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Mimicking a turbulent signal: Sequential multiaffine processes
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An efficient method for the construction of a multiaffine process, with prescribed scaling exponents, is
presented. At variance with the previous proposals, this method is sequential and therefore it is the natural
candidate in numerical computations involving synthetic turbulence. The application to the realization of a
realistic turbulentlike signal is discussed in detail. The method represents a first step towards the realization of
a realistic spatiotemporal turbulent fie[61063-651X98)50506-3

PACS numbgs): 47.27.Ak, 02.50.Fz, 05.48j, 05.45+b

In recent years the relevance of multifractal measures and In this paper we introduce a simple and efficient sequen-
multiaffine processes in many fiel@sainly fully developed tial method for the construction of a multiaffine function of
turbulence has been well understo¢di—4]. In different con-  time u(t) with prescribed statistical properties. The guideline
texts, for instance numerical simulations and comparison obf our approach will be the reproduction of a turbulentlike
theoretical models with experimental data, a rather naturalemporal signal. Though the basic idea on the construction of
problem is the construction of artificial signals mimicking the multiaffine process comes from fully developed turbu-
real phenomenée.g., turbulence In particular, it is impor-  lence, nevertheless the method is general and can be applied
tant to have efficient numerical techniques for the constructo any signal.
tion of a multiaffine field #(x) whose structure functions A typical anemometer measurement gives a one-
scale as dimensional string of data representing the one-point turbu-

oL lent velocity u(t) along the direction of the mean flow.
(lp(x+1)= 0|9 ~rc, (1) According to the Taylor hypothesf8], for small turbulence

where( ) indicates a spatialor temporal averagey varies intensitiesu<U, the t@me_variatior_ls ofi can be assumed to
in an appropriate scaling range, and the expongptare be dge to the advectiofwith velocny_U) of a frozen turbu-
given. The most interesting case, and the most physicall§ent field past the measurement point, so that
relevant, is whert, is a nonlinear function of, that is, a
strictly multiaffine field. ou(r)=u(x,t+7)—u(x,t)

Let us first notice that the generation of a multiaffine oy _ _
function is much more difficult than the generation of a mul- =ux=Unb-ux,n=sul), @
tifractal measure, which can be obtained with a simple mul-
tiplicative process generalizing the two scales Cantor set. Wherel=

Up to now, there have existed well established method¥/@ Nave
for the construction of multiaffine field&—8]; see[8] for a
short review. All of these methods share the common char- Sy(1)=(|u(t+7)—u(t)| %)~ 74, 3
acteristic of not being sequential: the process is built as a
whole in an interval(in space or timgof fixed length. To  The frozen field is the result of the superposition of turbulent
extend the interval one has to rebuild the process from thpatterns(eddie$ of many different size$, whose contribu-
beginning. This is an evident limitation if one is interested intion to the time variation of the velocity decays with a typical
constructing a temporal signal mimicking, for example, thosecorrelation timerg,ees~1/U. For the sake of simplicity, in
obtained by an anemometer measurement. Furthermore, notie following, we shall introduce a set of reference scales
sequential algorithms always require a huge amount of,=2"" at which scaling properties will be tested. With this
stored data. picture in mind, we represent the signglt) by a superpo-

U 7. Therefore, once the spatial scalifig is given,
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' ' ' independent, positive defined, identical distributed random
4r i processes whose time correlation decays with characteristic
ol | time 7;. The probability distribution ofx; determines the
intermittency of the process.
10k ) The origin of Eq.(5) is fairly clear in the context of fully
e developed turbulence. Indeed according to the refined simi-
f sl larity hypothesis of Kolmogoroy10,11], we can identifyv,,
= with the velocity difference at scald, and x; with
sk | (ej/e;-1)"" wheree; is the energy dissipation at scdle
> It is easy to show, with a simple argument, that the pro-
al cess constructed according to E¢Y. and(5) is multiaffine.
Because of the fast decrease of the correlation times
2 L J “ =271, the characteristic time af,(t) is of the order of the
J ‘ shortest one, i.e5,=2"". Therefore, the leading contribu-
0 i.ﬂ.‘bm ‘”LL mhlﬂ.“ \ IJ.L ul] L.IJIJL LHH M.L‘.MLM Tl tion to the structure funCtiOI’Sq(T) with 7~ 7, will stem
0 05 1 15 2 from thenth term in Eq.(4). This can be understood nothing
t that in the sunmu(t+ T)—u(t)=2E:1[vk(t+ ) —v(t)] the
FIG. 1. Time seriew(t) normalized to the average for the terms withk=<n are negligible becausg (t+7)=uv(t) and
model withN=15 octaves anth=0.9. the terms withk=n are subleading. Thus one has
sitior_1 of fun_ctions Wit_h diffe_rent characteristic times, repre- Sq(Tn)~<|Un|q>~<|gn|q><xq>n~T:qflogz<xq> (6)
senting eddies of various sizes
N and therefore for the scaling exponeris,
u(t)=2, vn(t). 4
® n§=:1 (V) @ {q=hag—logy(x%). 7

