RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Macroscopic glassy relaxations and microscopic motions in a frustrated lattice gas
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We study microscopic and macroscopic dynamical properties of a frustrated lattice gas showing the violation
of Stokes-Einstein law. The glassy behaviors are analyzed and related with experimental results in glass former
systems[S1063-651X97)50908-1
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In simple liquids the connections between the times oflower temperature These properties recall those of the
macroscopic relaxations and the properties of microscopip-spin glass model$8]. These models have received re-
particles motion are elucidated by the Stokes-Einstein relarewed attention, as their dynamical behavior in a mean field
tion that links shear viscosity and particle diffusivity. Recentis described by the same equation as those of the mode cou-
experimental evidence shows how such a relation is violate@ling theory for simple liquid$1]. Moreover, the dynamical
in supercooled glass forming liquids. In these systems comiransition coincides with the first transition from the stable to
plex dynamical behaviors, which are distributed on manythe metastable state. The similarity in the.stat|c properties of
time scales, are supposed to be linked in a nontrivial way t¢he two models suggests that the dynamics may also be the
atomic motions of the liquid componerits,2]. same. Therefore, we expect for the lattice gas méteh a

We face these questions in the context of a microscopi@?e‘.n field a %ynamipgl transitior|1 Ak with a diffusion co-
model recently introduced to describe some general featuréasf |\</:\|/enr§ vanlst 'S.g &Nt':] a pc()jwer_ a(\;v._ 3 di . in th
of glasseq3]. This model, which bridges spin glass&0) e have studied the modél) in d=3 dimensions in the

. . ; . limit J—o by means of Monte Carlo methods. We use a
[4] and.sne f_rustrated pergolatnﬁﬁ], gon5|st§ of a lattice gas tandard Monte Carlo dynamics, in which particles diffuse
model in which each particle contains an internal degree o

freedom characterized by a spin variable. The spins intera nd spins are updated with Metropolis spin flip. Some results

) i . o n the static and dynamic properties of the model have been
via quenched ferromagnetic and antiferromagnetic '”teracpreviously reported3]. Here, we focus mainly on the rela-

tions randomly distributed like in the SG model. The modelijon petween the diffusion coefficient and the characteristic

is described by the following dilute SG Hamiltonian: relaxation time.
Our data are consistent with the following picture: we find
H=—1J SS—1)nn— n 1 aregionu<pu (_high temper_atur)ewheye the model behaves
P (.EJ) (655~ 1niny ’MZ ' @) as a normal fluid characterized by single exponential relax-

ation and normal diffusion. The value @f, is numerically

wheren;=0,1 are occupancy variables that have an internatonsistent with the percolation threshoﬁj for the particles
Ising degree of freedon® +1, the ¢;==*1 are quenched system. For valueg,<u<u, the density-density time de-
random lattice interactions, andis an adimensional chemi- pendent autocorrelation function exhibits a two step relax-
cal potential, which plays the role of the inverse of the tem-ation, corresponding to the and 8 relaxation times. The
perature IF. value p corresponds to the spin glass transition character-

When all the sites are occupied;&1), i.e., if u— oo, ized by the divergence of the nonlinear susceptibility and
this model is the standardt J Ising spin glass. In the limit moreover, where the diffusion coefficieR{ «) vanisheg3].
J—oo it describes a frustrated lattice gas where two nearedh this region D(u) exhibits a net cusp atu*
neighbor particles can be occupied only if their internal vari-(u,<u* <puo). Both the diffusion coefficient and the re-
ables satisfy the constraief;S;S;=1. Since in a frustrated laxation time exhibit a power law behavior far<u* with a
interaction loop the spins cannot satisfy all the couplings, irsharp crossover to an Arrhenius or Vogel-Fulcher law for
this model particle configurations in which a frustrated loopu> u*. This crossover can be interpreted in the following
[4] is fully occupied are not allowed. way [9]. In a mean field the dynamical transition occurs at

In a liquid the internal degrees of freedoB& may be the same temperature where the static exhibits a transition
associated, for example, with the internal orientation of parfrom a stable to a metastable state. Once in the metastable
ticles, but, more generally, they represent microscopic quarstate the system is trapped forever due to the infinite lifetime
tities that probe local effects of “frustration.” Geometrical of the mean field metastable state. In finite dimension the
hindrance in the liquid implies the existence of loops thatmetastable state has a finite lifetime, and the system does not
cannot be fully occupied, in correspondence with the frusteach a full arrest.
trated loops in the modégkee[6]). The value ofu,, is located roughly where the relaxation

