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Phase chaos in the anisotropic complex Ginzburg-Landau equation
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Of the various interesting solutions found in the two-dimensional complex Ginzburg-Landau equation for
anisotropic systems, the phase-chaotic states show particularly novel features. They exist in a broader param-
eter range than in the isotropic case, and often even broader than in one dimension. They typically represent the
global attractor of the system. There exist two variants of phase chaos: a quasi-one dimensional and a two-
dimensional solution. The transition to defect chaos is of intermittent f{&063-651X98)50306-4

PACS numbes): 05.45:+b, 47.54+r, 47.20.Ky, 42.65.Sf

The complex Ginzburg-Landau equatig@GLE) plays situation of degeneracy between left- or right-traveling
the role of a generalized normal form for spatially extendedvaves, we assume only one type to surviwdich is often
media in the vicinity of a supercritical Hopf bifurcation in- the casg
volving a non-degenerat@scillatory) mode. It has a wide The ACGLE has a 2D wave-vector band of plane-wave
range of applications extending from hydrodynamic instasolutions  A=F X expi(Qx+Py—wt),F?=1-Q?’— P2 w=c
bilities [1,2] and nonlinear opticg3] to oscillatory chemical  +(b;—c)Q?+(b,—c)P?. They are stable against long-
instabilities like the Belousov-Zhabotinsky reactipfi] or  wavelength modulations whefil+2[(1+c?)/(1+b;c)]}Q?
oxidation on catalytic surfacd$]. For a general review see, +{1+2[(1+c?)/(1+b,c)]}P?<1 holds(generalized Eck-

e.g.,[6]. haus instability, while the Newell criterion
The one-dimensiona(lD) and the 2D isotropic cases
have been investigated rather wigl-16]. A number of re- 1+bic>0, i=1,2 2

sults have also been obtained in BI¥,18. Taking up some
earlier work[19] we recently reported about spirals and or-is satisfied in both directions. From these relations one sees
dered defect chains in the anisotropic complex Ginzburgthat the stableQ band shrinks to zero as-+lb;c—0%
Landau equatiofACGLE) [20] [Benjamin-Feir(BF) instability] with a similar behavior of
the P band. Actually, the Eckhaus instability foQ(P) # 0
is of the convective type and plane waves can occur over a
1) limited spatial extension in a larger rangid].
The bifurcation connected with this instability is super-
critical when one is at the BF limit or sufficiently near to it,
Here A is the complex amplitude modulating the critical i.e., the amplitude of the destabilizing sideband modes actu-
mode in space and time. The usual reduced units are usedlly saturate$23]. However, the resulting quasiperiodic so-
This equation was also studied in the context of defect chadsitions, as far as they are themselves modulationally stable,
(DC) [21] and wind-driven Eckmann boundary lay¢22]. have for vanishing @,P) a small basin of attraction in the
Actually the range of applicability of Eq1) is consider- BF unstable range, and in the studied 1D and isotropic cases
able. The isotropic case, i.e., Ef. with b;=b,=Db, can the relevant attractors turn out to be spatiotemporally cha-
essentially be applied only to isotropic systems undergoing atic. Nevertheless, since the amplituté| saturates to a
spatially homogeneoublopf bifurcation. A nonzero wave value near 1, only the phase (we write A=|A| expi®) is
numberg, leads to traveling or standing waves, as in manydynamically active. In 1D the bifurcation at the BF instabil-
hydrodynamic instabilities. Then, in systems that are isotroity, including slow modulations, is captured by the cel-
pic in the basic state, one has a continuous degeneracy of tierated Kuramoto-Sivashinsky phase equatisee below.
critical modes, which makes a more elaborate descriptioft exhibits the so-called phase cha@¥C) (or phase turbu-
necessary. In the presence of an anisotropy, such as, e.g.,lence.
the well-studied system of electroconvection in liquid crys- PC in the 1D CGLE was studied numerically first by Sak-
tals [2], this degeneracy is typically lifted and E@l) is  aguchi[24], who also studied the breakdown and crossover
appropriate. Also, of course, anisotropic systems with &o chaos involving phase sliggeros ofA in spacetimgfur-
d.=0 bifurcation, as occur in oscillatory surface reactionsther away from the BF curve. This state is, in analogy to the
[5], requireb,#b,. Taking linear transformations afandy 2D case(see below, often referred to as defect turbulence or
into account the term involving second derivatives is generaldefect chao$DC) [7]. The resulting phase diagram was stud-
Transforming into a comoving frame a linear group velocityied numerically in detail by Shraimaet al. [25], who dis-
involving a first space derivative vanishes. In fleemmor) covered that fotb|=1.8 the transition between PC and DC
is continuous, whereas it is hysteretic with a bichaotic region
otherwise(see Fig. 1, dashed-dotted line and region marked
*Present address: Max-Planck-Instittit folymerforschung, D-  bichaos 1D. A detailed study with longer simulations and
55128 Mainz, Germany. larger systems was performed by Egolf and Green2é¢

