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Spatial correlations in compressible granular flows
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The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation
function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time in-
creases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers
(growing correlation length Furthermore, the inclusion of longitudinal velocity fluctuations changes long-
range correlations in the flow field qualitatively and extends the validity of the theory for spatial velocity
correlations to higher inelasticities. The theoretical predictions agree well with two-dimensional molecular-
dynamics simulationd.S1063-651X98)51205-9

PACS numbegps): 81.05.Rm, 05.20.Dd, 05.40j

In most studies ofapid granular flows also called the couple to the density fluctuations, the theory of R&f.gives
granular gasregime[1], the inelasticity of granular colli- no information onS,,(k,t). Here we will extend that theory
sions is assumed to be the most important feature that distire the general compressible case, based on the full set of
guishes these flows from usual liquid or gas flows. The dy{fluctuating hydrodynamic equations, which allows us to cal-
namics is modeled by a singlaelasticity parametere=1  culate fluctuations in density, temperature, and longitudinal
— a2, wherea is the coefficient of normal restitution. As a flow fields.
consequence granular flows can only be maintained in driven The difference between compressible and incompres-
systems, where energy is put into the system, e.g., by grawible flow is best appreciated by considerig}(k,t)
ity, shear, or in vibrated layergl]. Also, much work has =V‘1<ua(k,t)uﬁ(—k,t)>, the Fourier transform of
been done on the freely evolving granular fli@d-6], which  G,4(r,t). Both tensors can be decomposed into two scalar
has been shown to Haearly unstable(onset of clustering isotropic functions in the following way:
instability) with respect to spatial fluctuations in density,
on(r,t)=n(r,t)—(n) [2]. In both driven and undriven Gaﬁ(r!t):Fa?ﬁGII(r!t)+(5aﬁ_FaFB)GL(r!t)l
granular fluids there is only a weak separation of microscales (1)
and macroscales that makes them behave very differentl ~os aoa
from molecular fluids. Here we will discuss, foryundriven g Sap(k ) =KaKgS (k) +(845=kakg) S, (K1),

granular fluids, the importance of different intermediate in-

trinsic scales, related to viscosity, heat conductivity, anoWhhere caErﬁt;, dfeno';e unl} vectors. In 2 systerelfai’stlchard
compressibility, and controlled by the inelasticity. sphereg( 9 for times larger than the mean free tims

The most important function that describes the cluster-_the correlation functions are given by the equilibrium values,

; : " ; e, G 4(r,t)=[T/mn]é,44(r), containing self-correlations
ing instability is the structure factor S,,(k,t) 1.€.,5ap ap .

=V~ én(k,t)Sn(—k,t)), which is the Fourier trz;nsform on!y, andG,(r,t)=na(r) +n“g(r) — 1], whereg(r) is the

of the density-density correlation functiorG,(r,t) pair distribution function in thermal equilibrium. For conve-
=V=ifdr(sn(r+r’,t)sn(r',t)) of a system initianIeréj in nience we substract self-correlations and introduce the

a spatially homogeneous state. A first step toward a theore{l—1+'10t'c’r‘S Gap(r )=Gp(r,) —[T(t)/mn] 8,,5(r) and
ical understanding d8,(k,t) has been given by Deltour and Sas(K:t)=Sag(K,t) =[T(t)/mn]&,5. Note that T(t) is
Barrat[4], who have shown that itgrowth rateis deter- measured in energy unitkg=1). The structure factor of
mined by the most unstable smélipart of the heat mode transverse velocity fluctuatior$' (k,t) was calculated ana-
spectrum, but a quantitative theory for the magnitude ofytically in Ref.[7] and shown to yield a long-range ¢ tail
Sun(k,t) and itsk dependence in the full range of hydrody- in G, (r,t) and G,(r,t) in case the fluctuations in the flow
namic wave numbers is lacking. field are incompressible, i.eS/" (k,t)=0.

