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Dynamical structure factors in models of turbulence
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We investigate the dynamical scaling behavior of the time-dependent structure functions,Sq(r ,t)
5^@u(r ,t)2u(0,0)#q&, in the one-dimensional, stochastic Burgers equation as a function of the exponentb
that characterizes the scale of noise correlations. We present and analyze the exact equations satisfied by
S2(r ,t) and a related correlation function to argue that~a! ]S2(r ,t)/]t exhibits a discontinuity att50 with
an effective dynamical exponent given by 11b/3 and ~b! the dynamical scaling exponentz is unity for
intermediate times~a result equivalent to Taylor’s hypothesis!. Various numerical checks of these results are
presented. Finally, the corresponding exact equations for the structure functions in the case of the Navier-
Stokes equation are presented, and by analogy with the one-dimensional Burgers equation it is shown how
Taylor’s hypothesis can arise in homogeneous turbulence.@S1063-651X~98!50705-2#

PACS number~s!: 05.45.1b, 47.10.1g
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In this paper we address the problem of the dynam
behavior of structure functions in the steady state of a
chastically driven Burgers equation~1! in one dimension.
Our aim is to shed light on Taylor’s hypothesis in thre
dimensional homogeneous turbulence@2,3#. The significance
of Taylor’s hypothesis is clear when there is an average fl
but even in the case of homogeneous isotropic turbulenc
is taken to be true, the root mean square of the turbu
velocity fluctuations replacing the average flow veloci
One can view Taylor’s hypothesis as saying that since c
acteristic time and distance are linearly related, the dyna
scaling exponentz, defined byt}r z, is equal to 1. Here we
present the exact equations satisfied by the low-order, ti
dependent structure functions, and use analytical argum
to show how a dynamical exponentz51 arises and provide
numerical evidence for it. For the case of the Navier-Sto
equations, we also present the corresponding exact equa
for the structure functions, draw a parallel to the analysis
the Burgers problem, and argue that a similar mechanism
lead toz51 in three-dimensional homogeneous turbulen
@4#. Our arguments, while they do not constitute a proof
that they require reasonable assumptions, provide a per
sive mathematical picture.

The stochastic Burgers equation in one dimension rea

]u/]t1u]u/]x5n¹2u1h~x,t !, ~1!

where u(x,t) is the velocity field,n is the viscosity, and
h(x,t) is a Gaussian noise with zero mean and correlati
in k space determined bŷĥ(k,t)ĥ(k8,t8)&52D̂(k)2pd(k
1k8)d(t2t8), where the noise varianceD̂(k) exhibits
power-law behaviorD̂(k)5D0ukub @5–8#. Here we consider
only negative values ofb.

The objects of our study are the time-dependent~velocity!
structure functionsSq(r ,t) defined in the homogeneou
steady state by

Sq~r ,t!5^@u12u2#q&, ~2!

where we have introduced the notation that we will emp
in our subsequent analysis:
571063-651X/98/57~5!/4867~4!/$15.00
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u1[u~x1r /2, t1t/2!, u2[u~x2r /2, t2t/2!.

The usual static (t50) structure functions exhibit power
law behavior in the inertial range:Sq(r );ur uzq. We know
the ~noise-dependent! exponentszq for small q from our
previous studies@8#; we have reported results forb positive
and negative in the static case, and, in particular, pointed
@8# the rich multifractal behavior that occurs forb between 0
and21.

Our analysis relies on the following exact equation sa
fied by S2(r ,t) in the one-dimensional~1D! stochastic Bur-
gers problem in the steady state:

]

]t
S2~r ,t!5

1

2

]

]r
T31^u1h2&2^u2h1&, ~3!

where

T3~r ,t!52^~u11u2!~u12u2!2&, ~4!

which apart from additive constants is the same as^u1
2u2

1u1u2
2&. For Gaussian noise, one can use the result of D

sker, Varadhan, and Novikov@9# to show that̂ u1h2& in Eq.
~3! is the space-time Fourier transform ofD̂(k)Ĝ(k,v),
where Ĝ(k,v) is the response function defined b
^dû(k,v)/dĥ(k8,v8)&5Ĝ(k,v)2pd(k1k8)2pd(v1v8).
Moreover, att50, we know thatS2(r ,0)'A2ur uz2 with z2
522b/3 from our previous work.

