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Controlling friction
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Two different controlling methods are proposed to stabilize unstable continuous-sliding states of a dry-
friction oscillator. Both methods are based on a delayed-feedback mechanism well known for stabilizing
periodic orbits in deterministic chaos. The feedback variable is the elastic deformation. The control parameter
is either the sliding velocity or the normal force. We calculate analytically stability boundaries in the space of
control parameter and delay time. Furthermore, we show that our methods are able to turn stick-slip motion
into continuous sliding. Controlling friction helps to get a better understanding of friction by measuring, e.g.,
velocity-weakening friction force$§S1063-651X98)50305-4

PACS numbe(s): 03.20+i, 46.30.Pa, 07.05.Dz

If one tries to move two contacting solid bodies laterally, or
one often observes stick-slip motion due to dry frictiae., _
solid-solid friction with or without lubricanis[1]. This mo- x(1)=0, if |«a(t)|<ugN, (1b)
tion is characterized by émore or less periodic switching
between stickingrelative sliding velocity is zefoand slip- and
ping (relative sliding velocity is on average much larger than ) .
the applied velocity This stick-slip motion is responsible a(t)y=v—x(), (10
for the everyday experience of singing violins and squeaking
doors. In most technological cases one wants to avoid stickyhere u is static friction coefficient and'LK().() is the ki-
slip motion because it leads to vibrations and wear. The goaletic friction coefficient which in general depends on the
is to bring the system into the continuous sliding state, whergliding velocity. The variabla denotes the spring elongation
the relative sliding velocity is constant and does not oscillate(j.e., the difference between the stage position and the block

The classical method of avoiding stick-slip motion is to position. In general it measures the elastic deformation of
use a lubricant. But even at high normal load and small slidthe bodies due to the contact. Our feedback variable. is
ing velocities stick-slip motion occufd]. Here we propose The control parameter is either the applied velocitgr the
an active way to avoid stick-slip motion. It is inspired by the normal loadN. Hence we replace either by
methods used in controlling chap,3]. The idea is not to
change the physics at the friction interface but to stabilize v=votaylalt)—alt—1)] (29
unstable states.

In our case the unstable state is the continuous-slidingr N by
state. It is unstable for velocity-weakening friction laws
where the friction force decreases with increasing sliding ve- N=No+ay[a(t)—a(t—17)], (2b)
locity [4]. We use the delayed-feedback method proposed by . ]
Pyragas for stabilizing periodic orbits in a chaotic attractorWherevo and Nq are the unperturbed applied velocity and
[3]. The feedback variable is the elastic deformatisee hormal load, respectively;is the delay time, ane, anday
below). Our parameter of controlling is either the sliding are the amplitudes of control. Note, that load control works
Ve|0city or the normal load. Only if N is alWElyS pOSitive. Otherwise it would lead to a

In order to show that our proposed methods Work' Wellft-Off of the Slldlng bodies. We will first calculate analyti-
have studied analytically as well as numerically a simplifiedcally where in the space of control amplitudes and delay time
model for the lateral motion of two solid bodies in contactthe continuous-sliding state is stable. _

(see Fig. 1 We assume that one of the bodies is fixed The continuous-sliding state is given by=v, and a
whereas the other or(@ith massM) can slide. The elastic- = uy(vo)Ng/«. In order to test its stability we make the
ity of the sliding bodiegor the whole machinepjis modeled

by a spring with stiffness. There is a normal loall which N

presses the bodies against each other and there is the applied $
velocity v which is generally different from the relative slid- X, M A >V
ing velocity x of the bodies. We assume that the lateral de- K

gree of freedonx is the most important one. We therefore
neglect all other ones. The friction for€eat the interface is
proportional toN in accordance with Amonton’s law1].
The equations of motion read FIG. 1. The stick-slip oscillator. The feedback variable of the
) ] proposed controlling methods is the elastic deformatiofihe con-
MXx(t)=ka(t) — uc(X(1))N, if x(t)#0, (1a  trol parameter is either the applied velocityor the normal loadN.
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ansatz x(t)=vo+ciexpt) and a(t)=ux(vo)Ng/k 0.0 (@ , L L L L L L
+c,exp(t) and linearize the equation of motion @ and
c,- Nontrivial solutions are possible only K fulfills the
following characteristic “polynomial”:

