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Controlling friction
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~Received 1 December 1997; revised manuscript received 29 January 1998!

Two different controlling methods are proposed to stabilize unstable continuous-sliding states of a dry-
friction oscillator. Both methods are based on a delayed-feedback mechanism well known for stabilizing
periodic orbits in deterministic chaos. The feedback variable is the elastic deformation. The control parameter
is either the sliding velocity or the normal force. We calculate analytically stability boundaries in the space of
control parameter and delay time. Furthermore, we show that our methods are able to turn stick-slip motion
into continuous sliding. Controlling friction helps to get a better understanding of friction by measuring, e.g.,
velocity-weakening friction forces.@S1063-651X~98!50305-4#

PACS number~s!: 03.20.1i, 46.30.Pa, 07.05.Dz
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If one tries to move two contacting solid bodies lateral
one often observes stick-slip motion due to dry friction~i.e.,
solid-solid friction with or without lubricants! @1#. This mo-
tion is characterized by a~more or less! periodic switching
between sticking~relative sliding velocity is zero! and slip-
ping ~relative sliding velocity is on average much larger th
the applied velocity!. This stick-slip motion is responsibl
for the everyday experience of singing violins and squeak
doors. In most technological cases one wants to avoid st
slip motion because it leads to vibrations and wear. The g
is to bring the system into the continuous sliding state, wh
the relative sliding velocity is constant and does not oscilla

The classical method of avoiding stick-slip motion is
use a lubricant. But even at high normal load and small s
ing velocities stick-slip motion occurs@1#. Here we propose
an active way to avoid stick-slip motion. It is inspired by th
methods used in controlling chaos@2,3#. The idea is not to
change the physics at the friction interface but to stabi
unstable states.

In our case the unstable state is the continuous-slid
state. It is unstable for velocity-weakening friction law
where the friction force decreases with increasing sliding
locity @4#. We use the delayed-feedback method proposed
Pyragas for stabilizing periodic orbits in a chaotic attrac
@3#. The feedback variable is the elastic deformation~see
below!. Our parameter of controlling is either the slidin
velocity or the normal load.

In order to show that our proposed methods work,
have studied analytically as well as numerically a simplifi
model for the lateral motion of two solid bodies in conta
~see Fig. 1!. We assume that one of the bodies is fix
whereas the other one~with massM ) can slide. The elastic
ity of the sliding bodies~or the whole machinery! is modeled
by a spring with stiffnessk. There is a normal loadN which
presses the bodies against each other and there is the ap
velocity v which is generally different from the relative slid
ing velocity ẋ of the bodies. We assume that the lateral d
gree of freedomx is the most important one. We therefo
neglect all other ones. The friction forceF at the interface is
proportional toN in accordance with Amonton’s law,@1#.
The equations of motion read

Mẍ~ t !5ka~ t !2mK„ẋ~ t !…N, if ẋ~ t !Þ0 , ~1a!
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ẋ~ t !50, if uka~ t !u,mSN , ~1b!

and

ȧ~ t !5v2 ẋ~ t ! , ~1c!

wheremS is static friction coefficient andmK( ẋ) is the ki-
netic friction coefficient which in general depends on t
sliding velocity. The variablea denotes the spring elongatio
~i.e., the difference between the stage position and the b
position!. In general it measures the elastic deformation
the bodies due to the contact. Our feedback variable isa.
The control parameter is either the applied velocityv or the
normal loadN. Hence we replace eitherv by

v5v01av@a~ t !2a~ t2t!# ~2a!

or N by

N5N01aN@a~ t !2a~ t2t!# , ~2b!

wherev0 and N0 are the unperturbed applied velocity an
normal load, respectively,t is the delay time, andav andaN
are the amplitudes of control. Note, that load control wo
only if N is always positive. Otherwise it would lead to
lift-off of the sliding bodies. We will first calculate analyti
cally where in the space of control amplitudes and delay ti
the continuous-sliding state is stable.

The continuous-sliding state is given byẋ5v0 and a
5mK(v0)N0 /k. In order to test its stability we make th

FIG. 1. The stick-slip oscillator. The feedback variable of t
proposed controlling methods is the elastic deformationa. The con-
trol parameter is either the applied velocityv or the normal loadN.
R4903 © 1998 The American Physical Society
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ansatz ẋ(t)5v01cẋexp(lt) and a(t)5mK(v0)N0 /k
1caexp(lt) and linearize the equation of motion incẋ and
ca . Nontrivial solutions are possible only ifl fulfills the
following characteristic ‘‘polynomial’’:

Ml21@mK8 ~v0!N02Mav~12e2lt!#l1k

2@mK8 ~v0!N0av1mK~v0!aN#~12e2lt!50 . ~3!