The functionsv,(t) are defined via a multiplicative process The limit of an affine function can be obtained when all the
_ X; are equal to 1.

Un(t) = gn(DX2(D)Xa(1) -+ Xn(1), (5 The above results can be proved in a rigorous way con-
sidering, as a first step, the second order structure function
g%(r). Using the definitiong4) and(5) and stochastic inde-
pendence one obtains

where theg,(t) are independent stationary random pro-
cesses, whose correlation times are the sweeping time scal
m=1,/U=2"" (assumingu=1) and(g?=12", whereh

is the scaling exponent. For fully developed turbulemce N
=1/3. Scaling will show up for all time delay larger than the =2 )2)— t t+ _ )
UV cutoff 7y and smaller than the IR cutoff,. Thex;(t) are S2(7) ngl [(a()%) = (vn(Don(t )] ®

FIG. 2. Numerical(doty and theoretica(line) structure functionsS,(7) for the model withN=20 octaves anth=0.9. The exponents
are{,=0.39,{3=1, {=1.65. The structure functions are shifted by a multiplicative factor for plotting purposes.
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1 - - - . - such thatC(x)=1—-0(x) and F(x)=1—0(x). Therefore,
the IR convergence in the latter case requidgs.q/2. We
observe that the last condition is different from the usual
locality condition{,<<q [12], which holds for differentiable
processes wher@(x)=1—0(x?) andF(x)=1—0(x?).

A similar computation can be performed for the higher
order structure functions. The gener&(7) can be ex-
pressed as a linear combination of terms scaling as
7émg- - 7éme with my + - - - +m,=q. From the convexity of,

_ [13] it follows that the leading contribution t&,(7) for
small 7 is given by Sq(r)~r§q, with the exponentg, as
defined in Eq(7).

Regular behavior for very short time delagsi(7)~ 7,
physically related to the presence of dissipation, can be sim-
ply achieved in our model by smoothing(t) and x,(t)
over a time interval smaller then the UV cutafy .

The numerical implementation of the method proposed
FIG. 3. Probability density functions for the normalized velocity above is very simple. The stochastic procesd) can be
differencessu(7)/ o, whereo=(8u?)'?, for different 7. For large  easily generated via the nonlinear Langevin differential
=10 (b) the PDF is nearly Gaussiaflashed cunje For very  equations:

small 7=0.001 (a) large tails are evident. The parameters Bre

0.1

P, (8u/o)

0.01

0.001

du/c

=15 octaves antt=0.9. 1dv 2

deZ—:&dt‘F ;d\/\/J (14)
Let us now introduce the normalized correlation functions e '
for gn(t) andx;(t), where V(x)== for x<a (a positive constantand V(x)

—o for x—o. It is clear that thex; so obtained have the

c(i - M F(E) - M (9) same probability density function independentrof

h (o) 7 xp) Similarly for theg, one can use the evolution law

where we have sdt =t+s. Plugging into Eq(8) the defi- 1 dy 2

nition (5), one obtains dg,=-— - @dH on T—de , (15
n n n

T T T h
1—C<—)F(—) .. -F(—) _ whereY(g)—« as|g|— ando,=1,.