Recently an analytic description of the correlation func- In this Rapid Communication the structure factors
tion G,4(r,t) of the componentsi,(r,t) of the flow field S.p(k;t) andS;,(k,t), and corresponding spatial correlation
has been given in Reff7], based on fluctuating hydrodynam- functions G,4(r,t) and G,(r,t), will be calculated and
ics and the assumption of incompressible flBwu=0. This  compared with molecular-dynamics simulations of inelastic
theory yields predictions, including long-range taits ~% in hard disk systems. We show in particular by explicit calcu-
d-dimensional fluids, that, for nearly elastic particles ( lation that for small inelasticitye<0.2) S (k,t) essentially
=0.2), agree well with two-dimensional molecular- vanishes for all wave numbers, except at very siathlues
dynamics simulations up to large distances. As the transverg&=1/¢;), where the assumption of incompressibidiuc-
velocity fluctuations of the incompressible fluid do not tuations, made in Ref7], breaks down. Consequently, the
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most important role oa‘*(k,t) is to provide an exponential
cutoff for the r ¢ tail at the largest scales=2w¢,. At
larger inelasticities the contributions fro} (k,t) modify
Gy(r,t) andG (r,t) significantly at all distances. ow K]
The hydrodynamic equations for the unforced inelastic —|=70(1—k2§|2)W|——0( P )59
hard spherglHS) fluid possess an exact solution, themo- ar V2
geneous cooling stat¢iCS), with a homogeneous density ) )
and temperatur&(t), and vanishing flow field. Temperature _ ﬂ( 1 )51/_ ﬂ ot
is dissipated at a ratey3wT, wherey,=e/2d, and where v2 \NnTxt va o
the collision frequencyw=Qgx(n)nag? 1\T/7m is calcu-
lated from the Enskog-Boltzmann equatif8] for a dense 9660 ik|0( 2p )
W

ikl -
T Tal»
V2

= (LKW~

system of hard disks or spheresi=2,3). Here Q4 o7 = vl k?£2) 50— 5 \anT
=27Y/T'(d/2) is the surface area of ddimensional unit
sphere,c andm are the sphere diameter and mass, both of n dy iklg(2\.
which are set equal to unity, angn) is the pair correlation —270( 1+ - %> ov— _(a).]l :
function at contact. For detailed definitions and derivations X V2

we refer to Ref[2]. In the following, we will assume that a1 \we have introduced the time independent correlation
IHS hydrodynamics can be described by the standar(pengthS &, &, and &, defined by &2 =vlwy, with v
’ ’ ’ 1

Navier-Stokes equation; supplemented by a tgrm: plmn, the kinematic viscosity, §|2=[2u(d—1)/d
—2yow[Nn,T]T, evaluated in the local homogeneous COOI'nngglmn]/wyo andf%zlednwyo, and the isothermal com-

state, in the equation of change for the temperature field. AbressibilityXT=(an/ap)T/n. The subscripiz in the equa-

possible justification to lowest order iacan be found in tion for w, refers to any of thed—1) directions perpen-
. . . 1
Ref. [9], as well as a discussion of higher-order terms. Th&jicular to k, and the subscript denotes the longitudinal

pressure p=nT[1+Qqx(n)ned/2d], shear viscosity 7, direction alongk.

bulk viscosity £, and heat conductivitk are given by the Since the transverse velocityw, is decoupled
Enskog theory for EHS with a temperaturgt) still depend-  from the other modes, its structure factdB, (k,t)
ing explicitly on time to account for the homogeneous cool-=(y _(k,t)u, ,(—k,t))/V can be obtained in the analytic
ing [7]. The equations of change for the mesoscopic fieldgorm [7], which is valid forkl,<1:

are obtained from the hydrodynamic equations by adding

fluctuating terms to the pressure tensor and heat flow, de- T(t) exq2yor(1—k2§f)]—1

noted byl and J, respectively. They are characterized by Suk)=—— 1+ 1— K22

Gaussian white noise, local in space. Their strength is deter-

mined by the standard fluctuation-dissipation theorem andhe same result has been obtained from a more microscopic

related to transport coefficien{d0] that depend onT(t) approach, usinging kinetic theory[11].

here. The density, longitudinal velocity, and temperature modes
We are interested in the buildup of correlations betweerare coupled and their equations of change can be written in

spatial fluctuations in a system that is prepared in a homogenatrix representation as

neous state at an initial temperaturg and that reaches the

HCS within a few mean free timetg=1/w[n,Ty]. There-

fore, we can linearize around a homogeneous densiyd a

temperatureT (t) =T, /[ 1+ yot/tg]?, and a vanishing flow

field. At this point it is convenient to make the change ofwhere ¢ is the column vector with component; = ov,

variablesd 7= w[n,T(t)]dt, wherer is the average number #2=Ww;, and#;=46, and the hydrodynamic matrdd and

of collisions a particle has suffered within a timg  the noise vectof are given by Eqs(2). Note that the ele-

on(r,t)=ndv(r,7), u(r,t)=yT(t)w(r,7), ST(r,t) mentsM3,(k) and M35(K), entering the temperature equa-

=T(t)86(r,7), Mi(r,)=nT(t)a(r,7), and J(r,t) tion, depend on the energy dissipation term. In this notation