The delay term is responsible fore2lt which turns the poly-
nomial into a transcendental equation forl. Thus Eq.~3! has
more than two solutions. In fact, there are infinitely man
Solutions are either real or coming as conjugated comp
pairs. The continuous sliding state is stable if the real part
all solutions of Eq.~3! are negative. It can be shown that th
number of solutions with positive real part is finite becau
the exponential term is bounded. In fact one can give up
limits of the real part and the imaginary part of the solutio
Actually we do not need to know the solutions of Eq.~3!.
We only want to know the stability boundary in the space
the control amplitudesav , aN , and the delay timet. The
stability boundary is a two-dimensional manifold where
solution of Eq.~3! crosses the imaginary axis. Such ma
folds can be calculated analytically in parametric form. Th
are solutions of

2ArBr12AiBi5Br
21Bi

2 , ~4!

cosvt512
ArBr1AiBi

Ar
21Ai

2
, ~5a!

and

sinvt5
ArBi2AiBr

Ar
21Ai

2
, ~5b!

where

Ar[mK~v0!aN1mK8 ~v0!N0av , Ai[Mvav , ~6!

and

Br5k2Mv2, Bi5mK8 ~v0!N0v . ~7!

The parameterv is the imaginary part ofl. Equation~4! is a
linear inhomogeneous equation forav and aN . By giving
onea we can express the other one in terms ofv. From Eq.
~5! we get a countable set of solutions fort. Near the mani-
fold one can expandl into a Taylor series in order to find ou
whether the real part ofl increases or decreases when t
manifold is crossed. Together with the facts that Eq.~3! has
analytic solutions forav5aN50 and the solutions of Eq.~3!
are continuous functions of the parameters we are abl
find the stable regions in the parameter space.

Figure 2 shows that unstable continuous sliding states
be stabilized with both types of control. Because of the m
tiplicity of the solutions of Eq.~5! we also get stability re-
gions for larger values oft. But these are less interestin
because of larger time scales on which the system rela
into the continuous sliding state. Pure velocity control~i.e.,
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aN50) is less efficient than load control because the sta
ity area is smaller and it disappears ifmK8 (v0)N0

&20.68AkM .
In pure load control there is always a stable region. O

the minimal value ofuaNu increases with increasingumK8 u.
For t→0 a more simple formula for the stability bounda
can be given. For small delay times~i.e., t!AM /k) one can
approximatea(t)2a(t2t) by the time derivative ofa.
Hence, the equation of motion becomes a differential eq
tion and Eq.~3! becomes a second-order polynomial sin
(12e2lt)→lt. It is easy to see that pure velocity contr
~i.e.,aN50) is not able to stabilize unstable continuous sl
ing states whereas for pure load control~i.e., av50) the
stabilization works if

aN,
mK8 ~v0!N0

mK~v0!t
. ~8!

We have confirmed our analytical results by numeri
simulations of the equation of motions. Furthermore, th
show that the basin of attraction of a formerly unstable c
tinuous sliding state can be quite large. The examples in
3 show that stick-slip oscillations disappear after the con
is switched on. In our simulations we found that stick-s
motion survives if the applied velocityv0 is below some

FIG. 2. Boundaries of stable continuous sliding for~a! pure
velocity control ~i.e., aN50) and ~b! pure load control~i.e., av
50). Different boundaries are denoted by the values
mK8 (v0)N0 /AkM .
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critical valuevc . Again pure velocity control is less robus
than load control. For example, stick-slip motion cannot
destroyed by pure velocity control for that value ofv0 for
which in Fig. 3~b! load control easily turns stick-slip motio
into continuous sliding. As a rule of thumb we found that
the case of pure velocity control the sticking time has to
of the same order or less than the slipping time.

In the case of load control it is possible to turn stick-s
motion into continuous sliding for arbitrary small values
v0 . To see this we discuss an analytically treatable case.

