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Spatial correlations in compressible granular flows
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The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation
function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time in-
creases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers
~growing correlation length!. Furthermore, the inclusion of longitudinal velocity fluctuations changes long-
range correlations in the flow field qualitatively and extends the validity of the theory for spatial velocity
correlations to higher inelasticities. The theoretical predictions agree well with two-dimensional molecular-
dynamics simulations.@S1063-651X~98!51205-6#

PACS number~s!: 81.05.Rm, 05.20.Dd, 05.40.1j
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In most studies ofrapid granular flows, also called the
granular gas regime @1#, the inelasticity of granular colli-
sions is assumed to be the most important feature that di
guishes these flows from usual liquid or gas flows. The
namics is modeled by a singleinelasticity parametere51
2a2, wherea is the coefficient of normal restitution. As
consequence granular flows can only be maintained in dr
systems, where energy is put into the system, e.g., by g
ity, shear, or in vibrated layers@1#. Also, much work has
been done on the freely evolving granular fluid@2–6#, which
has been shown to belinearly unstable~onset of clustering
instability! with respect to spatial fluctuations in densit
dn(r ,t)5n(r ,t)2^n& @2#. In both driven and undriven
granular fluids there is only a weak separation of microsca
and macroscales that makes them behave very differe
from molecular fluids. Here we will discuss, for undrive
granular fluids, the importance of different intermediate
trinsic scales, related to viscosity, heat conductivity, a
compressibility, and controlled by the inelasticity.

The most important function that describes the clus
ing instability is the structure factor Snn(k,t)
5V21^dn(k,t)dn(2k,t)&, which is the Fourier transform
of the density-density correlation functionGnn(r ,t)
5V21*dr 8^dn(r1r 8,t)dn(r 8,t)& of a system initialized in
a spatially homogeneous state. A first step toward a theo
ical understanding ofSnn(k,t) has been given by Deltour an
Barrat @4#, who have shown that itsgrowth rate is deter-
mined by the most unstable smallk part of the heat mode
spectrum, but a quantitative theory for the magnitude
Snn(k,t) and itsk dependence in the full range of hydrod
namic wave numbers is lacking.

Recently an analytic description of the correlation fun
tion Gab(r ,t) of the componentsua(r ,t) of the flow field
has been given in Ref.@7#, based on fluctuating hydrodynam
ics and the assumption of incompressible flow“•u50. This
theory yields predictions, including long-range tails;r 2d in
d-dimensional fluids, that, for nearly elastic particlese
&0.2), agree well with two-dimensional molecula
dynamics simulations up to large distances. As the transv
velocity fluctuations of the incompressible fluid do n
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couple to the density fluctuations, the theory of Ref.@7# gives
no information onSnn(k,t). Here we will extend that theory
to the general compressible case, based on the full se
fluctuating hydrodynamic equations, which allows us to c
culate fluctuations in density, temperature, and longitudi
flow fields.

The difference between compressible and incompr
sible flow is best appreciated by consideringSab(k,t)
5V21^ua(k,t)ub(2k,t)&, the Fourier transform of
Gab(r ,t). Both tensors can be decomposed into two sca
isotropic functions in the following way:

Gab~r ,t !5 r̂ a r̂ bGi~r ,t !1~dab2 r̂ a r̂ b!G'~r ,t !,
~1!

Sab~k,t !5 k̂ak̂bSi~k,t !1~dab2 k̂ak̂b!S'~k,t !,

where carets denote unit vectors. In a system ofelastichard
spheres~EHSs! for times larger than the mean free timet0 ,
the correlation functions are given by the equilibrium valu
i.e., Gab(r ,t)5@T/mn#dabd(r ), containing self-correlations
only, andGnn(r ,t)5nd(r )1n2@g(r )21#, whereg(r ) is the
pair distribution function in thermal equilibrium. For conve
nience we substract self-correlations and introduce
functions Gab

1 (r ,t)[Gab(r ,t)2@T(t)/mn#dabd(r ) and
Sab

1 (k,t)[Sab(k,t)2@T(t)/mn#dab . Note that T(t) is
measured in energy units (kB51). The structure factor of
transverse velocity fluctuationsS'

1(k,t) was calculated ana
lytically in Ref. @7# and shown to yield a long-ranger 2d tail
in G'(r ,t) and Gi(r ,t) in case the fluctuations in the flow
field are incompressible, i.e.,Si

1(k,t)50.
In this Rapid Communication the structure facto

Sab(k,t) andSnn(k,t), and corresponding spatial correlatio
functions Gab(r ,t) and Gnn(r ,t), will be calculated and
compared with molecular-dynamics simulations of inelas
hard disk systems. We show in particular by explicit calc
lation that for small inelasticity~e&0.2! Si

1(k,t) essentially
vanishes for all wave numbers, except at very smallk values
(k&1/j i), where the assumption of incompressibleu fluc-
tuations, made in Ref.@7#, breaks down. Consequently, th
R4891 © 1998 The American Physical Society
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most important role ofSi
1(k,t) is to provide an exponentia

cutoff for the r 2d tail at the largest scalesr *2pj i . At
larger inelasticities the contributions fromSi

1(k,t) modify
Gi(r ,t) andG'(r ,t) significantly at all distances.