GA=[1+(1+iby) g+ (1+iby) g5 — (1+ic)|A]]A.
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FIG. 1. Phase diagram fdr,=c.

A rather exhaustive study in 2Dsotropic caseb;=b.,) We have performed detailed simulations of the ACGLE in
was presented by Manneville and Chg@|. Here the region  Systems of sizé& between 100 and 2500 dimensionless units
of PC is somewhat smaller than in 1@®ee Fig. 1, dashed With discretizationAt~0.1 andAx=L/N between 0.3 and
line). Also, the transition is always hysteretic, which may be5, whereN is the number of Fourier modes in each direction
related to the fact that the zeros Af now correspond to of the pseudospectral algorithm used. We used periodic
topological defects. The breakdown of PC involves theboundary conditions with initial conditions that imposed a
creation of pairs of defects of opposite polarity which sepazero phase difference across the system. Hence PC with a
rate and loose correlatiofi‘unbind”). Once initiated, the nonzero background wavevector as studied recently in 1D
process is self-sustaining leading to a nucleus and eventualljt4] was excluded. The results depend only weakly on the
to fronts that always appear to invade the PC sf&@.  discretization and on system sider sufficiently large sys-
Thus, in the isotropic case, PC is never the globally stabléems. Choosingb,;=b, the results of27] could be repro-
attractor. duced. Subsequently we changesl in the direction ofc.

Actually over much of the region where one has PC theThis always increased the range of Ri&., |c| could be
global attractor is not DC as such, which appears only tranehosen larger The limit of PC for the casb,=c is depicted
siently, but rather a frozen stafeortex glasg with a disor- in Fig. 1. To the left of the shaded region no defects were
dered distribution of defect®,12,27. Every second defect observed, to the right of it DC was found. The shaded region
emits a spiral wave of the type well known in the Eckhaus-itself is the parameter range where we found intermittency
stable range. The emitted waves remain intact over finite¢csee beloyw Note that forb;>2 even the 1D limit of PC
sized cells by convective stabilization. Rotating spifdlse  could be exceeded. Since it turns out that for the effect on PC
dependencecexpiwt) exist also in the ACGLE. In spirals the sign ofb,—c is, after all, not decisive, we in fact did
the group velocity, which in plane waves isti(-c)qginthe  many of the studies ab,=c(<0). A snapshot of the PC
x direction [2(b,—c)p in the y direction] is expected to found there is shown in Fig.(3.
point outward in all directions. In order to have coherent We now come to the qualitative features of anisotropic
wavefronts one needs{—c)(b,—c)>0. Our simulations PC as extracted from our simulations performed in the range
confirm that spirals are found only under this condition. Alsol<b;<5 andb,=c:
the expected aspect rati{b; — c)/(b,—c) of the equiphase (i) PC is the global attractor, i.e., with random initial con-
lines of spirals is confirmed by the simulations. ditions the system ends up in PC after the eventual annihila-

