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Shape-dependent thermodynamics and nonlocal hydrodynamics are argued to occur in dissipative steady
states of driven diffusive systems. These predictions are confirmed by numerical simulations. Unlike power-
law correlations, these phenomena cannot be explained by a hypothesis of ‘‘criticality.’’ Instead, they require
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Power-law decay of correlations are generic in dissipa
steady states of open, driven systems with conservation
@1,2#. In equilibrium systems such power laws can be due
two different mechanisms: the interaction potentials in
system Hamiltonian can themselves be long-range po
laws ~e.g., dipolar! or else the potentials can be short-rang
but the system may be at a critical point@3#. The latter cir-
cumstance has prompted the view that dissipative, none
librium systems are attracted without any tuning of para
eters to a critical state, or exhibit so-called ‘‘self-organiz
criticality’’ ~SOC! @4#. We shall show here that such an i
terpretation, taken literally, is not true in an important cla
of such systems. As we shall explain, aneffective Hamil-
tonianmay be introduced to characterize the nonequilibri
statistics. We then exhibit phenomena that can be expla
only by the presence there of effective power-law potent
of very long range. Such an explanation for power-law c
relations was earlier proposed indriven diffusive systems@5#
and, more recently, in a shakengranular flow @6#. Because
the underlying dynamics are local in these systems,
mechanism may be justly termed ‘‘self-organized long-ran
interactions’’~SOLRI!. We shall demonstrate in the class
systems considered two closely related phenomena:shape-
571063-651X/98/57~6!/6229~4!/$15.00
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dependent thermodynamicsand nonlocal hydrodynamics.
These phenomena could not occur if the effective Ham
tonian were short-ranged but critical. In fact, the induc
potentials must have such an extreme long-range, ma
body character that the nonequilibrium measures are
mally non-Gibbsian. ~For an excellent review of the relevan
notions, see@7#.! The indicators of the non-Gibbsian natur
shape-dependent thermodynamics and nonlocal hydro
namics, have great importance in themselves. They are
pected to occur in physical drift-diffusion systems, e.g., el
trolytes and semiconductors.

Correlations of power-law type are predicted in such s
tems by linear fluctuating hydrodynamics@1,2#. In a DDS
with one species of~unit-charged! particle at constant mea
densityr, in contact with a heat bath at temperatureT and in
an applied electric fieldE, the equation in Fourier space fo
density fluctuationsdr̂(k,t) is

dṙ̂~k,t !5@ icE–k2k–DE–k#dr̂~k,t !2 ik–d Ĵ~k,t !. ~1!

Here cE(r)5dj E /dr(r) is the drift velocity, a density de-
rivative of the conduction current. The latter is given, at lo
density r and small field-strengthE, by Ohm’s law, j E
5s–E5rm–E, with s the conductivity tensor andm the
R6229 © 1998 The American Physical Society
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mobility tensor.DE(r) is the diffusion tensor in the conduc
ing state, whiled Ĵ(k,t) is the Fourier component of th
current noise with zero mean and covarian

^d Ĵ(k,t)d Ĵ(k8,t8)&52LE
s (r)d3(k1k8)d(t2t8). In the

limit E→0, LE(r) coincides with the Onsager matrixL
5skBT. It is easy to solve Eq.~1! for the static structure
function ŜE(k)[ limt→`^dr̂(k,t)dr̂(2k,t)&:

ŜE~k!5
k–LE–k

k–DE–k
. ~2!

~See @1#.! Inverse Fourier transforming gives a long-ran
density-density correlationSE(r );r 2d in dimension d,
whenLE andDE are not proportional. This will generally b
true for EÞ0. Such power-law correlations have been ve
fied in numerical simulations of simpledriven lattice gas
~DLG! models@9,10#. Correlations of this type are expecte
more generally in locally driven or damped conservative s
tems without detailed balance. For example,r 2d correlations
of similiar origin have recently been predicted and verifi
computationally in the homogeneous cooling state of ra
granular flows@11#. Our results have implications for a
such systems.