The hydrodynamic equations for the unforced inelas
hard sphere~IHS! fluid possess an exact solution, thehomo-
geneous cooling state~HCS!, with a homogeneous densityn
and temperatureT(t), and vanishing flow field. Temperatur
is dissipated at a rate 2g0vT, whereg05e/2d, and where
the collision frequencyv5Vdx(n)nsd21AT/pm is calcu-
lated from the Enskog-Boltzmann equation@8# for a dense
system of hard disks or spheres (d52,3). Here Vd

52pd/2/G(d/2) is the surface area of ad-dimensional unit
sphere,s and m are the sphere diameter and mass, both
which are set equal to unity, andx(n) is the pair correlation
function at contact. For detailed definitions and derivatio
we refer to Ref.@2#. In the following, we will assume tha
IHS hydrodynamics can be described by the stand
Navier-Stokes equations supplemented by a te
22g0v@n,T#T, evaluated in the local homogeneous cooli
state, in the equation of change for the temperature field
possible justification to lowest order ine can be found in
Ref. @9#, as well as a discussion of higher-order terms. T
pressure p5nT@11Vdx(n)nsd/2d#, shear viscosityh,
bulk viscosity z, and heat conductivityk are given by the
Enskog theory for EHS with a temperatureT(t) still depend-
ing explicitly on time to account for the homogeneous co
ing @7#. The equations of change for the mesoscopic fie
are obtained from the hydrodynamic equations by add
fluctuating terms to the pressure tensor and heat flow,
noted byP̂ and Ĵ, respectively. They are characterized
Gaussian white noise, local in space. Their strength is de
mined by the standard fluctuation-dissipation theorem
related to transport coefficients@10# that depend onT(t)
here.

We are interested in the buildup of correlations betwe
spatial fluctuations in a system that is prepared in a homo
neous state at an initial temperatureT0 and that reaches th
HCS within a few mean free timest051/v@n,T0#. There-
fore, we can linearize around a homogeneous densityn and a
temperatureT(t)5T0 /@11g0t/t0#2, and a vanishing flow
field. At this point it is convenient to make the change
variablesdt5v@n,T(t)#dt, wheret is the average numbe
of collisions a particle has suffered within a timet;
dn(r ,t)5ndn(r ,t), u(r ,t)5AT(t)w(r ,t), dT(r ,t)
5T(t)du(r ,t), P̂(r ,t)5nT(t)p̂(r ,t), and Ĵ(r ,t)
5nT3/2(t) ¤̂(r ,t). In these new variables the noise streng
of the reduced fluctuating pressure tensorp̂ and heat flow¤̂
are time independent, and the equations of change for th
mesoscopic Fourier modesdn(k,t), w(k,t), and du(k,t)
become ordinary differential equations withtime indepen-
dent coefficients ~valid for kl0&1 where l 0

5A2T(t)/v@n,T(t)# is the time independent mean fre
path!
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2 !w'a2
ikl 0

&
p̂a l ,
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2!wl2
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&
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nTD du

2
ikl 0
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nTxT
D dn2

ikl 0

&
p̂ l l ,

]du

]t
52g0~11k2jT

2!du2
ikl 0

&
S 2p

dnTDwl

22g0S 11
n

x

]x

]nD dn2
ikl 0

&
S 2

dD ̂ l .

Here we have introduced the time independent correla
lengths j' , j l , and jT , defined by j'

2 5n/vg0 with n
5h/mn, the kinematic viscosity, j l

25@2n(d21)/d
1z/mn#/vg0 andjT

252k/dnvg0 , and the isothermal com
pressibility xT5(]n/]p)T /n. The subscripta in the equa-
tion for w' refers to any of the (d21) directions perpen-
dicular to k, and the subscriptl denotes the longitudina
direction alongk.

Since the transverse velocityw' is decoupled
from the other modes, its structure factorS'(k,t)
5^u'a(k,t)u'a(2k,t)&/V can be obtained in the analyti
form @7#, which is valid forkl0&1:

S'~k,t !5
T~ t !

n H 11
exp@2g0t~12k2j'

2 !#21

12k2j'
2 J . ~3!

The same result has been obtained from a more microsc
approach, usingring kinetic theory@11#.

