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Shape-dependent thermodynamics and nonlocal hydrodynamics are argued to occur in dissipative steady
states of driven diffusive systems. These predictions are confirmed by numerical simulations. Unlike power-
law correlations, these phenomena cannot be explained by a hypothesis of “criticality.” Instead, they require
the effective Hamiltonian of the system to contain very long-range potentials, making the invariant probability
measures formally “non-Gibbsian.['S1063-651X98)50606-X]

PACS numbegps): 05.70.Ln, 05.60tw, 82.20.Mj, 47.50+d

Power-law decay of correlations are generic in dissipativalependent thermodynamiand nonlocal hydrodynamics
steady states of open, driven systems with conservation lawshese phenomena could not occur if the effective Hamil-
[1,2]. In equilibrium systems such power laws can be due tdonian were short-ranged but critical. In fact, the induced
two different mechanisms: the interaction potentials in thepotentials must have such an extreme long-range, many-
System Hamiltonian can themselves be |Ong-range powé?Ody character that the nonequilibrium measures are for-
laws (e.g., dipolay or else the potentials can be short-rangedMally non-Gibbsian (For an excellent review of the relevant
but the system may be at a critical po[]. The latter cir- notions, seg7].) The indicators of the non-Gibbsian nature,
cumstance has prompted the view that dissipative, nonequin@pe-dependent thermodynamics and nonlocal hydrody-
librium systems are attracted without any tuning of param'@mics, have great importance in themselves. They are ex-
eters to a critical state, or exhibit so-called ‘‘seh‘—organizedpemed to oceur in physical drift-diffusion systems, e.g., elec-
criticality” (SOQ [4]. We shall show here that such an in- trolytes ?m.j sem:cconductlors. dicted i h
terpretation, taken literally, is not true in an important classt Correlations of power-law type are predicted in such sys-

of such systems. As we shall explain, effective Hamil- ems by linear fluctuating hydrodynami¢$,2]. In a DDS

. . . ... With one species ofunit-chargedl particle at constant mean
tonian may be introduced to characterize the nonequ'“b”umdensityp ir?contac(:)'gl\jvith a hegatmbgth at temperatiirand in

statistics. We then exhibit phenome_na that can be expla_ineg#1 applied electric field, the equation in Fourier space for
only by the presence there of effective power-law potentlaI? Hensity fluctuationsp(k, t) is

of very long range. Such an explanation for power-law cor '
relations was earlier proposed diniven diffusive systeni$] 5;3(k,t)=[icE~k—k-DE-k] 5,3(k,t)—ik-53(k,t). (1)
and, more recently, in a shakemanular flow[6]. Because

the underlying dynamics are local in these systems, thislere ce(p)=dje/dp(p) is the drift velocity, a density de-
mechanism may be justly termed “self-organized long-rangeivative of the conduction current. The latter is given, at low
interactions” (SOLRI). We shall demonstrate in the class of density p and small field-strengtte, by Ohm’s law, jg
systems considered two closely related phenomshape- =o-E=pu-E, with o the conductivity tensor ange the
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mobility tensor.Dg(p) is the diffusion tensor in the conduct- Mits extremely long-ranged, many-body potentials and, in-
ing state, whilesJ(k,t) is the Fourier component of the deed, there are a myriad of physically inequivalent such
current noise with zero mean and covariance@miltoniansie.g., seq15], Theorem V.2.2)]. To guaran-
(53(k,t)53(k’,t’))zZLSE(p) B(k+K)S(t—t'). In  the tee unigueness and other standard properties of usual Gibbs

Y _E\ . measures, the condition absolute summabilitis required,
limit E—0, Lg(p) coincides with the Onsager matrix ¥ req

=okgT. It is easy to solve Eq(l) for the static structure
oksT. It Is easy to solve Eq() for the S @< ®)
function Sg(k) =lim,_..{ 5p(k,t) Sp(—Kk,t)): ASx
- k-Lg-k
SE(k)=—E. (20 for all xez% where ||®4]..=sup|Pa(n)|. Following
k-Dg-k

rather common practick’], we shall agree here to call only

(See[1].) Inverse Fourier transforming gives a long-range Meéasures with the latter property “Gibbsian.” It is a rigor-
density-density correlatiorSe(r)~r ¢ in dimensiond,  ©9US theorem of Asseldli6] (or Appendix B of[8]) that the