We now discuss the inertial-range behavior ofS2(r ,t)
that can be deduced from Eq.~3!. First, let us consider the
behavior ofS2 for r in the inertial range andt→0. At small
t there is a discontinuity that arises because^u1h2& contrib-
utes fort.0 and2^u2h1& for t,0. It is easy to show from
the constraint of causality thatĜ(k,t501)5 1

2 and, hence,
that

F ]

]t
S2~r ,t!G

t→01

5 1
2 (

k
D̂~k!coskr
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1
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]

]r
S3~r ,t50!, ~5!

where the last equality follows from the von Karman
Howarth relation@4,7#. We know thatS3(r )}r 2b for r in the
inertial range and, therefore, from the hypothesis of dyna
scaling for S2 , using t}r z, we obtainz511(b/3). This
relationship betweenz and the parameterb, which deter-
mines the scale over which the noise acts, is the same a
one that is derived from a renormalization group argum
@10# for positive values ofb. A simple Kolmogorovlike scal-
ing argument yields this value ofz: the characteristic time
scale associated with the length scalel is given by t( l )
' l /u( l )' l 12h, where h, the scaling dimension ofu, is
2b/3 @11,12#. We have calculated numerically the discon
nuity at different values ofb; time derivatives are clearly
difficult to compute numerically; nevertheless, reasona
agreement with the above relation is obtained.

In order to understand the behavior ofS2(r ,t) at longer
timest we must examine the term involvingT3(r ,t) on the
right-hand side of Eq.~3!; we have derived the equatio
satisfied byT3(r ,t):

]T3~r ,t!

]t
52

1

12

]^~u11u2!4&
]r

22^~u1ê22u2ê1!&

1 1
2 ^~h12h2!~u11u2!2&, ~6!

where we have used the notationê15n/2(]u/]x)2(x1r /2,t
1t/2), etc.

We will outline the crux of the argument and address
technicalities later. Consider the first term in Eq.~6! that
arises from nonlinear effects and postpone the discussio
the other terms. It is straightforward to argue that the fi
term behaves as a linear combination of]S4 /]r and]S2 /]r .
This is seen by noting that

]^~u11u2!4&/]r 5212]^~u12u2!2~u1
21u2

2!&/]r

15]S4 /]r ,

verified by taking into account that^u1
4&5^u2

4& is a constant
because of homogeneity. The leading behavior of the
term is determined in then→0 limit by the behavior of the
derivative of (u12u2)2 whenr /L,1, and thus yields a con
tribution proportional tô u2&]S2 /]r . The result can be jus
tified from an operator product expansion point of view e
panding the operator̂ (u11u2)4& in terms of Sq ; by
symmetry,S3 will not appear in the expansion, and the lea
ing term isS2 .

In the static limitS2 dominatesS4 in the inertial region,
becausez2,z4 @6#. This continues to be true ifz2 /z2
,z4 /z4 , where we have denoted the dynamic scaling ex
nent for S4 by z4 and, in particular, forz45z2 , as we will
argue later. Hence, we obtain~suppressing the other terms!

]T3~r ,t!

]t
}^u2&

]S2

]r
. ~7!

This, combined with the first term in Eq.~3! for S2 , i.e.,
ic
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]S2~r ,t!

]t
}

]T3

]r
, ~8!

yields

]2S2~r ,t!

]t2 }^u2&
]2S2

]r 2 . ~9!

This equation, which encapsulates Taylor’s hypothesis
the dynamics of the one-dimensional Burgers equati
clearly leads toz51.