The density, longitudinal velocity, and temperature mod
are coupled and their equations of change can be writte
matrix representation as

]

]t
c~k,t!5M ~k!c~k,t!1 f̂~k,t!, ~4!

where c is the column vector with componentsc15dn,
c25wl , andc35du, and the hydrodynamic matrixM and
the noise vectorf̂ are given by Eqs.~2!. Note that the ele-
mentsM31(k) and M33(k), entering the temperature equ
tion, depend on the energy dissipation term. In this notat
the equal time correlations obey the equation of change

]

]t
^ca~k,t!cb~2k,t!&

5Mag~k!^cg~k,t!cb~2k,t!&

1Mbg~2k!^ca~k,t!cg~2k,t!&1Cab~k!, ~5!

wherea,b, . . .51,2,3 label the componentsdn, wl , anddu.
These equations constitute a set of 333 linear ordinary dif-
ferential equations, of which only six are independent. T
matrix of noise strengthsCab(k), defined through

^ f̂ a(k,t) f̂ b(2k,t8)&5Cab(k)d(t2t8), has only two
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nonvanishing components, namelyC2252Vg0k2j l
2/n

and C3354Vg0k2jT
2/dn. We have solved the above s

of equations numerically, starting from initial equilibrium
correlations, of which the only nonvanishing ones a
^c1(k,0)c1(2k,0)&5VTxT , ^c2(k,0)c2(2k,0)&5V/n,
and ^c3(k,0)c3(2k,0)&52V/dn ~for kÞ0!. The most im-
portant results with respect to Ref.@7# are the structure fac
tors Snn(k,t) and Si(k,t), and the correlation function
Gnn(r ,t). In Fig. 1, we show the results for these structu
factors, includingS'(k,t), for a system with area fraction
f50.245 and a50.9 together with the results from
molecular-dynamics simulation of 50 000 inelastic ha
disks. We observe thatSi(k→0,t)5S'(k→0,t), implying,
for large distances, an asymptotic behaviorGab(r ,t)
;S'(k→0,t)dabd(r ), and thus the absence of algebra
long-range correlations on the largest scales (r @2pj i).
Therefore, we can already conclude that the asymptotic
havior of G'(r ,t) and Gi(r ,t) cannot ber 2d. Instead, the
r 2d tail obtained in Ref.@7# describes intermediate behavi
that is exponentially cut off at a distance determined by
width of Si

1(k,t). This width can be estimated from the e
genvalues of the hydrodynamic matrix, more precisely fr
the dispersion relation of the ‘‘heat mode’’@3#, which is a
pure longitudinal velocitywl for k→0. To second order ink
its dispersion relation is given byzH(k)5g0(12k2j i

2) with

j i
25j l

21
l 0
2

2g0
2 F 1

nTxT
2

p

nT S 11
n

x

]x

]n
2

p

dnTD G . ~6!

Note that j i;1/e for small inelasticity, whereasj';j l

;jT;1/Ae. To a good approximationSi(k,t) for small
wave numbers is given by expression~3! with j' replaced
by j i . This approximation is excellent up to wave numbe
where the exact numerical result forSi(k,t) shows a little
dip ~see Fig. 1,t519.4, k.0.1!. At about the same wave
number the structure factorSnn(k,t) reaches its maxima
value, which grows in time. The exact position of this ma
mum shifts in time to smaller wave numbers correspond
to a growing correlation length. This can be explained by
following argument: fork→0 density fluctuationsdn(k,t)
are decoupled from the heat mode and we expect
Snn(k→0,t) remains at its initial equilibrium value; at smal

FIG. 1. Theoretical predictions~solid lines! for the structure
factorsS'(k,t) of transverse velocity,Si(k,t) of longitudinal ve-
locity, and Snn(k,t) of density fluctuations versusks for f
50.245 (l 0.0.8) and a50.9, where j'54 and j i517 at t
519.4, 40, and 48.4~from left to right!, compared with results from
a single molecular-dynamics run of 50 000 particles, implying
smallest wave numberkmins52ps/L.0.016. All structure super-
imposed on the plateau values presents long-range correlatio
dynamic origin; for elastic hard spheres, equilibrium structure
Snn is only present forks*2p.
e
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e

s
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e
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but nonvanishingk, dn(k,t) couples inO(k) to the unstable
heat mode and the maximum ofk2exp@2zH(k)t# shifts in time
to smaller wave numbers.

