y~Q!, ~11!

whereY(Q) is a function of a single supermatrixQ, which is
defined as follows@13,15#:

Y~Q0![E
Q~r0!5Q0

@DQ#exp@2S$Q%#. ~12!

In general, the functionY(Q) depends only on the param
eters 1<l1,`, 21<l2<1 entering into the standard pa
rametrization of theQ matrices@16#. Performing the integra-
tion over the other degrees of freedom, we find that

P~y!5S d

dy
1y

d2

dy2D E dl1dl2

3S l11l2

l12l2
DY~l1 ,l2!d~y112l1

2!. ~13!

The evaluation ofY(Q0)5Y(l1
0 ,l2

0) involves, by its defini-
tion ~12!, an integration over all supermatrix fields, whic
assume a given valueQ0 at pointz0 and satisfy the boundar
conditionsQuz50,L5L, whereL[diag$1,1,21,21%. Since
g@1, this calculation can be done by the saddle-po
method, as suggested by Muzykantskii and Khmelnits
@17#. The result is@15#

Y~l1 ,l2!.expH 2
g

2
@u1

21u2
2#J , ~14!

where l1[coshu1, l2[cosu2 (0<u1,`, 0<u2<p). In
fact, the dependence ofY on u2 is not important, within the
exponential accuracy, because it simply gives a prefacto
ter the integration in Eq.~13!. Therefore, up to a pre
exponential factor, the distribution functionP(y) is given by

P~y!;Y~l15A11y,l251!;exp~2gu1
2/2!, ~15!

where u15 ln(A11y1Ay). Finally, after normalizingy to
its average valuêy&52/g, we obtain
D

r

t
ii

f-

P~ Ĩ !.expH 2
g

2
@ ln2~A112 Ĩ /g1A2 Ĩ /g!#J . ~16!

For Ĩ !g, Eq.~16! reproduces the perturbative expansion~8!,
while for Ĩ @g it implies the log-normal asymptotic behavio
of the distributionP( Ĩ ):

ln P~ Ĩ !.2~g/8!ln2~8 Ĩ /g!. ~17!

The log-normal ‘‘tail’’ ~17! should be contrasted with th
stretched-exponential asymptotic behavior of the distribut
of transmission coefficients@7–9#. Let us briefly discuss how
these two results match each other. Analyzing the expres
for the moments~10!, we find that when the pointsz andz0
approach the sample edges,z05L2z!L, an intermediate
regime of stretched-exponential behavior emerges:

ln P~ Ĩ !.5
2 Ĩ 1

1

3g
Ĩ 21•••, Ĩ !g

22Ag Ĩ , g! Ĩ !gS L

z0
D 2

2
gL

8z0
ln2F16S z0

L D 2 Ĩ

g
G , Ĩ @gS L

z0
D 2

.

~18!

Thus, when the source and the detector move toward
sample edges, the region of validity of the stretche
exponential behavior becomes broader, while the log-nor
tail gets pushed further away. In contrast, when the sou
and the detector are located deep in the bulk,z0;L2z;L,
the stretched-exponential regime disappears, and the R
leigh distribution crosses over directly to the log-normal o
at Ĩ ;g.

Let us now describe the physical mechanisms beh
these different forms ofP( Ĩ ). The Green’s function
GR(r 0,r ) can be expanded in eigenfunctions of a no
Hermitian ~due to open boundaries! ‘‘Hamiltonian’’ as
GR(r 0,r )5( ic i* (r 0)c i(r )(k0

22Ei1 ig i)
21. Since the level

widths g i are typically of the order of the Thouless ener
Ec;D/L2, there is typically;g levels contributing appre-
ciably to the sum. In view of the random phases of the wa
functions, this leads to a Gaussian distribution ofGR(r 0,r )
with zero mean, and thus to the Rayleigh distribution
I (r 0,r )5uGR(r 0,r )u2, with the moments ^ Ĩ n&5n!. The
stretched-exponential behavior results from the disorder
alizations, where one of the statesc i has large amplitudes in
both pointsr 0 and r . Considering bothc i(r 0) and c i(r ) as
independent random variables with Gaussian distributi
and taking into account that only one~out of g) term con-
tributes in this case to the sum forGR, we find that^ Ĩ n&
;n!n!/gn, which corresponds to the above stretche
exponential form ofP( Ĩ ). Finally, the log-normal asymptotic
behavior corresponds to those disorder realizations, wh
GR is dominated by an anomalously localized state, wh
have an atypically small widthg i ~the same mechanism de
termines the log-normal asymptotics of the distribution
local density of states~see Refs.@15,18#!.
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