We expect this to occur over time scales large compa
to d2

2/n where d2 is the short-distance cutoff forS2(r ,t
50) and small compared to the turnover time for the larg
scale structures in the system. Over these time scales
large-scale motions provide an effective nonzero~local!
background velocity, of the order ofA^u2&, that does not
average to zero. The dynamical exponent of unity refle
this effective motion. Obviously over much larger tim
scales the average background velocity vanishes.

Next, we fill in the gaps in the analysis; we discuss t
other terms in Eq.~6! that were ignored. Consider the seco
term on the right-hand side that arises from viscous effe
and use arguments reminiscent of Obukhov’s argument
the exponentm in three dimensional~3D! turbulence. We
replace ê2}n(]u2 /]x2)2 by 2nu2]2u2 /]x2

2; then we use
the equation of motion to replace the viscous term by
nonlinear term to obtain]u2

3/]x2 . Straightforward manipu-
lations lead to the identification of the expression](u1

3u2

1u1u2
3)/]r with the term 22^(u1ê22u2ê1)&. One now

notes that such terms are exactly those contained in the
term that we have already analyzed. The noise term depe
on a higher-order response function, and by power coun
it cannot yield a term more singular than those we ha
retained; a similar argument applies to Eq.~3!, and we have
checked numerically~see later! that its contribution is not
significant.

We point out in passing how the Kolmogorovlike scalin
prediction ofz511b/3 is present in our analysis. The ter
]S4 /]r that we have shown is contained in the first term
Eq. ~6! for T3 and yields a contribution]2S4 /]r 2 to
]2S2 /]t2. This leads to a dynamical scaling exponent 11(z2
2z4)/2, which in the scaling regime, wherez452z2 , yields
12z2/2511b/3. We have outlined howz51 arises ana-
lytically; we have performed numerical simulations using
standard pseudospectral code@13# to provide support for the
various implications of our analysis.

We display the behavior ofS2(r 50,t)}utuz2 /z with z2
522b/3 as a function oft for b521 in Fig. 1. The data
are consistent withz51, since the slope is close to23 , the
slope ofS2(r ,t50). The difference betweenz51 and the
dynamical renormalization group~RG! value ofz5 2

3 is eas-
ily distinguished, since the latter would yield a slope
unity. The range over whichz51 is obtained is consisten
with the time scales over which the smallk modes do not
vary very much and extends up toL0 /A^u2& whereL0 is the
scale up to which inertial range scaling holds in coordin
space. We have checked that atb520.8 similar results are
obtained. By the timeb reaches a value of20.5 it is difficult
to distinguish between the two exponents reliably. Forb,
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2, where we expect the system to behave as if the n

were cutoff@8,14#, we find thatz51, consistent with theo-
retical expectations based onh250.

We now focus on the behavior of]T3 /]r (r ,t). We show
that in ther 50 long-time~i.e., in the dynamic inertial range!
regime, the contribution from]T3 /]r (r 50,t) yields the
leading singular behavior of]S2(r 50,t)/]t. Sincez51 we
expect ]T3 /]r (r 50,t)'2@]S2(r 50,t)/]t#}utuz221. The
data for ]T3 /]r (r 50,t) are displayed in Fig. 2 forb
520.5. The dashed line has a slope of2 2

3 , the predicted
value of (z221), and the agreement is reasonable. We h
made a detailed comparison of the coefficient of this te
with that for ]S2 /]t and find that there is agreement
within 20%, thus showing that the terms we have retained
our analysis yield the dominant~leading! behavior.

We next consider the behavior ofS4(r ,t). An analysis
similar in spirit to the one outlined forS2 can be carried ou
by writing down an exact equation forS4 and leads to the
conclusion that the corresponding dynamical expon
z451; the details will be provided elsewhere@15#. Based on
this we expectz̃4 , the exponent that determines the behav
of S4 , S4(r 50,t)}utu z̃ 4, to be equal toz4 . The data for

FIG. 1. ~a!. Log-log plot of the structure functionS2(r 50,t)u vs
t for b521. A dashed line with the expected slope of2

3 is drawn
for comparison. The numerical simulations were performed o
system of sizeL51024 with 4096k modes withn50.01 andD
55.031029.

