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Generic density functional for electric double layers in a molecular solvent
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A simple, generic density functional for a statistical description of electric double layers in a molecular
solvent is presented. The functional, which may be adapted to any geometry, is applied to the case of planar
geometry, to pinpoint the limitations of the usual continuum description of the solvent.
[S1063-651%98)51304-9

PACS numbes): 82.70.Dd, 61.20.Gy, 82.65.Dp

Electric double layers of microscopic co- and counterions, QiQ; 1
distributed around mesoscopic polyions, play a key role in Vii(gi,9)) = T—(Qipf—iji)'Vri(r)
determining the stability and structure of aqueous solutions .

or suspensions of macromoleculgmlyelectrolytey mem- 1 ,

branes and colloids. Since the pioneering work of Gplly i 'Vrivri(a) Py ryzoy, (D)
and Chapmai2], statistical theories of isolated or interact-

ing double layers almost invariably neglect the m0|eCU|arwhereqi=(ri P, Pi=PiPi, fij=|ri—r,-'| is the center-to-

nature of the solvent, which is generally replaced by & congener distance between particles of spetigr;) and] (at
tinuum of dielectric constant. Such a “primitive model” r’) and oy =(0;+0;)I2. The free energy of the inhomoge-

may be a reasonable approximation on scales much larg&leous mixture is a functional of the three local densities
fchan the diameter of the_solvent molecules, but it is clearlyni(r,f)), which satisfy the normalization conditions,
inadequate on nanometric scales, where surface force mea-
surements detect oscillatory solvation forces due to molecu-

lar layering[3]. Efforts to incorporate the molecular nature f n;(r,p)dr df,:J ni(rydr=N;, 2
of the solvent are mostly restricted to double layers near

infinite, uniformly charged planes. Excluded volume effects . . N
may be modeled via a lattice gas approf¢h which cannot wherQNi is the _total nu_mber qf partlcles__of speciesand
reproduce layering. More realistically, the solvent may behi(f) is the spatial density profile of species

modeled by bard5—7] or dipolar[8,9] hard spheres. The The intrinsip part qf the free energy functional separates
former can only capture packing or layering effects, whileinto ideal (noninteracting and excess parts, and the latter in

the latter pose the notoriously difficult problem of an accu-tUrn naturally splits into hard sphefexcluded volumg(HS)
rate statistical description of the dielectric properties. Quali-2nd Coulombic €) parts,
tative results may be obtained from the mean-spherical ap- i ox o
proximation (MSA) [10,11,4, which is known to grossly FI{n1=F[{nd]1+ FRL{n1+FET{nd], (3
underestimate the dielectric constantore elaborate theo- 4
fies, based, e.g., on the hypernetted cBiNC) closure[9], ~ WhereF is of the usual form g=1/kgT)
are technically very demanding. 5

In this Rapid Communication we present a simple, ge- id B A 3 - A
neric free energy functional suitable for the description of AF [{”k}]—zl f ni(r,p){In[A7n;(r,p)]—1}dr dp.
electric double layers in any geometry. The functional will (4
be written down for a mixture of spheres with embedded
point chargesfor the electrolytgor dipoles(for the solvent,  For the HS part we adopt the best available non-local func-
but may easily be generalized to account for higher multivional based on “fundamental measure” weight functions
poles and other refinements. For comparative purposes, €2 13. The remaining Coulombic part is expanded around a
functional is put to work to obtain density profiles and re- nomogeneous charge-neutral reference system with bulk

lated properties in the much studied planar geometry. densities{n?}, and all terms beyond second order are ne-
Consider a three-component mixture of spheres of diamglected[ls]

eter g; carrying point charge®; or point dipolesp; (1<i
=<3), and adopt the conventioQ,=Q_, p;=0: cations; ES {n V1= BESX(In°
Q,=Q_, p,=0: anions;Q;=0, ps=p: dipolar solvent. BFEtind]=AFcind)
The electrostatic interaction between two sphéraadj is

1]

—Ei J CVC({ngt.g)Ani(g)dg

TPresent address: Department of Chemistry, Lensfield Road, Cam- 1 (2)C for. ,
bridge CB2 1EW, England. 3 24] Ani(@)Ci " ({Mi1;9.9")
*Permanent address: Nuclear Research Center Negev, P.O. Box
9001, Beer Sheva 84190, Israel. X An;(q')dgdq’, 5)
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whereAn;(q)=n;(q) —n/4x. The one and two point direct
correlation function§DCF) appearing in Eq(5) are(minusg
the first and second functional derivatives BFZ{{n,}],
taken at the homogeneous densitigq 15]. Note that these
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energy between the corresponding point charges or dipoles,
minus the interaction energy between pairs of effective par-

ticles of diametersr; and o carrying suitably smeared sur-
face charge densities; the latter are the constgnt

DCF’s are not the actual, full DCF's of the homogeneous= Qi/(W_Uiz) for ions anin(r_)=p'f/(7TUi3/6) for dipoles,
mixture, since the HS contribution already contained inwherer is the position of a point on the surface of the sphere,

BFS has been substracted.

relative to its centef13,14.