Tn 71 Tn Numerical tests have been performed adopting for the sto-
(100 chastic differential equationd4) and(15) the following po-

tentials:
For 7y<< 7<< 14 one can neglect the UV and the IR cutoffs, so

So(1) =22, ()()"

we have V(x)=—2Inx for (1—b)B<x<(1+b)¥® (16)
1—C(l)ﬁ F(l) +O(—) and V(x) =2 otherwise, where €b<1. The choice(16)
Tolj=2 \Tj )" corresponds to having a uniform distribution fot between
(11) 1-—band 1+b. In this way, the moment&9) can be easily
computed. In our numerical tests thg processes have been
where we have used the expansiGir/7i)~F(7/71)=1  chosen to be defined by the following simple potential:
—O(7/74). Writing now Eq.(10) for 7— 27 and by shifting
the summation indexp—n—1, one obtains for<r

sz(r>=2n§2 (Ga(x)"

1
Y(9)= 592- (17)
Sy(27)=22(x?) " 1S,(7)+O(7/7y) (12)

For h=1/3, these choices insure tha=1 according to the
scaling prescribed by Kolmogorov's law. The paramedier

Sy(1)~72 with  Z,=2h—logy(x?). (13)  tunes the intermittency of the signal: whbgO we recover

an affine process. The choi¢&7) gives a nonskewed signal
The key point in the above arguments is that the dominanand a Gaussian velocity field in the linbt 0. In Fig. 1 we
contribution to the structure functiog,(7) comes from oc- show the quantityv2(t), which can be considered as the
tavesn such thatr,~ 7, that is, locality. energy density dissipation of the turbulent signal. As one can
The constraints for locality can be captured with a simplesee, high intermittency is detected.

argumen{12]. At a genericr, the UV convergence requires  The theoretical and numerical scaling laws are compared
that for 7,< 7 the quantities(|v,(t+ 7) —v,(t)|N~(Jv,? in Fig. 2. The computed scaling exponents are in perfect
~2~"q have to be bounded far— o and thereforef,>0.  agreement with those given by E). Figure 3 shows the
Similarly, when 7,>7 we have that(|v,(t+7)—v,(t)|%  probability density functiotPDF) of the velocity differences
~ (71 7)Y, |9 ~2" "2 for stochastic processes du(r)=u(t+7)—u(t) for different 7. At large 7~1 the

which leads, as long a&<1, to the scaling behavior:
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PDF is nearly Gaussian, whereas at small delays the PDF &cales. This is connected to the fact that in our temporal
increasingly peaked around zero with high tails correspondsignal, the Taylor hypothesis is introduced by hands without
ing to large fluctuations with respect to their rms value. any real direct dynamicdbtochastit coupling between large
For a specific problem with a nonzero skewness, as imnd small scales.
turbulence Y(g) must be chosen as an asymmetric function; These difficulties in reproducing an Eulerian spatio-
see[8] for a suitable choice according to experimental datatemporal field are absent if one considers the velocity statis-
In this paper we have introduced an efficient sequentiaics in quasi-Lagrangian coordinatisst]. In this framework,
algorithm for the generation of multiaffine processes. Thisy pyre temporal signal would correspond to the velocity field
method, at variance with previous proposals, is not based ofat in the moving reference frame attached to a fluid particle.
hierarchical construction, and can be applied to any multi-he sweeping effect is thus removed and the characteristic
affine signals with specified scaling laws. Furthermore, NQjme scales are the dynamical eddy turnover times. Work in
huge amount of memory is required for the numerical imple+pis direction is in progress.
mentation. o _ Another possible interesting investigation would be to
A possible, relevant, application of such a signal would be;heck whether our signal defines a Markov process for the

to use it for _des_cribing the te_mporal part of_a synthetic tur-energy cascade as it seems to be the case for experimental
bulent velocity field. The spatial part can be implemented by, -pulent signalg15].

using any hierarchical constructions previously proposed,

[5—8] Nevertheless, this way to glue together spatial and We thank D. Pierotti for useful discussions in the early
temporal multiaffine fluctuations would not be realistic, duestages of the work. This work has been partially supported
to the absence of a real sweeping of small scales by largey the INFM (Progetto di Ricerca Avanzata TURBO
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