MA2+[ ui(vo)Ng—Ma,(1—e *) N+«

amplitude o (M/K)"?
4
T

—[mk(vo)Noa, + uk(vo)ay](1—e*7)=0. (©)) —0.67 i
The delay term is responsible fer *™ which turns the poly- —0.8 1 -
nomial into a transcendental equation forThus Eq.(3) has
more than two solutions. In fact, there are infinitely many. —1.0 : : : . : : :
Solutions are either real or coming as conjugated complex 10 15 20 25 3.0 35 40 45 3.0
pairs. The continuous sliding state is stable if the real parts of delay time -,-(,C/M)‘/2
all solutions of Eq(3) are negative. It can be shown that the
number of solutions with positive real part is finite because 0 (b) L L
the exponential term is bounded. In fact one can give upper °
limits of the real part and the imaginary part of the solutions. ~
Actually we do not need to know the solutions of E8). ’;o
We only want to know the stability boundary in the space of % —5 =
the control amplitudes,, ay, and the delay timer. The 3~z
stability boundary is a two-dimensional manifold where a &
solution of Eq.(3) crosses the imaginary axis. Such mani- @
folds can be calculated analytically in parametric form. They E —10 1 toble B
are solutions of ol
£
2A,B,+2AB;=B%+B?, (4) o 5
0.0 05 10 15
coswr=1— AB TAB , (59 delay time T(x/M)V?2
AZ+A? | . y
FIG. 2. Boundaries of stable continuous sliding fey pure
and velocity control (i.e., @y=0) and (b) pure load control(i.e., «,
=0). Different boundaries are denoted by the values of
_ A,B,—AB, M(((UO)NO/\/K_M-
Sinwr=—">5—5" (5b) . . |
AT tA; an=0) is less efficient than load control because the stabil-
ity area is smaller and it disappears ify(vo)No
where <—0.68/kM.

In pure load control there is always a stable region. Only
the minimal value oflay| increases with increasinguy|.
For 7—0 a more simple formula for the stability boundary
can be given. For small delay timése., 7<+M/k) one can
B.=x—Mw? B=pu\(vg)Now. 7 approxmatea(t)—_a(t—r) by the time derl\(at|ve pfa.
' 1= #x(vo)No @ Hence, the equation of motion becomes a differential equa-
The parametes is the imaginary part ok. Equation(4) is a tion and Eq.(3) becomes a second-order polynomial since
; ; ; i (1—e M) —\7. It is easy to see that pure velocity control
linear inhomogeneous equation faf, and ey . By giving | T y (o se P ity (
onea we can express the other one in termssofFrom Eq. (i.e.,ay=0) is not able to stabilize unstable continuous slid-
(5) we get a countable set of solutions forNear the mani- N9 States whereas for pure load contfoe., @, =0) the
fold one can expanil into a Taylor series in order to find out Stabilization works if
whether the real part of increases or decreases when the

A=pug(vo)ant uk(ve)Noa,, A=Moea,, (6)

and

manifold is crossed. Together with the facts that 8).has N <M(<(Uo)No ®
analytic solutions for, = @y =0 and the solutions of E@3) N= uk(vg) T

are continuous functions of the parameters we are able to

find the stable regions in the parameter space. We have confirmed our analytical results by numerical

Figure 2 shows that unstable continuous sliding states casimulations of the equation of motions. Furthermore, they
be stabilized with both types of control. Because of the mulshow that the basin of attraction of a formerly unstable con-
tiplicity of the solutions of Eq(5) we also get stability re- tinuous sliding state can be quite large. The examples in Fig.
gions for larger values of. But these are less interesting 3 show that stick-slip oscillations disappear after the control
because of larger time scales on which the system relaxés switched on. In our simulations we found that stick-slip
into the continuous sliding state. Pure velocity conti@d.,  motion survives if the applied velocity, is below some



FIG. 3. Turning stick-slip motion into continuous sliding. The

time t
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time t curves are analytic approximatioff®r more details, see the main
text). The upper solid curve is the lift-off condition. The ratio of
both friction coefficients isuy /ug=0.5.
o assume thafux does not depend on the sliding velocity
Q (Coulomb’s law. Furthermore we restrict ourselves to the
) limit 7— 0 (but a7 finite). Both assumptions turn the equa-
et tion of motion into a linear differential equation for the slip
= motion:
= o b, (x=vg)=0 ©)
. —_— = aNT 77 T K(X—vg)=0,
= 06 control off ' control on dt? HRANT Gt 0
L 034 : —
IU 0.0 with the initial conditions
X .
5 —0.3 — :
° - dx Ms™ MK
—_
; x(0)=0, —=+(0)=——(Ng+aynTvy), (10
s 06 | | | | dt M
0 20 40 60 80 100

assuming that the slip motion is just startingtat0. The
continuous sliding state is stable fafy<<0. It will be ap-