FIG. 2. Log10 u]T3(r 50,t)/]r u @see Eq.~4! for the definition of
T3# vs log10 t. The dashed line has the theoretically expected sl
of z22152

2
3 . In the simulations we usedb520.5,n50.06, and

D51026 on a system of size 1024.
se

e

in

t

r

b520.5 are displayed in Fig. 3~a! along with a dashed line
with a slope of23 , which isz4 /z for z4524b/3, the scaling
value, andz51. The scaling value forz4 is used since as
shown in Ref. @8# multifractality sets in for higher-orde
structure functions at this value ofb. The data for
b521.0 are displayed in Fig. 3~b! and yield a slope of 0.92
lower than the theoretically expected value ofz451.0 for
b521 @8#; however, the value ofz4 is numerically approxi-
mately 0.92. Forb521 the valuesz51 and z5 2

3 are
clearly distinguished since for the latter casez̃4 would ex-
ceed 1.0, and be close to 1.35.

We conclude by outlining a similar analysis in the case
the Navier-Stokes equation. It is convenient to define
correlation functionbi , j[^ui(xW ,t)uj (xW8,t8)&, which is re-
lated to the longitudinal structure functionS2 . It is easy to
deduce the exact equation satisfied bybi , j @16#:

]

]t
bi , j52

1

2

]

]r l
@bil , j1bi ,l j #1^ f iuj82 f j8ui&, ~10!

where f i is the forcing term andbil , j[^uiuluj8&; the fields
that are unprimed and primed are evaluated at (xW ,t) and
(xW8,t8), respectively. We will argue for the occurrence of
effective dynamical exponentz51 over an appropriate rang
of time scales in analogy with our arguments for the Burg
equation. To do so we obtain an equation for the three-p
functions. This is somewhat tedious and leads to

a

e

FIG. 3. Logarithm of the fourth-order structure functio
log10 S4(r 50,t) as a function of log10 t for ~a! b520.5 with
a dashed line with a slope ofz4 /z5

2
3 with z51, and ~b! for

b521 where the dashed line has a slope of 0.92 close to
numerically observed value ofz4 . The other parameters are as
Fig. 2. and Fig. 1, respectively.
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]

]t
@bil , j1bi ,l j #52

1

2

]

]r k
@bikl , j1bj ,ikl #22n^uj8]mui]mul2uj]m8 ui8]m8 ul8&

1 K uj8ul

1

r
] i p2ujul8

1

r
] i8p81uj8ui

1

r
] l p2ujui8

1

r8
] l8p8L 1^uj8ul f i2ujul f i81uj8ui f l2ujui8 f l8&.

~11!
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Now by differentiating Eq.~10! with respect tot and substi-
tuting Eq.~11!, we obtain a term]2bikl , j /]r k]r l on the right-
hand side. Plausible arguments based on the equation
motion can again be made to show that this term yields
dominant singularity. One of the singular contributions
bikl , j comes from^ukul&^uiuj8&, and projecting out the lon
gitudinal components yieldŝu2&]2S2 /]r 2, thus obtaining
an equation similar to Eq.~9!. This provides a mechanism
for how z51 can arise in homogeneous turbulence again
time scales over which the large eddies provide a ba
ground flow.
ic
of
e

n
k-

In summary, we have presented and analyzed exact e
tions for time-dependent structure functions in the on
dimensional stochastic Burgers equation showing howz51
arises and provided numerical support. We have outlin
how the analysis can be extended to the Navier-Stokes e
tion, and leads in a way similar to the Burgers case, t
dynamical scaling exponentz51, and thus to a justification
of Taylor’s hypothesis.

We are grateful to the Ohio Supercomputer Center
providing time on the Cray-T90, which made this study po
sible.
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