Sthe equal time correlations obey the equation of change

()

%_lﬁ(k,T)ZM(k)lﬁ(k,T)-i-f(k,T), €Y

=nT%¥(t)j(r,7). In these new variables the noise strength
of the reduced fluctuating pressure tensoand heat flows 9
are time independentand the equations of change for the {9—7<l/fa(k,7) Pp(—Kk, 7))
mesoscopic Fourier modesv(k,7), w(k,7), and 66(k,7)

become ordinary differential equations wittme indepen- =M o, (K) (¥, (K, 7) h5(— K, 7))

dent coefficients (valid for klg<1 where I,

=2T(t)/o[n,T(t)] is the time independent mean free Mgy~ K)(Palk, 7 ¢ (— K, 7))+ Cap(K), (5
path wherea, B, . ..=1,2,3 label the componen&, w,, andé.

These equations constitute a set of 3 linear ordinary dif-
) ferential equations, of which only six are independent. The
dov  iklg matrix of noise strengthsC,g(k), defined through

A P DTk =Cop0atr 7). has oy o
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but nonvanishing, én(k,t) couples inO(k) to the unstable
heat mode and the maximum kfexd 2z,(k) 7] shifts in time
to smaller wave numbers.

The estimate fofs,,(k,t) =S, ,(k,0)exg2z,(K) 7], used in
Ref. [4], differs in two aspects from our prediction@) it
neglects the wave number dependence of the coupling of
density fluctuations to the heat mode, this givesSgi(k,t),

FIG. 1. Theoretical predictionssolid lineg for the structure @ decreasing function d&, and therefore cannot explain the
factorsS, (k,t) of transverse velocityS,(k,t) of longitudinal ve- ~ growing correlation length{ii) it neglects the fluctuating
locity, and S,,(k,t) of density fluctuations versuko for ¢ parts of the pressure tensor and heat flow, and thus does not
=0.245 (,=0.8) and @=0.9, where&, =4 and ¢=17 atr give a quantitative prediction fog,,(k,t). Unfortunately,
=19.4, 40, and 48.4rom left to right, compared with results from seven out of the eight sets of data points shown in Fig. 9 of
a single molecular-dynamics run of 50 000 particles, implying aRef.[4] are in the crossover or nonlinear time regime, which
smallest wave numbek,o=2mo/L=0.016. All structure super- is estimated in Ref[7] to occur atr,=65 for «=0.9 and
imposgd on t'he plateau yalues presents Iong-.r.an'ge correlation; &=0.4 and where our linear theory breaks down.
dynamic origin; for elastic hard spheres, equilibrium structure in ysjng the above approximation f&(k,t), the structure

Shn is only present foko=2. factor S, 4(k,t) can be written as

o
o
i &
o
i

0.40.

nonvanishing components, namelyC,,= 2Vyok2§|2/n . T(t) (s R -

and Cy3=4Vyek?¢2/dn. We have solved the above set  Sap(KiD)~—— fods’ exp(s")[Kakpexp(—s'K7E))

of equations numerically, starting from initial equilibrium

correlations, of which the only nonvanishing ones are +(6 “k k Jexp( —s'K2¢2)] @
(1 (KO)a(—K O =VTxr, (k0 —k,0)=VIn, e '

and (3(k,0)¢3(—k,0))=2V/dn (for k#0). The most im-  \yhere s=2y,7. If the system is thermodynamically large
portant results with respect to R¢¥] are the structure fac- (L>27¢), G‘T(r,t) andG*(r,t) can be obtained by per-
tors Spy(k,t) and Si(k;t), and the correlation function  foming integrals ovek space and are expressed as integrals

Gnn(r,t). In Fig. 1, we show the results for these structureqyer simple functions. Here we only quote the resultsdor
factors, includingS, (k,t), for a system with area fraction _o Using

¢$=0.245 and «=0.9 together with the results from a

molecular-dynamics simulation of 50 000 inelastic hard dg . s 1 )
disks. We observe tha (k—0,t)=S, (k—0y), implying, f 22 sir? ge'd = 5 2ll—exp—x4s)],
for large distances, an asymptotic behavi@,s(r,t) ®)
~S, (k—0t)d,50(r), and thus the absence of algebraic

long-range correlations on the largest scales-2w¢)).  \where cog=q-x, we obtain

Therefore, we can already conclude that the asymptotic be-

havior of G, (r,t) and G(r,t) cannot ber 9. Instead, the TN [ 1 s

r ~9 tail obtained in Ref[7] describes intermediate behavior Gy (rt)= T[ﬁ f ds’

that is exponentially cut off at a distance determined by the mEx Jo

width of S (k,t). This width can be estimated from the ei- exp(s' —x2/4s') o, (s )
genvalues of the hydrodynamic matrix, more precisely from X g + 52 OdS’ e’

the dispersion relation of the “heat modg¢3], which is a
pure longitudinal velocityv, for k— 0. To second order ik
its dispersion relation is given ks (k) = yo(l—kzgﬁ) with X