Our investigation was motivated in particular by the ques-ion of transient defects. This is in contrast to the isotropic
tion of what happens in the parameter regimecase, where PC is never the global attractor.
(b;—c)(b,—c)<0 where spirals do not exist, and therefore (i) In the whole investigated range the transition between
also the existence of DC could be questionable. With thiC and DC(as b,=c is varied goes through a stage of
inequality the BF instabilitynecessary for PCcan only oc-  intermittency(Fig. 1 shaded regignwhich is not found in
cur in one direction{we chooseb,c<—1, i.e., instability in ~ the isotropic case. In the intermittent state defect pairs are
the x direction and the anisotropy is “strong[28]. Since  created in the form of bursts which subsequently annihilate
the ACGLE has the symmetry b(,b,,c,A) again, keeping the correlation between partners, i.e., defect
—(—by,—b,y,—c,A*), we always chosb; >0 (in compar-  pairs remain bounded. So in this regime, in spite of the pres-
ing with other works we transformed to this convenjieand ~ ence of defects, phase coherence persists and the state should
thereforeb, — c>0. therefore be classified as PC. At a critical value of

The quick answer to the above question is actually quitdc| (=c,) defects start to unbind rather fast, and this should
simple: The system remains in PC “longer” than in the iso-be associated with the onset of DC. Recently a transition
tropic case, but eventually it does devel@@nisotropic”)  between two defect chaotic states in coupled Ginzburg-
DC. Since in DC defects actually hardly emit waves, in con-Landau equations was reported where one also sees this un-
trast to the situation in the vortex glass, no problem arise§inding of pairs[29]. L
with opposite group velocities. The investigation led to sur- In PC the spatial average of the amplitug is very
prises to be discussed now. close to 1; see Fig.(d) (solid line). One finds a kink at the
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range studied by us, the term proportionalgp has little
influence(for b,=c it vanishes anyhow

By rescalingt,x,y, and® one can scale the coefficients
of the linear part and the term proportionalgpto 1. Intro-
ducing the time scale=D,,/|D,|?, the length scales be-
comel,=\D,,/|D,| andl,=DyD,,/|D,|, which is sup-
ported by the simulations of PCIl. Note that when the BF
boundary is approached, whe®,—0, |, diverges more
rapidly thanl,, so that PCllappearsmore and more one-
dimensional. Neglecting in E(3) the last term in square
brackets the only relevant parameter is the prefactor of the
Sakaguchi terms, which becomas-a|D,|/(D40,).

Comparing PCIl obtained from simulations of E(B)
with that of the ACGLE we find satisfactory agreement ex-

faster. The limit of existence of PC can here be assigned tgept near to the breakdowfor not too large values df;).

|c| slightly below 0.8. Also shown in Fig.(3) is the mini-
mum |A| i, of |A| (broken ling. Once |A| falls below

|A|=0.6 breakthrough té\=0 typically occurs. Figure (&)

shows|A|,in as a function of time in the intermittent range. case atb,=3.5[26] the authors found;4=—0.75 in the
(iii) In addition to the 2D PC discussed up to now CGLE and—0.55 in the Sakaguchi equation, whereas we

(“PCII” ) there exists close to the BF boundary and coexistfind Coq=—0.9 in the ACGLE (with b,=c) compared to

ent with PCIl a strictly quasi-1D PC'PCI" ) with spatial
variations only in the unstabbedirection[see Fig. 2b) for a

For b;=2.0 andb,=c we find the breakdown of the phase
description ath,= —0.95, which is in fair agreement with
the value found for the ACGLE. In a detailed study of the 1D

—0.75 with Eq.(3). PCl is also found in the phase equation
and can atb;=5.0 be maintained stably up to at least

snapshdt It is obtained by initializing the system with a .= _g 28 The lowest-order description by E@) with only
function A that differs from 1 only by small variations ix

PCl is only stable against small perturbations in yhdirec-

tion and easily transforms into PQ(it is metastable At its

limit of stability, which for b;=5.0 is slightly below
|c|=0.3(=1|b,|), the transformation becomes spontaneou
[30]. Because of CPU time limitations the transition could

not be studied extensively.