The estimate forSnn(k,t).Snn(k,0)exp@2zH(k)t#, used in
Ref. @4#, differs in two aspects from our predictions:~i! it
neglects the wave number dependence of the coupling
density fluctuations to the heat mode, this gives forSnn(k,t),
a decreasing function ofk, and therefore cannot explain th
growing correlation length;~ii ! it neglects the fluctuating
parts of the pressure tensor and heat flow, and thus doe
give a quantitative prediction forSnn(k,t). Unfortunately,
seven out of the eight sets of data points shown in Fig. 9
Ref. @4# are in the crossover or nonlinear time regime, whi
is estimated in Ref.@7# to occur attcr.65 for a50.9 and
f50.4 and where our linear theory breaks down.

Using the above approximation forSi(k,t), the structure
factor Sab

1 (k,t) can be written as

Sab
1 ~k,t !'

T~ t !

n E
0

s

ds8 exp~s8!@ k̂ak̂bexp~2s8k2j i
2!

1~dab2 k̂ak̂b!exp~2s8k2j'
2 !#, ~7!

where s52g0t. If the system is thermodynamically larg
(L@2pj i), Gi

1(r ,t) and G'
1(r ,t) can be obtained by per

forming integrals overk space and are expressed as integr
over simple functions. Here we only quote the results fod
52. Using

E dq

~2p!2 sin2 ueiq•x2sq2
5

1

2px2 @12exp~2x2/4s!#,

~8!

where cosu5q̂• x̂, we obtain

Gl
1~r ,t !'

T~ t !

n H 1

4pjl
2 E

0

s

ds8

3
exp~s82xl

2/4s8!

s8
1

sl

2pr 2 E
0

s

ds8es8

3FexpS 2
xi

2

4s8
D 2expS 2

x'
2

4s8
D G J , ~9!

for l5i ,', wherexl5r /jl , s i51, ands'521. The ap-
proximation of incompressiblefluid flow of Ref. @7# is ob-
tained in the limitj i→`. At finite e, Eqs.~9! describe ex-
ponentially decaying functions at distancesr *2pj i .
Moreover, upon increasing the inelasticity the minimum
G'(r ,t) becomes less deep and vanishes ifj i5j' .

The predicted spatial velocity correlationsGi(r ,t) and
G'(r ,t) have been obtained by performing inverse Bes
transformations on the numerical results forSi(k,t) and
S'(k,t). The result forGi(r ,t), corresponding to Fig. 1
includes an intermediater 22 tail, as is shown in Fig. 2~a!.
Figure 2~b! shows the corresponding spatial density corre
tion Gnn(r ,t) obtained numerically fromSnn(k,t). It con-
firms that the present theory correctly predicts the buildup
density correlations, including a negative correlation ce
tered around a distance that grows in time asAt.
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At small inelasticity (e&0.2) the functionsGi(r ,t) and
G'(r ,t), calculated here from the full set of hydrodynam
equations, differ forr &2pj i only slightly from the results
for incompressible flow fields~see the discussion in Re
@7#!. However, the algebraic tails;r 2d in Gi(r ,t) and
G'(r ,t), derived in Ref.@7# for r *2pj' , are exponentially

FIG. 2. ~a! Longitudinal flow field correlation log10@ uGiu/T# ver-
sus log10 r . ~b! Density-density correlation 104Gnn versusr ; the
same parametersa,f,t as in Fig. 1 are used for~a! and ~b!; ~c!
NG' /T versus r for f50.4 (l 0.0.34), a50.6 ~j'51.46, j i

53.8! at t520, 40, and 60~from left to right! with N51, 1022,
and 1025, respectively; in~a! and ~c! the solid~dashed! line is the
prediction from compressible~incompressible! fluctuating hydrody-
namics.
od
cut off for r *2pj i , as implied by Eq.~9!. As the correla-
tion lengthsj';1/Ae and j i;1/e are well separated fo
small e, there is an intermediate range ofr values where the
algebraic tail;r 2d in Gi(r ,t) can be observed.

At higher inelasticityj i and j' are not well separated
and, as a consequence, there does not exist a spatial re
in which the longitudinal fluctuations in the flow field can b
neglected and the regime of validity of the incompressi
theory of Ref.@7# has shrunk to zero. Figure 2~c! compares
results from incompressible and compressible fluctuating
drodynamics with simulation data forG'(r ,t) at a50.6 and
f50.4, and confirms the necessity of including longitudin
velocity fluctuations to calculate the spatial velocity corre
tions at reasonably large inelasticities. Note that~at any in-
elasticity! Gnn(r ,t) can only be calculated from the com
pressible theory.

Hence, the good quantitative correspondence between
theory ~lines! and computer simulations~points in the fig-
ures! attests to the correctness of our theory for struct
factorsSab(k,t) and Snn(k,t) and spatial correlation func
tionsGab(r ,t) andGnn(r ,t) for wave number, position, and
time dependence in the relevant hydrodynamic range and
inelasticities (a*0.6) that are not too large.
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