We illustrate our points with the DLG models@9,12#.
These were originally introduced as models of solid elec
lytes, or superionic conductors@13,14#. However, unlike
physical drift-diffusion systems of charged particles, the
models have only short-ranged dynamical interactions
are thus perfect for our theoretical objectives. We shall co
ment later how the results carry over to realistic DDS w
Coulombic interactions. The particles of the DLG model li
on a cubic latticeZd. Assuming hard-core exclusion, th
occupancyhx,tP$0,1% for each sitexPZd and time t>0.
The evolution of the configuration is via a Kawasaki e
change dynamics, specified by the ratecE(x,y;h) for ex-
change of occupancy of nearest neighbor sitesx,y in the
configurationh, i.e., for the transitionh→hxy. In addition to
assuming that rates are functions of occupancies at
within a finite range of$x,y%, the main assumption islocal
detailed balance:

cE~x,y;h!5cE~x,y;hxy!exp$2b@H~hxy!2H~h!

1E–~x2y!~hx2hy!#%, ~3!

for some short-ranged lattice-gas HamiltonianH(h), e.g., an
Ising model. The condition~3! encourages particles to hop
the direction of the electric fieldE and, in infinite volume,
sets up an irreversible steady state with a mean curren
fact, these models have space-ergodic, homogeneous
time-invariant measuresmr,E,b for each densityrP@0,1#,
expected to be unique at smallb. The question arises
whether these measures in infinite volume are ‘‘Gibbsia
for an effective Hamiltonian

Heff~h!5 (
A,Zd

FA~h! ~4!

with some set of many-body potentialsFA depending on
spinshx at sitesxPA,Zd. If it exists, this will generally not
be the same as the short-ranged HamiltonianH(h) used in
defining the dynamics. It turns out that almostany reason-
able measure~with local densities! is ‘‘Gibbsian’’ if one per-
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mits extremely long-ranged, many-body potentials and,
deed, there are a myriad of physically inequivalent su
Hamiltonians@e.g., see@15#, Theorem V.2.2~a!#. To guaran-
tee uniqueness and other standard properties of usual G
measures, the condition ofabsolute summabilityis required,

(
A{x

iFAi`,` ~5!

for all xPZd, where iFAi`[suphuFA(h)u. Following
rather common practice@7#, we shall agree here to call onl
measures with the latter property ‘‘Gibbsian.’’ It is a rigo
ous theorem of Asselah@16# ~or Appendix B of@8#! that the
following alternative holds: eitherall space-ergodic, invari-
ant measures of the DLG are Gibbsian with absolutely su
mable potential or elsenone of them are. It may also be
proved that in the domain of analyticity, no absolutely su
mable power-law potential can produce a correlation}r 2d

~Theorem 1 of@3#!, such as is observed in the DLG. Thu
under the first alternative, one is led to conclude that
Gibbs measure must be critical to account for the obser
correlation decay. Alternative number one for our purpo
may thus be termed SOC. On the other hand, in alterna
number 2 the potentials are nonsummable (5 long-ranged),
so that this case corresponds to the SOLRI scenario. To
port the latter, we make some key comparisons with lo
ranged systems.

An analogy was already remarked a few years ago
tween the DDS and dipolar systems@5#. Of course, dipole
spin-spin correlations are also}r 2d even at high tempera
ture. This is consistent with our point of view, because
dipole potential just misses being absolutely summable~and
is thus ‘‘non-Gibbsian’’ according to our criterion!. An im-
portant consequence of this nonsummability was recogn
early @17#, namely, that the thermodynamics of dipolar sy
tems isshape dependent. This situation arises because th
dipole potential energy sums are only conditionally conv
gent and hence may lead to different values depending u
the order of summation, i.e. the shape, at least at non
field @18#. In uniformly magnetized (5high field),
ellipsoidally-shaped samples of dipolar materials the sh
dependence of thermodynamic free-energy functions is s
ply parameterized@19#, in good agreement with experimen
@20#.

It was argued in@8# that a similiar shape dependence o
curs in DDS. The thermodynamic functions of interest a
the ‘‘pressure’’ pE and the ‘‘Helmholtz free-energy’’f E .
The former is defined by the thermodynamic limit

pE~m,bur* !5 lim
L→Zd

1

buLu
log^ebmNL&r

*
,b,E , ~6!

whereL is a sequence of lattice volumes converging toZd,
NL(h) is the number of particles withinL for the configu-
ration h, and the averagê•&r