Next we introduce a nonlinear phase equation whic
should yield a simplified description of phase chaos becom
ing exact in the limit %b;c—0". Using the standard pro-

S

the first four terms on the right-hand side has PCI and PCII
as coexisting solutions.

How can one understand the existence of PCI? For a
stable 1D solution, i.e., a solution with negative Lyapunov
exponents, thdstablg existence of its quasi-1D analog is
clear in the situation of a stablg direction (this is most

heasily seen in the phase equajio@n the other hand, in PCI

one has positive Lyapunov exponents for fluctuations that
vary only in the x direction, so there are also positive

cedure[6] one arrives at the following equation for the Lyapunov exponents for sufficiently small modulation wave

(strongly anisotropic situation:

0P =— | Dx|07>2<q) - DX433(D - gx(axq))2+ Dyﬁ§¢

_gy(ayq))z_a

2
+—w@¢ﬂx®}

by
DX=1+b1C, Dy=1+b20,

gX:bl_Cl gy:b2_01

The first three terms on the right-hand side of E2).make

Dy=b3(1+c?),

20, D 3D + (92P)?

a=by(1+c?).

)

numberp in they direction. However, this does not neces-
sarily destroy PCI, since the only condition is that fluctua-
tions flatten out iny, even though they do not decay. We
have confirmed by extensive simulations of PCIl at
b;=5.0,b,=c=—-0.26,L =700, and\ =256 that small per-
turbations of the forma, expipy with a,<0.2 (at p~0.1)
decay asymptotically in a diffusive manner with a phase dif-
fusion constant arounB, . Under the same conditions sto-
chastic perturbation@uncorrelated on the discretized lattice
in real spacgdecayed up to an amplitudg;<0.01. Actu-
ally, one also expects solutions of E¢l) of the form
A= exp(Py)B(xt) with phase-chaoti® to exist. Thus, PCI
presumably represents the center ofPaband of phase-
winding solutions.

Finally we point out that the interpretation of the PCII
— DC transition as a vortex binding-unbinding transition

up the 1D Kuramoto-Sivashinski equation. The higher-ordeprobably allows to establish PCIl as a thermodynamic phase
nonlinear terms proportional @ were included by Sakagu- that is qualitatively different from DC. In PCII, even if a
chi, who showed them to be responsible for the breakdowefect pair is created, it remains bounded and annihilates
of PC, here implied by a blow up of the phase grad|@.
Actually the last term in square brackets is formally of enor). The question of the conventional forms of PC repre-
higher order than the others, but it could become importansenting such a state, in contrast to being jugss@metimes

for smallb,. In the stabley direction (D,>0!) it suffices to

again (the unbinding beyond, is a cooperative phenom-

metastablevariant of DC with a very low rate of phase slips

include the two terms shown, as done by Bar in the equationr defect pair creation, has indeed stimulated much of the

without the Sakaguchi ternj81]. Actually, in the parameter

previous research on P{25-27. Actually also PCI, al-
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though it appears to exist only metastably, can presumably- DC transition appears desirable.

.be ponsiQered an independent thermodynamic phase becauseWe have benefitted from discussions with I. Aronson, J.

it differs in symmetry. . Neubauer, W. Pesch, and A. Rossberg. Extensive use of
_Clearly much remains to be done. On one hand, findingyigh-performance computer facilities at the LRZ, hien

criteria for the occurrence of PCI and methods to calculatgCray T90 and the HLRS, StuttgatNEC SX4), as well as

the boundary of existence seems a most interesting problerfinancial support by DFGGrant No. Kr690/4 are gratefully

On the other hand, a detailed characterization of the PClacknowledged.
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