whenL ¢ andDg are not proportional. This will generally be following alternative holds: eithegll s_;pace'-ergodic, invari-
true for E+0. Such power-law correlations have been veri-ant measures of the DLG are Gibbsian with absolutely sum-
fied in numerical simulations of simplériven lattice gas Mmable potential or els@one of them are. It may also be
(DLG) models[9,10]. Correlations of this type are expected proved that in the doma|'n of analyticity, no absolutglxdsum-
more generally in locally driven or damped conservative sys/Mable power-law potential can produce a correlatian
tems without detailed balance. For example? correlations  (Theorem 1 of 3]), such as is observed in the DLG. Thus,
of similiar origin have recently been predicted and verifiedUNder the first alternative, one is led to conclude that the
computationally in the homogeneous cooling state of rapicp'bbs measure must be c.rmcal to account for the observed
granular flows[11]. Our results have implications for all correlation decay. Alternative number one for our purposes
such systems. may thus be termed SOC. On the other hand, in alternative
We illustrate our points with the DLG mode[®,12.  number 2 the potentials are nonsummabteldng-ranged),
These were originally introduced as models of solid electroSC that this case corresponds to the SOLRI scenario. To sup-
lytes, or superionic conductorkl3,14. However, unlike port the latter, we make some key comparisons with long-
physical drift-diffusion systems of charged particles, thesd@nged systems.
models have only short-ranged dynamical interactions and AN @nalogy was already remarked a few years ago be-
are thus perfect for our theoretical objectives. We shall comtWeen the DDS and dipolar syitgr[iiﬂ. Of course, dipole
ment later how the results carry over to realistic DDS withSPIN-Spin correlations are alser ~“ even at high tempera-
Coulombic interactions. The particles of the DLG model live ture- This is consistent with our point of view, because the
on a cubic latticez. Assuming hard-core exclusion, the diPole potential just misses being absolutely summadiel
occupancyn,€{0,1} for each sitexe Z¢ and timet=0.

is thus “non-Gibbsian” according to our criteri@nAn im-
The evolution of the configuration is via a Kawasaki ex- portant consequence of this nonsummability was recognized
change dynamics, specified by the raigx,y; n) for ex-

early[17], namely, that the thermodynamics of dipolar sys-

change of occupancy of nearest neighbor skgsin the
nt and hence may lead to different values depending upon

within a finite range ofx,y}, the main assumption i®cal

ellipsoidally-shaped samples of dipolar materials the shape

+E-(X=y) (= my) 1},
(X=Y)(n« Ty ]} [20].

the direction of the electric fielE and, in infinite volume, the “pressure” pg and the “Helmholtz free-energy'fe.
time-invariant measureg, g ; for each densityp [0,1],
for an effective Hamiltonian

_ 1
pEw,Blp*):Anrgd BIA] oK, e (O

whereA is a sequence of lattice volumes convergingft
NA(7) is the number of particles withi for the configu-

tems isshape dependentThis situation arises because the
configurations, i.e., for the transitiony— 7. In addition to dipole potential energy sums are only conditionally conver-
assuming that rates are functions of occupancies at sit . .
the order of summation, i.e. the shape, at least at nonzero
detailed balance: field [18]. In uniformly magnetized +high field),
. — . XY _ Xyy . 3 ) A
Ce(XY; m)=ce(X,y; 7¥)exp{ — B[H(7®) —H(n) dependence of thermodynamic free-energy functions is sim-
3 ply parameterized19], in good agreement with experiment
for some short-ranged lattice-gas Hamiltonkd(y), e.g., an It was argued i8] that a similiar shape dependence oc-
Ising model. The conditioB8) encourages particles to hop in curs in DDS. The thermodynamic functions of interest are
sets up an irreversible steady state with a mean current. [hhe former is defined by the thermodynamic limit
fact, these models have space-ergodic, homogeneous, and
expected to be unique at smagHl. The question arises
whether these measures in infinite volume are “Gibbsian”
Heil(m)= 2, ®a(7) @
Aczd

with some set of many-body potentiads, depending on
spins7, at sitesxe AC Z9. If it exists, this will generally not
be the same as the short-ranged Hamiltorti{y) used in
defining the dynamics. It turns out that almasty reason-
able measuréwith local densitiesis “Gibbsian” if one per-

ration 7, and the average-), e is with respect to the
invariant measure., g e of the DLG for reference density
py - The “Helmholtz free energy”fg is then introduced
by the Legendre transform fE(p,ﬂ|p*)=SugL[,up

—pe(m,Blps)]. We include thep, as a reminder of the
reference density and thHe to indicate the strength of the

applied electric field. Since the measures here are for irre-
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0.080 - y sults depend upon the shape of the cell.
This shape dependence leads, however, to a rather serious
puzzle about the hydrodynamic behavior of the DDS. The