simulations of Eq.(1) were done with the purely velocity- proached in the long-time limit ik(t)>0, fort>0 (i.e., no
weakening friction lawgy(X) = uo/(1+X/vs) with uo=0.5 and  resticking. For ay7<—2ykM/uy, Eq. (9) describes an
vs=0.5. The simulation starts with an initial state near the unstableyverdamped harmonic oscillator. Thus the solutigh) in-
continuous S|Id|ng state. The instability leads to StiCk-Slip mOtiOﬂ.Creases monotonica”y and never resticks. Therefore stick-
At t=70 the pontrol was switch _o[rvelocity control in casé€a) and slip motion disappears even for infinitesimal smaj| i.e.,
Ioa(;:l contrtol in ctasegb)]. The l;nl'[lSIZOft, ’Ga, ozvl[\la(/t)l\;61(}/’2L T)];j v:=0. In the underdamped case one gets restickingif
,a\llr;‘ ngz(ec)tinfy. Tﬂg ?)raeryne':érs’ﬁ:i’:“:szo l\(lozKl), (é)al?o <vc. To calculatey; one has to solve(T) =x(T) =0, with
=0.35, a,= —0.33, ay=0, 7=4.15, and(b) vy=0.1, a,=0, ary T>0. Th|s_ can be_ dqne numerlc_ally. The result for
=-10, 7=05. wk=0.5ug is shown in Fig. 4. In the limitgyy— 0 anday
——2JkM/ug7 we get the approximations.=v/2\my

critical valuev.. Again pure velocity control is less robust andve=vy ‘exp(-1—my/\1—- ¥%), resp., wherev =(us
than load control. For example, stick-slip motion cannot be— wi)No/ V&M and y= — ucant/2kM. Note thatv, has
destroyed by pure velocity control for that value wf for  to be less thaiy/(— ay7) otherwise the control mechanism
which in Fig. 3b) load control easily turns stick-slip motion would lead to a lift-off in the sticking phase. It is easy to
into continuous sliding. As a rule of thumb we found that in show that the lift-off curve is always abovg (see Fig. 4.
the case of pure velocity control the sticking time has to be Recently Rozmaret al. proposed a different method for
of the same order or less than the slipping time. stabilizing the continuous sliding sta6]. Their method is
In the case of load control it is possible to turn stick-slip similar to the method of Otet al. for stabilizing periodic
motion into continuous sliding for arbitrary small values of orbits in a chaotic attractd2]. For this method one has to
vo. To see this we discuss an analytically treatable case. Wieconstruct the Poincareturn map near the unstable orbit.



RAPID COMMUNICATIONS

R4906 FRANZ-JOSEF ELMER 57

This is done by observing the system dynamics without contead to strong controlling forces at the beginnisge Fig. 3.
trol. Rozmaret al. used the normal force as the parameter ofBut they decay exponentially by approaching the orbit. The
controlling. second disadvantage of the method of Rozratal. is the
Compared with our method the advantage of the methodecessity of reconstructing the dynamics. This may be more
of Rozmanet al. is that one does not have to rely on macro-or less difficult depending on the details of the dynamics of
scopic equations of motion like Eql). Such equations of the internal degrees of freedom at the friction interface. For
motion are reliable for large sliding velocities but it is well technological applications this might be important, especially
known that they may not be correct for small velocities, es-because the reconstruction has to be recalibrated from time
pecially in the case of transitions from sticking to sliding andto time.
vice versa5,7-10. In fact Rozmaret al. have tested their In this Rapid Communication we have introduced two
method for a simple model where in addition to the macro-+robust methods of stabilizing continuous sliding. They are
scopic degree of freedorti.e., the position of the sliding also able to destroy regular stick-slip motion. Both methods
block) an internal degree of freedom appears which describely on a delayed feedback where the feedback variable is the
the state of a lubricant. elastic deformation of the sliding bodies or the machinery.
There are two disadvantages of the method of Rozmaithe controlling parameter is either the applied velocity or the
et al. First, controlling methods of O#t al. work only inthe  normal load. The velocity control is less robust than the load
vicinity of periodic orbits. If these orbits are embedded in acontrol.
chaotic attractor the system will eventually come close to There are two fields of application of controlling friction.
them. Therefore, turning stick-slip motion into continuous Obviously there will be technological applications for reduc-
sliding is possible only, if the stick-slip motion is erratic ing vibration and wear. But controlling friction experiments
enough to be close to the continuous sliding state. Otherwise&an also be used to increase our understanding of the physics
the method works only if one starts at a large stage velocityf dry friction. For example, using these methods one can
where the continuous sliding state is already stable and themeasure the effective friction force as a function of the slid-
slowly decreases the velocity below the value where the conng velocity even in the velocity-weakening regime.
tinuous sliding state becomes unstab&]. A delayed-
feedback method is not restricted to the vicinity of the un- | gratefully acknowledge valuable discussions with Y.
stable orbit. Of course starting far away from the orbit mayKlafter, M. Rozman, and M. Urbakh.
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