*
,b,E is with respect to the

invariant measuremr
*

,b,E of the DLG for reference density

r* . The ‘‘Helmholtz free energy’’f E is then introduced
by the Legendre transform f E(r,bur* )5supm@mr
2pE(m,bur* )#. We include ther* as a reminder of the
reference density and theE to indicate the strength of the
applied electric field. Since the measures here are for i
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versible steady states with Ohmic dissipation, these are
usual free energies. They coincide with the equilibrium fre
energies in the limitE→0. The physical interpretation o
f E(r,bur* ) is as an ‘‘excess dissipation function,’’ i.e., a
the total energy dissipated per volume by an external fiel
change the density tor from its reference valuer* ~in ad-
dition to the Ohmic dissipation intrinsic to the referen
state! @8#. The argument for shape dependence is that
‘‘susceptibility’’ ~essentially, the isothermal compressibilit!
may be written both in terms of the free-energy,xE(r,b)
5@b]2f E /]r2(r,b)#21, and also in terms of the structure
function, via the limitxE5 limk→0ŜE(k). However, the latter
limit is indeterminate when the structure function has
form in Eq. ~2! and depends upon the wave number vec
direction k̂ along which the limit is taken. Thus, the free
energy itself must be shape dependent, by the same argu
as for dipole systems.

To test this prediction we have performed a Monte Ca
simulation of the DLG on a periodic squareS3S lattice with
Ising HamiltonianH52 1

2 (^x,y&hxhy where ^x,y& denotes
nearest neighbor sites, for which the~inverse! critical tem-
perature isbc'0.31 @12#. To stay well within the single
phase ~high temperature! regime, we usedb50.2, E
510.0, and reference densityr* 50.5. We have determine
the thermodynamic functions for rectangular subblocksL of
the S3S system, in which various aspect ratios of the sid
of the rectangles were chosen. The pressure was evaluat
a double limit. First the infinite volume limit was obtained b
a linear extrapolation in 1/S→0 on the Monte Carlo averag
^ebmNL&S in the steady state withS564, 128, 256, 512. The
thermodynamic limit in Eq.~6! for the pressure was the
evaluated by a second linear extrapolation in the inverse
ume 1/uLu of the subblock going to zero. The largest su
block edge in this second extrapolation had a length of
The Legendre transform to the free-energy was then car
out. The results are shown in Fig. 1 for subblocks with asp
ratios of 3:1 and 1:3 for sidelengths parallel and perpend
lar to the field, respectively. Error bars reflect both statisti
deviations in independent runs and the double extrapola
procedure. The two functions are clearly distinct. We see
the DLG, considered as a model of a current-carrying e
trochemical cell, has well-defined free-energies but the

FIG. 1. Free energy as a function of density forE510, b
50.2, r* 50.5 for aspect ratio 3:1~triangles! and 1:3~squares!.
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sults depend upon the shape of the cell.
This shape dependence leads, however, to a rather se

puzzle about the hydrodynamic behavior of the DDS. T
general problem is to describe how an initial smooth den
profile relaxes to a constant density in the driven steady st
In @8# a nonlinear hydrodynamic equation was derived by
formal method of nonequilibrium distributions to describ
this irreversible process. Density fields varying on a leng
scale of the order ofe21 compared with the lattice distanc
were formally shown to evolve by adrift-diffusion equation,

ṙ~r ,t !52“–Fe21j E~r!2bLE~r!–“S dFE

dr D G , ~7!

over times of ordere22. This equation has the ‘‘Onsage
form,’’ with j E(r) the conduction current,LE(r) the On-
sager coefficient matrix, andFE@r# the free-energy func-
tional. Explicit analytical formulas were given in@8# for each
of these quantities, e.g. a Green-Kubo formula for the O
sager matrix. These formulas are exact even at high fi
strengthsE, although they may be difficult to evaluate co
cretely. The free-energy functional in@8# was nominally
given by the local expressionFE@r#5*dr f E@r(r )#. How-
ever, as observed there, such a form is indeterminate. S
the free-energy depends upon the limiting shape, wh
value is to be used?

We can now resolve this issue. The free-energy functio
actually shown in@8# to be relevant to hydrodynamics i
given by a Legendre transformFE@r#5*drr(r )m(r )
2PE@m# of the pressure functional

PE@m#5
1

b
lim
e→0

edlogK expF(
x

bm~ex!hxG L
r
*

,b,E

.

~8!