0.070 ]

0060 [ ] general problem is to describe how an initial smooth density
profile relaxes to a constant density in the driven steady state.
0.050 | ] In [8] a nonlinear hydrodynamic equation was derived by the

formal method of nonequilibrium distributions to describe

oot ] this irreversible process. Density fields varying on a length-
o030 | ] scale of the order o€ ! compared with the lattice distance
were formally shown to evolve by drift-diffusion equation
0.020 d
(1,0~ —V | e Yie(p)— BLe(p) V| 2 (7)
woro b ] p(r, Je(p elp 50 ||’
0.009 — oas 055 065 over times of ordefe 2. This equation has the “Onsager
p form,” with jg(p) the conduction current, g(p) the On-

sager coefficient matrix, andg[ p] the free-energy func-
tional. Explicit analytical formulas were given [8] for each
of these quantities, e.g. a Green-Kubo formula for the On-

versible steady states with Ohmic dissipation, these are ng@ger matrix. These formulas are exact even at high field
usual free energies. They coincide with the equilibrium free-strengthsE, although they may be difficult to evaluate con-
energies in the limitE—0. The physical interpretation of Cretely. The free-energy functional if8] was nominally
fe(p.Blp,) is as an “excess dissipation function,” i.e., as given by the local expressioffie[ p]=fdrfe[p(r)]. How-
the total energy dissipated per volume by an external field t§Ver, as observed there, such a form is indeterminate. Since
change the density tp from its reference valug, (in ad- the free-energy depends upon the limiting shape, which
dition to the Ohmic dissipation intrinsic to the referencevalue is to be used? _
state [8]. The argument for shape dependence is that the We can now rgsolve this issue. The free-energy functhnal
“susceptibility” (essentially, the isothermal compressibjlity actually shown in[8] to be relevant to hydrodynamics is
may be written both in terms of the free-energy(p,8)  9iven by a Legendre transformFe[p]=Jdrp(r)u(r)
=[B5*feldp®(p,B)]" L, and also in terms of the structure- — Pel 1] of the pressure functional

>p* B.E

function, via the limityg=lim,_.,Sg(k). However, the latter 1 d
limit is indeterminate when the structure function has the PE[M]_/_; lim €elog{ ex ; B €x) ny

8
I6p(r)] u=0=p, and

FIG. 1. Free energy as a function of density 610, 8
=0.2, p, =0.5 for aspect ratio 3:liriangles and 1:3(squares

form in Eq. (2) and depends upon the wave number vector 0

directionk along which the limit is taken. Thus, the free-
energy i}self must be shape dependent, by the same argumeg]pnme computation then givesPe
as for dipole systems. 5

To test this prediction we have performed a Monte Carlo 5 Pe
simulation of the DLG on a periodic squa® S lattice with ou(r)ou(r’)
Ising HamiltonianH = — %E<X,y> nxmy Where (x,y) denotes
nearest neighbor sites, for which tlieverse critical tem- =BS(r—r'). 9
perature isB.~0.31[12]. To stay well within the single
phase (high temperature regime, we usedg=0.2, E It follows that Pg[u]=[drp,u(r)+p/2[dr [dr’Sg(r
—10.0, and reference density =0.5. We have determined —f")u(r)u(r')+0(x®), and the Legendre transform
the thermodynamic functions for rectangular subbloaksf ~ Yields
the SX S system, in which various aspect ratios of the sides 1
of the rectangles were chosen. The pressure was evaluated By p]= ﬁ f drf dr’SEl(r —r")8p(r)dp(r')+0(8p>),
a double limit. First the infinite volume limit was obtained by (10)
a linear extrapolation in -0 on the Monte Carlo average
(eP#Na)gin the steady state witB=64, 128, 256, 512. The ,
thermodynamic limit in Eq.6) for the pressure was then ~
evaluated by a second linear extrapolation in the inverse vol5e - In other words,Sg “(k) =k-De-k/k-Lg-k. Hence, the
ume 1JA| of the subblock going to zero. The largest sub-inverse kerneBg *(r) is «r ¢ for larger, too. We see that
block edge in this second extrapolation had a length of 1g8the hydrodynamic equation of the DDS at finite field
The Legendre transform to the free-energy was then carriegtrengthsE thus must have an explicit, severetpnlocal
out. The results are shown in Fig. 1 for subblocks with aspeciorm. [H. Spohn has emphasized to us that &g linearized
ratios of 3:1 and 1:3 for sidelengths parallel and perpendicu@bout the homogeneous state of dengitywill still be local
lar to the field, respectively. Error bars reflect both statisticaif Eq. (2) holds, since thenLg(p,):VVfdr'Sg*(r
deviations in independent runs and the double extrapolatiorr’)8p(r’) =Dg(p4):VV p(r).] However, with the free-
procedure. The two functions are clearly distinct. We see thagnergy functional in Eq(10) replacing the local expression,
the DLG, considered as a model of a current-carrying elecall results of [8] remain valid: the H-theorem, the
trochemical cell, has well-defined free-energies but the refluctuation-dissipation theorem, etc.

