RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Dynamical structure factors in models of turbulence
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We investigate the dynamical scaling behavior of the time-dependent structure funcgnsr)
=([u(r,7)—u(0,0)]%), in the one-dimensional, stochastic Burgers equation as a function of the exgbnent
that characterizes the scale of noise correlations. We present and analyze the exact equations satisfied by
S,(r,7) and a related correlation function to argue tt@tdS,(r,7)/dr exhibits a discontinuity at=0 with
an effective dynamical exponent given by-B/3 and (b) the dynamical scaling exponeatis unity for
intermediate timega result equivalent to Taylor's hypothesi¥arious numerical checks of these results are
presented. Finally, the corresponding exact equations for the structure functions in the case of the Navier-
Stokes equation are presented, and by analogy with the one-dimensional Burgers equation it is shown how
Taylor's hypothesis can arise in homogeneous turbulgi®H63-651X98)50705-3

PACS numbd(s): 05.45+b, 47.10+g

In this paper we address the problem of the dynamical Ur=u(X+r/2, t+7/2), u,=u(x—r/2, t—/2).
behavior of structure functions in the steady state of a sto-

chastig:ally driven Burgers equatidid) in one dimgnsion. The usual static £=0) structure functions exhibit power-
Our aim is to shed light on Taylor's hypothesis in three-|aW behavior in the inertial rangésq(r)~|r|§Q. We know

dimensional homogeneous turbuleh2ed]. The significance the (noise-dependentexponentss. for small a from o
of Taylor’s hypothesis is clear when there is an average flow (nois P ntexp Stq for s ar ur

b L th fh . . bul Erevious studie§8]; we have reported results f@ positive
but even in the case of homogeneous isotropic turbulence Ity e qative in the static case, and, in particular, pointed out
is taken to be true, the root mean square of the turbule

. X ; X r*[%] the rich multifractal behavior that occurs f@rbetween 0
velocity fluctuations replacing the average flow velocny.and_1

One can view Taylor’s hypothesis as saying that since char- Our analysis relies on the following exact equation satis-

acteristic time and distance are linearly related, the dynamig . : . :
: : i ed b r,7) in the one-dimensiond[LD) stochastic Bur-
scaling exponent, defined byr«r?, is equal to 1. Here we egers grif)(lerr?in the steady state: 4lD)

present the exact equations satisfied by the low-order, tim
dependent structure functions, and use analytical arguments 14

to show how a dynamical exponent1 arises and provide = - - _

numerical evidence for it. For the case of the Navier-Stokes 57 21 1)=g g Tt (Uama) = (Uam), ®
equations, we also present the corresponding exact equations

for the structure functions, draw a parallel to the analysis invhere

the Burgers problem, and argue that a similar mechanism can

lead toz=1 in three-dimensional homogeneous turbulence Ta(r,7)=—((Ug+Up) (U —Uy)?), 4)
[4]. Our arguments, while they do not constitute a proof in

that they require reasonable assumptions, provide a persugg, . apart from additive constants is the same(a&u,
sive mathematical picture.

; L : : +u,u2). For Gaussian noise, one can use the result of Don-
The stochastic Burgers equation in one dimension readssker’ €/>aradhan, and Novikd@] to show thatu, 7,) in Eq.
aul dt+uaul 9x=vV2u+ g(x,t), ) (3) is the space-time Fourier transform 8f(k)G(k, ),
where G(k,w) is the response function defined by
where u(x,t) is the velocity field, v is the viscosity, and (sU(k,w)/ 67(k",0"))=G(k,w)2m8(k+k')2m8(w+w').
n(x,t) is a Gaussian noise with zero mean and correlationf§oreover, atr=0, we know thatS,(r,0)~A,|r|*2 with ¢,

in k space determined b (k,t) 7(k’,t"))=2D(k)2ms(k  =—2p/3 from our previous work.

+k’)o(t—t’), where the noise varianc® (k) exhibits We now discuss the inertial-range behavior ®fr,7)
power-law behavioD (k) = D|k|? [5—8]. Here we consider that can be deduced from E€B). First, let us consider the
only negative values of. behavior ofS, for r in the inertial range ane— 0. At small

The objects of our study are the time-dependealocity) 7 there is a discontinuity that arises becayser,) contrib-
structure functionsS,(r,7) defined in the homogeneous utes forr>0 and—(u,7,) for 7<0. Itis easy to show from

steady state by the constraint of causality th&(k,7=0")=3 and, hence,
that
Sy(r,7)=([ur—uz]%, 2
17 ~
where we have introduced the notation that we will employ [(9— Sy(r,7) =1> D(k)coskr
T 7—0t k

in our subsequent analysis:
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d aS,(r,7) &_T3