In the mean field 7] the static properties of the model and thea relaxation time starts to separate and where the
show two transitions: one at a valye., which signals the relation between the relaxation time and the diffusion co-
appearance of metastable states, and a second thermodfficient violates theStokes-Einstein layas observed in real
namic transition at a higher value, (corresponding to a structural glassegl0-14.
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FIG. 2. The short time exponentig-relaxation time 7((k)
| (circle), and thea relaxation 7$=r,/In(10) (squarg, of density
correlation functior(for k=L/4), as a function of, for a system of
linear sizeL =16 andJ=10. Continuous curves are power law and
Arrhenius fit described in the text. The point where the Ipw

Inset: The exponerg of the stretched exponentials of the long time behavior fails is located around,~0.75. Inset: The inverse of

fits of density correlation functions reported in the main frame, as éjlfoSlVlty, D(#), as a function of for the same system. Super-
function of . imposed are the power law and Voghel-Tamman-Fulcher fits de-

scribed in the text. The cusp D(u) individuates a characteristic

. . . . . valueu*~2.0 (u* <ug, whereu, is the SG transition
We have considered a cubic lattice of linear sizes # W™ <o Ho

L=8, 12, and 16 with periodical boundary conditions, fixing
J=10 and usingu as a variable. Our results do not change
for J=10 000, showing that we are effectively close to the
value of J=o. As stated, thedynamicin our model is a
standard Monte CarlgMC) dynamics, in which particle dif-
fuse and spins are updated with Metropolis spin flip. The

system is pequilibratez after successivg therrrr)laliza%on at Cu(t)~Bexp{ —[t/7(k)17}, )
higher and higher values gf for about 16 MC steps at each

fixed value of external parameters. The measures are thatth 8 a function ofu (see Fig. 1, as typically occurs in SG
taken up to about FOMC steps, for a given random configu- [16]. This implies that the MCT prediction ofime-
ration of the couplings:;; . We are aware that in the deep temperature superposition relatiofl] is verified only in
glassy region(above u~5) our numerical results may be Very narrow density intervals.

only indicative due to the required very long simulation Close tou,~0.75 (p,~0.38), we observe the separation
times, but this does not change the overall picture describe@f short times 3-procesgand long times &-process relax-

FIG. 1. Fourier transformed density correlation functiog(t)
for k=L/4, as a function of time for several values of the chemica
potential u (u=-—2.0,3.0,5.0), in a system of linear site=16
and coupling constant=10. Superimposed are the short time ex-
ponential and the long time stretched exponential (fise texk

For larger values ofu (larger density, even if the short
time decay t<1) is still exponential, the long time relax-
ation (t>1) may be reasonably fitted by the Kohlrausch-
Williams-Watt stretched exponential forfeee Fig. 1

above. ation. For an estimate of the long time relaxation, the

We have calculated the density-density time dependerielaxation, in principle we could usgk) from the fit of Eq.

autocorrelation functions, (3). However, due to the sensitivity a{k) on the details of
the fit, such as for example the region chosen for the fit,

Cel)={pr(H)p_ (O prp 1) %) following Ref. [15] we define thex relaxationr,(k;u) as

the time such tha€,(7,)=10"1. For u<u*~2, 7,(k) is
. . . _ well fitted with a power law behavidisee Fig. 2[17]
Here,p, is the Fourier transform on the lattice of the density
pr(t)=(1IN)=E23p(r,t)cos@yr), where p(r,t) is the par- 7 (K ) = A g 1)~ 7+ By, 4
ticle density, at timet and at a distance from a median

plane in our cubic lattice of size, andq,=(27/L)k, with with y=6.8 and u,=56 almost independent of

ke{l,2,...L/2}. Times are measured in such a way that ! _ _ ;
t=1 corresponds on average to the time to update once a'fl (A=7000 andB,=0.5 fork=L/4). Also the timero(k)

the degrees of freedom in the system. We have also calcféf the initial exponential-like decay follows the same power
lated the square magnetization time dependent autocorrel W depe’.‘denc‘? up f@,, and then saturates to a finite value
tion function and found that behaves in a similar way. exponentlallx W'th.'“' ] o

As anticipated above, the system at lgm(i.e., low den- For u=>p*, while 7o(k; p) saturatesy,(k;u) is reason-
sity) behaves as a normal liquid, with exponentially decay-ably fitted by an Arrhenius behavior divergensee Fig. 2
ing time correlation functions(see Fig. L C.(t)~
exd —t/7(K)]. The characteristic time,(k), excluding finite To(K ) =axexpu/ pw,), 5
size effects, is inversely proportional t&? 7o(k)~1/
Dok?+ 7. with a,=0.7 andu = 0.4 fork=L/4.
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FIG. 3. Particle mean square displacemB(it)? as a function FIG. 4. The diffusivityD as a function of thex-relaxation time

of time in a system of linear siz&=16, for J=10, and for  7,. As in real experiments three different regions appear. The su-
p=0.088,0.271,0.440,0.581,0.67¢higher curves correspond to perimposed curves are fit with the generalized fractional Stokes-
lower densities Einstein lawD ~1~ 7% . Inset: The product of diffusivity (p) and

of a-relaxation timer,(p) as a function of density.