Simple computation then givesdPE /dm(r )um505r* and

d2PE

dm~r !dm~r 8!
U

m50

5b lim
e→0

e2d@^h [ e21r ]h [ e21r8]&r
*

,E2r
*
2 #

[bSE~r2r 8!. ~9!

It follows that PE@m#5*drr* m(r )1b/2*dr*dr 8SE(r
2r 8)m(r )m(r 8)1O(m3), and the Legendre transform
yields

FE@r#5
1

2b E drE dr 8SE
21~r2r 8!dr~r !dr~r 8!1O~dr3!,

~10!

wheredr(r )[r(r )2r* andSE
21 is the operator inverse o

SE . In other words,SE
21̂(k)5k–DE–k/k–LE–k. Hence, the

inverse kernelSE
21(r ) is }r 2d for large r , too. We see that

the hydrodynamic equation of the DDS at finite fie
strengthsE thus must have an explicit, severelynonlocal
form. @H. Spohn has emphasized to us that Eq.~7! linearized
about the homogeneous state of densityr* will still be local
if Eq. ~2! holds, since then LE(r* ):““*dr 8SE

21(r
2r 8)dr(r 8)5DE(r* ):““dr(r ).# However, with the free-
energy functional in Eq.~10! replacing the local expression
all results of @8# remain valid: the H-theorem, the
fluctuation-dissipation theorem, etc.
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Such nonlocal hydrodynamic behavior should also
present in equilibrium systems with long-ranged interactio
e.g., dipolar hard sphere systems or ferrofluids. In one s
system, the Kawasaki lattice gas with a long-ranged K
pair-potential, there is a rigorous result@21# that a hydrody-
namic equation of the same form as Eq.~7! holds, with a
similar nonlocal expression for the free-energy as in E
~10!, simply replacingSE

21(r ) by the kernelJ(r ) of the Kac
potential. We see again a very striking and fruitful analo
between dissipative, driven systems and equilibrium syst
with long-range interactions.

Our results verify that the SOLRI scenario holds in o
model, and not SOC. For Gibbsian measures with summ
potentials there is no shape-dependence of thermodynam
such as we observe here, even at the critical point~@15#,
Theorem I.2.5!. Boundary conditions play a rolebelow the
critical point in the phase coexistence region in determin
which of multiple phases will occur, but even then the fr
energies are independent of the phase. The ordinary the
dynamic limit, with no shape-dependence, remains valid
rectly at the critical point. Likewise, the dynamics of sho
ranged systems in the coexistence region is expected t
described by the Cahn-Hilliard dynamics, which is local. It
actually a little perplexing how to interpret the SOC point
view that nonequilibrium steady states are always ‘‘critica
when these are observed themselves to undergo contin
phase transitions at sharp values of temperature and/or
sity. Such transitions occur both in the DLG@12# and in
granular flow@6#, not to mention dipole systems@22#. Away
from the transition point both DDS and dipole systems ha
a finite correlation lengthj which characterizes the crossov
from a critical power law}r 2(d221h) at intermediate range
r !j into the asymptotic power-law}r 2d at long-ranger
@j @12,22#.
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It is most interesting to consider the implications of o
model calculation for real systems. We expect that the m
conclusions concerning shape dependence and nonloc
will hold for physical drift-diffusion systems, such as fluid o
solid electrolytes, semiconductors, and, at a more me
copic level, colloidal suspensions@23#. In real charged-
particle systems there is the added complication of a dyn
ics which is itself long-ranged, via Coulombic interaction
However, these are expected to be Debye-screened an
fectively short ranged. The drift-diffusion equations we
justified long ago for nonequilibrium processes in electrol
solutions at low density and small fields within Deby
Hückel theory@24#. The equations are of the same form
those we have considered, simply generalized to mult
ionic species. The effects of the Coulomb interactions
calculable and can all be incorporated into an effective O
sager matrix, with cross-species terms due to ionic-cloud
tortion and electrophoresis. The effects considered in
work correspond to contributions to the invariant measu
and thermodynamic potentials in at least theE2 power of the
field strength. It would be interesting to make a theoreti
estimate of the order of magnitude of such effects in elec
lyte solutions. Perhaps the most accessible predictions
the long-ranged correlations themselves, which could be
served in light-scattering experiments similiar to those c
ried out on simple fluids subject to a temperature gradi
~see@25# for a recent review!. Also of possible practical in-
terest are the implications of a nonlocal hydrodynamics
granular flow.
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