1
=~y =0, a2l

12 or (8)

where the last equality follows from the von Karman- Yields
Howarth relatior{4,7]. We know thatSs(r)=r ~# for r in the

inertial range and, therefore, from the hypothesis of dynamic FSy(r,7) 2 7S, ©
scaling forS,, using r<r? we obtainz=1+(8/3). This a7 (u%) are

relationship betweerz and the parameteB, which deter-
mines the scale over which the noise acts, is the same as théis equation, which encapsulates Taylor's hypothesis for
one that is derived from a renormalization group argumenthe dynamics of the one-dimensional Burgers equation,
[10] for positive values of3. A simple Kolmogorovlike scal- clearly leads t@z=1.
ing argument yields this value & the characteristic time We expect this to occur over time scales large compared
scale associated with the length scélés given by 7(I) to 5%/1/ where 8, is the short-distance cutoff fo8,(r,r
~I/u(l)=I*"", whereh, the scaling dimension ofi, is  =0) and small compared to the turnover time for the large-
—B/3[11,12. We have calculated numerically the disconti- scale structures in the system. Over these time scales, the
nuity at different values of3; time derivatives are clearly |arge-scale motions provide an effective nonzelocal)
difficult to compute numerically; nevertheless, reasonabléyackground velocity, of the order W that does not
agreement with the above relation is obtained. average to zero. The dynamical exponent of unity reflects
In order to understand the behavior 8f(r,7) at longer  this effective motion. Obviously over much larger time
times 7 we must examine the term involvinBy(r,7) on the  scales the average background velocity vanishes.
right-hand side of Eq(3); we have derived the equation  Next, we fill in the gaps in the analysis; we discuss the
satisfied byT;(r,7): other terms in Eq(6) that were ignored. Consider the second
term on the right-hand side that arises from viscous effects
and use arguments reminiscent of Obukhov’s argument for

aTa(rr) 1 (Uit up))

e 7 o —2((u €2~ Uzé€y)) the exponentu in three dimensiona(3D) turbulence. We
replace e, (U, /9x,)? by — vu,d2u,/dxs; then we use
+3{(m— m2) (Ur1Fuz)?) (6) i i
2{(m1= 72)(U1 T U2)"), the equation of motion to replace the viscous term by the

» ) nonlinear term to obtai@u3/dx,. Straightforward manipu-
where we have used the notatieg=»/2(u/dx)“(x+r/2t  |ations lead to the identification of the expressiouu,

+7/2), etc. 3 ; - -
'’ = . +u,u3)/dr with the term —2((u,e,—Uyeq)). One now
We will outline the crux of the argument and address thenotes that such terms are exactly those contained in the first

teg:hnicalities Iat_er. Consider the first term in E@ that_ term that we have already analyzed. The noise term depends
arises from nonlinear effects and postpone the discussion %?n a higher-order response function, and by power counting

the other terms. It is straightforward to argue that the first, ., yield a term more singular than those we have
term behaves as a linear combinatiorv8f,/dr anddS, /dr. retained: a similar argument applies to E8), and we have

This is seen by noting that checked numericallysee later that its contribution is not
A P, significant.
A((Ug+Up) ") dr = —125((uy— Up) “(ug+u3) )/ or We point out in passing how the Kolmogorovlike scaling
+53S, /o prediction ofz=1+ B/3 is present in our analysis. The term
' dS,/or that we have shown is contained in the first term in

. o . Eq. (6) for Ty and yields a contributiond®S,/dr? to
4 _ /4 3 4
verified by taking into account thau;)=(u5) is a constant %S, /972, This leads to a dynamical scaling exponent(L,

because of homogeneity. The leading behavior of the first_g C . . _ :
X ) ; - . 4)/2, which in the scaling regime, whetg=2/¢,, yields
term is determined in the— O limit by the behavior of the 1-7,/2=1+ /3. We have outlined how=1 arises ana-

derivative of (13— uy)” whenr/L <1, and thus yields a con lytically; we have performed numerical simulations using a

. . . 2 .
t.rf'.bL(’jt'?n proportional talu )(;982/ or. The result canf be jus-  standard pseudospectral cddé] to provide support for the
tified from an operator product expansion point of view ex-yario s implications of our analysis.