The crossover from a power law behavior forecasted by/vhereAlszz_72 andup=1.1. A crossover from power law
MCT or spin glass mean field theory to an Arrheni@s  to Arrhenius(or Voghel-Tamman-Fulchgbehavior is also
Vogel-Tamman-Fulcher in fragile liquii®ehavior fora re- observed in real experimentg].
laxation times, is typically observed in real structural glasses, |n our model the densitp* corresponding tq.*, where
too [2]. the Arrhenius region sets in, is signaled by a local minimum

It is interesting to compare the anomalies of the autocorin the static structure factd®(k;p), as a function op. Our
relation functions described above to microscopic particlegpservations indicate that the diffusivify goes to zero in
diffusion. Here, frustration may have a strong effect on parthe region where the static SG transitigiy should be lo-
ticles. We rzlave calculated the partlclezmean square displac@xted as signaled by the divergent nonlinear susceptibility
ment [3] R*(t) =((LN)Zi[r;(t) —ri(0)]%). For u<up we . However, it is difficult to numerically establish where
find a Brownian typical linear time behavior. Fpr>pu,, in exactly u, is located 1,=5.5) [3]. As in real glasses, how-
the intermediate time region, we observe a subdiffusive regyer, there is no divergence of density fluctuations.
gion with an inflection that becomes more evidentua- We compare now the diffusion coefficieBt and thea
creasegsee Fig. 3 . . 5 . _ relaxation timer,. In a normal liquid the diffusion coeffi-

The linear asymptotic behavior &°(t) defines the dif-  ¢ijent and the viscosity; are related by the Stokes-Einstein
fusivity D. This shows an apparent cuspuett~2 (p* ~0.5)  rejation (SE:: sD=CT, where T is the temperature in
and an abrupt change in behavior, as shown in Fig. 2. Belokelyin andC a constanf19]. In our system it is not possible
w*, it is possible to fitD(x) with the power law given in {4 girectly define a viscosity, but due to the Maxwell relation
Eq. (4) with the samey and w. (see Fig. 2 found studying  ,, is proportional to the time scale of the asymptotic relax-
density relaxation times. _ ation 7. We find that the product,D is not a constant

The valuew, from the power law fit corresponds to the varying the potentialx, as shown in Fig. 4. Studying
characteristic temperatuile of mode coupling_theor{/l], or 7 (w)D(w), three regions emerge, separated by the values
to the “dynamic transition” of the mean-field theory of of , "andu*. A similar separation in three different regions
p-spin glassef4,8]. Above u* the best fit forD is obtained s found in real experiments on colloidal suspensifid,

using a Voghel-Tamman-Fulchesee Fig. 2, where, plotting the producyD as a function of the volume
fraction, a behavior is found close to that depicted in the
inset of Fig. 4.
It has been suggested that the departure from the Stokes-
DY (w)=Apexdd/(n = u H], (6)  Einstein relation, in glass forming liquid40], could be de-

scribed by the following relationD ~*=K #¢. To check if
such relation holds in our model we have plottede Fig. 4
1/D as a function ofr,(k=L/4). By assuming
with Ap=17, wu,;=11.4, andd= 0.3, for the system of size
16°. However, an Arrhenius fiti.e., u;—), as that found

,1: 3
for 7, of a relaxation, is just slightly worse, D K ®)

we find for u<pu, é=1 (as in usual SE and for u=u*
. , £~0.3. This last value of for u=u* is consistent with
D™ (u)=Apexp(p/ up), (7 Egs.(5) and(7) andé=pu,/up .
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Experiments in glass forming liquidgl0—13 indicate In conclusion we have studied the macroscopic relaxation
that the exponent ig<1, ranging in a broad interval de- and microscopic diffusive properties of the frustrated Ising
pending on the systeffior instance, ir-terphenyl using the lattice gas introduced if3]. Many connections have ap-
rotational diffusion coefficient£=0.28 is found[10], in  peared with the physics of real glass forming liquids ranging
PMMA ¢=0.69 [13]). It is striking that the data on from the anomalies in the density relaxations, to those of

o-terphenyl[10] not only exhibit the same exponefifound  diffusivity, to violation of Stokes-Einstein lafd,2].
here, but the rotational diffusion coefficient also shows

a cusp as function of T/ and the appearance of several The authors are grateful to Dino Leporini for useful dis-
regions, analogous to those depicted respectively in Figs. @ussions. This research has been partially supported by a

and 4. grant from CNR.
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