=g lim Eid[(”][eflr] ﬂ[e*lr/]>p* ,E_Pi]
n=0 e—0

eredp(r)=p(r)—p, and Sgl is the operator inverse of
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Such nonlocal hydrodynamic behavior should also be It is most interesting to consider the implications of our
present in equilibrium systems with long-ranged interactionsfodel calculation for real systems. We expect that the main
e.g., dipolar hard sphere systems or ferrofluids. In one sucgonclusions concerning shape dependence and nonlocality
system, the Kawasaki lattice gas with a long-ranged Kadvill hold for physical drift-diffusion systems, such as fluid or
pair-potential, there is a rigorous res[@1] that a hydrody- soliq electrolytes,_ semiconduc’gors, and, at a more mesos-
namic equation of the same form as E@) holds, with a  copic level, colloidal suspensiong3]. In real charged-
similar nonlocal expression for the free-energy as in Eqpartlcle systems there is the added complication of a dynam-

; Lo hich is itself long-ranged, via Coulombic interactions.
(10), simply replacingSz *(r) by the kernel(r) of the Kac ¢S W g-ranged,
potential. We see again a very striking and fruitful analongowever, these are expected to be Debye-screened and ef-

B ; e fectively short ranged. The drift-diffusion equations were
bgtween dISSIpa'Flve, dnyen systems and equilibrium syste Justified long ago for nonequilibrium processes in electrolyte
with long-range interactions.

. : . solutions at low density and small fields within Debye-
Our results verify that the SOLRI scenario holds in oury il theory[24]. The equations are of the same form as
model, and not SOC. For Gibbsian measures with summab

' : ~those we have considered, simply generalized to multiple
potentials there is no shape-dependence Of. t.hermodynam|c1‘-8,nic species. The effects of the Coulomb interactions are
such as we observe here, even at the critical pgib8], calculable and can all be incorporated into an effective On-
Theorem 1.2.5 Boundary conditions play a roleelow the

o o . N - . sager matrix, with cross-species terms due to ionic-cloud dis-
critical point in the phase coexistence region in determining,io, ang electrophoresis. The effects considered in our

Wh'Ch.Of mult_lple phases will occur, but even th_en the freework correspond to contributions to the invariant measures
energies are independent of the phase. The ordinary thermge | thermodynamic potentials in at least Efepower of the

dynamic limit, with no shape-dependence, remains valid dlTield strength. It would be interesting to make a theoretical

rectly o?t the; C”t'c_al &O'nt' leeglvlse, the _dyn_amlcs Oft Sgotrt' estimate of the order of magnitude of such effects in electro-
ranged Systems in th€ Coexistence region IS expected 1o q’ﬁe solutions. Perhaps the most accessible predictions are

descrilbed Ibyl the CE}hn_-HiIIri]ard dynamics, w{:icgg(l:oca!. It i?the long-ranged correlations themselves, which could be ob-
actually a little perplexing how to interpret the poInt of go ved in light-scattering experiments similiar to those car-

V'EW tfgﬁt nonequngjrlum Zt?ﬁdy St"’I‘teS e:re al\(/jvays Cm'(t:.al' ried out on simple fluids subject to a temperature gradient
when these aré observed themselves 1o undergo con '”“ngee[zs] for a recent revieyw Also of possible practical in-

p_hase transitions at sharp values (_)f temperature and/_or de rest are the implications of a nonlocal hydrodynamics for
sity. Such transitions occur both in the DL[A2] and in granular flow

granular flow[6], not to mention dipole systenig2]. Away
from the transition point both DDS and dipole systems have The authors wish to thank B. M. Boghosian, H. Gould, W.
a finite correlation lengtf which characterizes the crossover Klein, J. L. Lebowitz, Y. Oono, and H. Spohn for helpful

from a critical power lawexr ~(9=2%7) at intermediate range discussions. F.J.A. was funded in part by NSF Grant No.
r<¢ into the asymptotic power-lawer 9 at long-ranger DMR 9633385, and by AFOSR Grant No. F49620-95-1-

>£1[12,22. 0285.
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