FIG. 3. Turning stick-slip motion into continuous sliding. Th
simulations of Eq. ~1! were done with the purely velocity

weakening friction lawmK( ẋ)5m0 /(11 ẋ/vs) with m050.5 and
vs50.5. The simulation starts with an initial state near the unsta
continuous sliding state. The instability leads to stick-slip moti
At t570 the control was switch on@velocity control in case~a! and
load control in case~b!#. The units oft, ka, av@a(t)2a(t1t)#,
andaN@a(t)2a(t2t)# are (M /k)1/2, mSN0 , mSN0 /(Mk)1/2, and
N0 , respectively. The parameters areM5k5mS5N051, ~a! v0

50.35, av520.33, aN50, t54.15, and~b! v050.1, av50, aN

5210, t50.5.
e

e

e

assume thatmK does not depend on the sliding veloci
~Coulomb’s law!. Furthermore we restrict ourselves to th
limit t→0 ~but aNt finite!. Both assumptions turn the equa
tion of motion into a linear differential equation for the sl
motion:

M
d2ẋ

dt2
2mKaNt

dẋ

dt
1k~ ẋ2v0!50 , ~9!

with the initial conditions

ẋ~0!50,
dẋ

dt
~0!5

mS2mK

M
~N01aNtv0! , ~10!

assuming that the slip motion is just starting att50. The
continuous sliding state is stable foraN,0. It will be ap-
proached in the long-time limit ifẋ(t).0, for t.0 ~i.e., no
resticking!. For aNt,22AkM /mK , Eq. ~9! describes an
overdamped harmonic oscillator. Thus the solutionẋ(t) in-
creases monotonically and never resticks. Therefore st
slip motion disappears even for infinitesimal smallv0, i.e.,
vc50. In the underdamped case one gets resticking ifv0

,vc . To calculatevc one has to solveẋ(T)5 ẍ(T)50, with
T.0. This can be done numerically. The result f
mK50.5mS is shown in Fig. 4. In the limitsaN→0 andaN

→22AkM /mKt we get the approximationsvc5 ṽ /2Apg

and vc5 ṽg21exp(212pg/A12g2), resp., whereṽ[(mS

2mK)N0 /AkM andg[2mKaNt/2AkM . Note thatv0 has
to be less thanN0 /(2aNt) otherwise the control mechanism
would lead to a lift-off in the sticking phase. It is easy
show that the lift-off curve is always abovevc ~see Fig. 4!.

Recently Rozmanet al. proposed a different method fo
stabilizing the continuous sliding state@6#. Their method is
similar to the method of Ottet al. for stabilizing periodic
orbits in a chaotic attractor@2#. For this method one has t
reconstruct the Poincare´ return map near the unstable orb

le
.

FIG. 4. Boundary of stick-slip motion. The lower solid curve
vc for t→0 and Coulomb’s law~i.e., mK5const,mS). The dotted
curves are analytic approximations~for more details, see the mai
text!. The upper solid curve is the lift-off condition. The ratio o
both friction coefficients ismK /mS50.5.
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This is done by observing the system dynamics without c
trol. Rozmanet al.used the normal force as the parameter
controlling.

Compared with our method the advantage of the met
of Rozmanet al. is that one does not have to rely on macr
scopic equations of motion like Eq.~1!. Such equations o
motion are reliable for large sliding velocities but it is we
known that they may not be correct for small velocities,
pecially in the case of transitions from sticking to sliding a
vice versa@5,7–10#. In fact Rozmanet al. have tested their
method for a simple model where in addition to the mac
scopic degree of freedom~i.e., the position of the sliding
block! an internal degree of freedom appears which descr
the state of a lubricant.

There are two disadvantages of the method of Rozm
et al.First, controlling methods of Ottet al.work only in the
vicinity of periodic orbits. If these orbits are embedded in
chaotic attractor the system will eventually come close
them. Therefore, turning stick-slip motion into continuo
sliding is possible only, if the stick-slip motion is errat
enough to be close to the continuous sliding state. Otherw
the method works only if one starts at a large stage velo
where the continuous sliding state is already stable and
slowly decreases the velocity below the value where the c
tinuous sliding state becomes unstable@6#. A delayed-
feedback method is not restricted to the vicinity of the u
stable orbit. Of course starting far away from the orbit m
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lead to strong controlling forces at the beginning~see Fig. 3!.
But they decay exponentially by approaching the orbit. T
second disadvantage of the method of Rozmanet al. is the
necessity of reconstructing the dynamics. This may be m
or less difficult depending on the details of the dynamics
the internal degrees of freedom at the friction interface. F
technological applications this might be important, especia
because the reconstruction has to be recalibrated from
to time.

In this Rapid Communication we have introduced tw
robust methods of stabilizing continuous sliding. They a
also able to destroy regular stick-slip motion. Both metho
rely on a delayed feedback where the feedback variable is
elastic deformation of the sliding bodies or the machine
The controlling parameter is either the applied velocity or
normal load. The velocity control is less robust than the lo
control.

There are two fields of application of controlling friction
Obviously there will be technological applications for redu
ing vibration and wear. But controlling friction experimen
can also be used to increase our understanding of the ph
of dry friction. For example, using these methods one c
measure the effective friction force as a function of the sl
ing velocity even in the velocity-weakening regime.
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