panding the operato((u;+Up)®) in terms of Sy; by We display the behavior oS,(r =0,7)|7|%2/Z with ¢,
;ymmetry,sg will not appear in the expansion, and the lead- _ —2B/3 as a function of- for B=—1 in Fig. 1. The data
ing term IsS,. are consistent wittz=1, since the slope is close § the

In the static limitS, dominatesS, in the inertial region,
becausel,<{, [6]. This continues to be true if,/z,
<4124, where we have denoted the dynamic scaling expo
nent forS, by z, and, in particular, foz,=2z,, as we will
argue later. Hence, we obtajsuppressing the other terjns

slope of S,(r,7=0). The difference between=1 and the

dynamical renormalization groufRG) value ofz=3 is eas-

ily distinguished, since the latter would yield a slope of

unity. The range over whick=1 is obtained is consistent

with the time scales over which the smélimodes do not

vary very much and extends uptg/\{u?) wherel, is the

u) @. 7) scale up to which inertial range scaling holds in coordinate
ar space. We have checked that@t — 0.8 similar results are

obtained. By the timg reaches a value of 0.5 it is difficult
This, combined with the first term in E() for S,, i.e., to distinguish between the two exponents reliably. Bet

07T3(I‘,T)
T
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FIG. 1. (a). Log-log plot of the structure functio8,(r =0,7)| vs -3
7 for B=—1. A dashed line with the expected slopé @ drawn 3.2 N
for comparison. The numerical simulations were performed on a 34 -
system of sizd. =1024 with 4096k modes withvy=0.01 andD v 36 -
=5.0x10"°. T sl 7
g 4f .
—3, where we expect the system to behave as if the noise§ .12} .
were cutoff[8,14], we find thatz=1, consistent with theo- a4t _
retical expectations based b= 0. a6k T |
We now focus on the behavior i 3/dr(r, 7). We show a8t L L L
that in ther =0 long-time(i.e., in the dynamic inertial range 1 1.5 2 25 3
regime, the contribution fromvT3/or(r=0,7) yields the b) .
08107

leading singular behavior afS,(r =0,7)/d7. Sincez=1 we

expect 9T3/dr (r=0,r)~2[dS,(r=0,7)/dr]| 7|2 . The FIG. 3. Logarithm of the fourth-order structure function
data for gT3/dr(r=0,7) are displayed in Fig. 2 for8  |og,,S,(r=0,r) as a function of log, r for (8 B=—0.5 with
=—0.5. The dashed line has a slope -6, the predicted a dashed line with a slope aof,/z=2% with z=1, and (b) for
value of ({,—1), and the agreement is reasonable. We havg=—1 where the dashed line has a slope of 0.92 close to the
made a detailed comparison of the coefficient of this terrmumerically observed value @f,. The other parameters are as in
with that for 4S,/d7 and find that there is agreement to Fig. 2. and Fig. 1, respectively.
within 20%, thus showing that the terms we have retained in
our analysis yield the dominasieading behavior. B=—0.5 are displayed in Fig.(8) along with a dashed line
We next consider the behavior &(r,7). An analysis With a slope of§, which is{,/z for {,= —4/3, the scaling
similar in spirit to the one outlined fo8, can be carried out Vvalue, andz=1. The scaling value fot, is used since as
by writing down an exact equation f@, and leads to the shown in Ref.[8] multifractality sets in for higher-order
conclusion that the corresponding dynamical exponenstructure functions at this value oB. The data for
z,=1; the details will be provided elsewhdrEs]. Based on 3= —1.0 are displayed in Fig.(B) and yield a slope of 0.92
this we expect,, the exponent that determines the behaviodower than the theoretically expected value f=1.0 for

of Sy, S4(I’=0,T)°<|T|Z4, to be equal taz,. The data for B=—11[8]; however, the value of, is numerically approxi-
mately 0.92. ForB=—1 the valuesz=1 and z=3% are

clearly distinguished since for the latter canéewould ex-

2
L, ' ' ceed 1.0, and be close to 1.35.

_oorr + T We conclude by outlining a similar analysis in the case of
Lo + 1 the Navier-Stokes equation. It is convenient to define the
T N - correlation functionb; j=(u;(X,t)u;(X’,t")), which is re-
5 sl LT ] lated to the longitudinal structure functi@y. It is easy to
= +++ S~o . . g i
g sk w\ ~ deduce the exact equation satisfiedtyy [16]:
2 N
_ab 32 W\e d 19 ’ ’