A~ ot -]
exp — 77| —exn — 27| |1 9

(6) for A\=1I,L, wherex,=r/§,, oy=1, ando, =—1. The ap-
proximation ofincompressibldluid flow of Ref.[7] is ob-
tained in the limit§,—«. At finite ¢, Egs.(9) describe ex-

Note that £,~1/e for small inelasticity, whereag, ~§ ponentially decaying functions at distancasz2w¢,.

~é&~1Je. To a good approximatiorg,(k,t) for small ~ Moreover, upon increasing the inelasticity the minimum in

wave numbers is given by expressit®) with ¢ replaced G, (r,t) becomes less deep and vanishe$# ¢, .

by &,. This approximation is excellent up to wave numbers The predicted spatial velocity correlatio(r,t) and

where the exact numerical result f8(k,t) shows a litte G, (r,t) have been obtained by performing inverse Bessel

dip (see Fig. 1,r=19.4, k=0.1). At about the same wave transformations on the numerical results fg§f(k,t) and

number the structure factds,,(k,t) reaches its maximal S, (k,t). The result forG(r,t), corresponding to Fig. 1,

value, which grows in time. The exact position of this maxi- includes an intermediate” 2 tail, as is shown in Fig. @).

mum shifts in time to smaller wave numbers correspondingd-igure 2b) shows the corresponding spatial density correla-
to a growing correlation length. This can be explained by thdgion G,,(r,t) obtained numerically frons,,(k,t). It con-

following argument: fork—0 density fluctuationssn(k,t) firms that the present theory correctly predicts the buildup of
are decoupled from the heat mode and we expect thatensity correlations, including a negative correlation cen-

Snn(k—0,t) remains at its initial equilibrium value; at small, tered around a distance that grows in timeyas

2
IO

2_42, 0
&=§ 272

noao
p(l X P

nTxr nT\™ xdn dnT
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cut off for r=2m¢,, as implied by Eq(9). As the correla-
tion lengths¢, ~1/\/e and &~ 1le are well separated for
small ¢, there is an intermediate rangerofalues where the
algebraic tail~r % in G(r,t) can be observed.

At higher inelasticityé, and &, are not well separated
and, as a consequence, there does not exist a spatial regime
in which the longitudinal fluctuations in the flow field can be
neglected and the regime of validity of the incompressible
theory of Ref.[7] has shrunk to zero. Figur§@ compares
results from incompressible and compressible fluctuating hy-
drodynamics with simulation data f@&, (r,t) at«=0.6 and
¢=0.4, and confirms the necessity of including longitudinal
velocity fluctuations to calculate the spatial velocity correla-
tions at reasonably large inelasticities. Note ttatany in-
elasticity G,,(r,t) can only be calculated from the com-
pressible theory.

Ao Lo

Lo v b

b o wo

FIG. 2. (a) Longitudinal flow field correlation log{ |G,|/T] ver-

sus logg r. (b) Density-density correlation $G,, versusr; the I
same parameters,d,r as in Fig. 1 are used fof) and (b): (¢) Hence, the good quantitative correspondence between our

NG, /T versusr for ¢=0.4 (1,~0.34), a=0.6 (£, =1.46, ¢ theory (lines) and computer simulationgoints in the fig-
=3§) at 7= 20, 40, and 6Qfrom left to }ighb with /\7:1 1(}2” ure9 attests to the correctness of our theory for structure
and 10°°, respectively; in@ and (c) the solid(dashedlline is the ~ 12CtOrS Sup(k,t) and Sya(k,t) and spatial correlation func-

prediction from compressibléncompressiblefluctuating hydrody-  1ONS G,p(r,t) andGy(r,t) for wave number, position, and
namics. time dependence in the relevant hydrodynamic range and for

inelasticities @=0.6) that are not too large.

At small inelasticity €=<0.2) the functionsG,(r,t) and The authors want to thank J. A. G. Orza for his help in
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[7]). However, the algebraic tails-r ¢ in G,(r,t) and tional Science FoundatioftNWO). R.B. acknowledges sup-
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