34l ﬁq (9_7bi,j:_ja_rl[bil,j+bi,|j]+<fiuj_iji>, (10

3.6 I 1 1 1

0 0.5 1 L5 2 2.5 where f; is the forcing term and; j=(u;u;u;); the fields

that are unprimed and primed are evaluated sat)(and
(X',t"), respectively. We will argue for the occurrence of an

FIG. 2. Logyg |dT4(r=0,7)/ar| [see Eq(4) for the definition of  effective dynamical exponeat=1 over an appropriate range
T,] vs log, 7. The dashed line has the theoretically expected slop®f time scales in analogy with our arguments for the Burgers
of ,—1=—2. In the simulations we usefi=— 0.5, »=0.06, and  equation. To do so we obtain an equation for the three-point
D=10 ° on a system of size 1024. functions. This is somewhat tedious and leads to

log o7
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J
o (b j+bi )= [Bir,j+ By ki ] = 20U Il Uy — U It dpuf)

C20r,
+ ! E(? _ X Ila/ I+ ! E(‘) _ . /i()/ ’ + ’ f_ ) .I:/+ ! .I:_ . If/
l'Ijulp iP— Uy, p iP ujul p 1P = Uju; p' 1P <ujul i~ UjupT; ujul I~ Uju; I>'

11

Now by differentiating Eq(10) with respect tor and substi- In summary, we have presented and analyzed exact equa-
tuting Eq.(11), we obtain atemﬁzbim,j/ﬁfk(?h ontheright-  tions for time-dependent structure functions in the one-
hand side. Plausible arguments based on the equations @imensional stochastic Burgers equation showing faewl

motion can again be made to show that this term yields th@"ises and provided numerical support. We have outlined
dominant singularity. One of the singular contributions toNOW the analysis can be extended to the Navier-Stokes equa-

bj ; comes from(u,u;)(u;ju;), and projecting out the lon- tion, and leads in a way similar to the Burgers case, t0 a
gitudinal components yieldéu?)d2S,/ar2, thus obtaining dynamical scaling exponert=1, and thus to a justification

an equation similar to Eq9). This provides a mechanism of Taylor's hypothesis.

for how z=1 can arise in homogeneous turbulence again on We are grateful to the Ohio Supercomputer Center for
time scales over which the large eddies provide a backproviding time on the Cray-T90, which made this study pos-
ground flow. sible.

[1] J. M. Burgers,The Nonlinear Diffusion Equation: Asymptotic [10] E. Medina, T. Hwa, M. Kardar, and Y. C. Zhang, Phys. Rev. A

Solutions and Statistical ProblentReidel, Boston, 1977 39, 3053(1989.
[2] T. Bohr, M. H. Jensen, G. Paladin, and A. VulpiaDynami-  [11] The exponeniz=1+ B/3 fixes a time scalerxr? such that,
cal Systems Approach to Turbulen@ambridge, New York, whenr is of the order of the viscous scale,characterizes
1997. viscous diffusion, whereas for largein the inertial scale, the
[3] What we mean is that the velocity differenée at a spatial samez characterizes the typical time associated with the decay
separatiorr is the same agu at the same point for a time of structuregeddies on that scale.
differencer=r/V, whereV is the characteristic velocity of the [12] For a discussion of different values of the dynamical exponent
eddies at large scales containing the energy. in a multicomponent model of turbulence, see C. Y. Mou and
[4] U. Frisch, Turbulence(Cambridge, New York, 1995 P. B. Weichman, Phys. Rev. B2, 3738(1995.
[5] A. Chekhlov and V. Yakhot, Phys. Rev. %, R2739(1995; [13] C. Basdevant, M. Deville, P. Haldenwang, J. M. Lacroix, J.
54, 5681(1996. Ouazzani, R. Peyret, P. Orlandi, and A. T. Patera, Comput.
[6] F. Hayot and C. Jayaprakash, Phys. Rex4E4681(1996. Fluids 14, 23 (1986.
[7] F. Hayot and C. Jayaprakash, Phys. Rew6:227 (1997). [14] J. P. Bouchaud, M. Mgard, and G. Parisi, Phys. Rev.32,
[8] F. Hayot and C. Jayaprakash, Phys. Rexa6:4259(1997). 3656 (1995.

[9] E. A. Novikov, Zh. Eksp. Teor. Fiz64, 1919(1964; M. D. [15] F. Hayot and C. Jayaprakaginpublishegl
Donsker, inAnalysis in Function Spacedited by W. T. Mar-  [16] A related equation can be found in S. Chandrasekhar, Proc. R.
tin and I. SegalMIT Press, Cambridge, MA, 1964 Soc. London, Ser. 229, 1 (1955.