The ions and dipoles are subjected to the external poten- Together with the above prescriptions f)mHS and c_:ij :

tials Viex‘(g) due to the polyions; this contributes a term

Fex= 2 f Vi(a@)ni(g)dq (6)

to the total free energy. Minimization of the latter with re-
spect to the(n;(q)}, subject to the constraint®), leads to
the following generic expression for the local densities:

ni(g)=ny GXW’ = BVE(@) = BLat TN = " ({ngh)]

+; fCEJZ)C({HE}:g,g’)Anj(g’)dg’ , (7)

Egs.(10) and(11) form a closed set, which has the structure
of the usual mean-field Poisson-Boltzmann theory of electro-
lytes, except that short-range correlations due both to ex-
cluded volume(HS) and electrostatics are explicitly taken
into account at all levelsion-ion, ion-solvent, and solvent-
solveny.

Before considering an application of the above formalism
to a specific double-layer geometry, we specialize it to the
case of the pure dipolar solvent polarized by a uniform ap-
plied field. The geometry is that of a condenser, i.e., the
solvent is confined between two infinite parallel planes, car-
rying opposite surface charge densitie&,, and is in equi-
librium with a reservoir of unpolarized solvent of bulk den-
sity n°, which fixes the chemical potentigt. The local
density now depends only on (the coordinate along the

where the local hard sphere chemical potentials are definegyrmal to the platésand p,. Specializing the general ex-

by

ex
HS

oni(q)

pI (@)= ®)

In arriving at Eq.(7) the three components of the inhomoge-
neous mixture in the external field are assumed to be at the
same chemical potentigk; as the homogeneous reference

system characterized by the bulk densitigs The C{?°
have an asymptotic, long-range contribution equat-{6V;;

and it is customary to introduce the short range parts defined

by:
Cii(9.9")=C!?%(q,9")+BV;;(9.9"). (9)

Substitution of Eq.(9) into Eq. (7) leads to the following
operational expression for the local densities:

ni(q)=n? exp{ —BVE(Q) - Bl (@) H— 1 S({nghH]
+3 faj<g,g'>Anj<g'>dg'—ﬁwm

— Bpi 'Vtﬂ(r)]. (10)

pression(10) to the present situation leads to the following
local density of the dipolar solvent:

n(z,p,)=n° EXP( 4w B2 p,~ Bl In(2)] - uS(n%)]

|z-2'|

—B(Zw)zf Q(T) p.p;[n(z'.p;)—n°]

dz' .,
where g(&)=12(1/5- 2+ &— 1 £9)6(1—¢) (8 denoting

the Heaviside step functipnThe resulting local polarization
per unit volume is

+1, ~ R
7’(z)=|0f_1 Pzn(z,p,)dp; . (13

Far from the macroscopically distant condenser plaig,

— o) reduces to the macroscopioulk) polarizationP. For
low plate chargeX, a simple linear response calculation
based on the—« limit of the profile (12) leads to Debye’s
result for the dielectric constant;— 1=478p?n°'/3, where
n® =n(z—x) differs from the reservoir valu@® due to

wherey(r) is the total electrostatic potential of the ion-dipole €lectrostriction. This seemingly disappointing result may be

distribution which satisfies Poisson’s equation,

A¢(f)=—4ﬁzi Qini(r)+4772i f pi - Vi(r,p))dp; .
11
The remaining unknowns are tréj , for which we adopt

the MSA, in the strong coupling limit, whereb®;;=0 if
rij>aoij, while for rj;<aj;, Cj; reduces to the interaction

traced back to the asymptotic MSA form foC(r
—r’;p,p’), leading to ag(&) function which integrates up to
exactly 2. An alternativeg(£) function, like that resulting
from the full solution of the MSA, integrating up to a value
2a, would yield the following expression for the bulk dielec-
tric constant:

_ €D+(a_1)(6D_1)
1+ (a—1)(ep—1) "’

(14

€
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FIG. 1. Counterion(upper curvesand coion density profiles FIG. 2. Dimensionless polarization per dipole as a function of

calculated from Eq(10) for two solvent models: bare hard spheres, the distancez from the plate. Two electrolyte concentrations are
with a reduction of the Coulomb interactions bydashed curves ~ considered: 0.01 Mfull curves and 0.1 M(dashed curves For

and dipolar hard sphergfull curves. The inset shows the profiles €ach value of the electrolyte concentration, the upper curve corre-
near contact. Physical paramete¥s: =3 ¢%/e=0.05; monovalent sponds to a reduced surface den&ity=0.05, and the lower curve
electrolyte concentration: 0.1 M; solvent dipolep*2  toX*=0.01; all other physical parameters as in Fig. 1. The inset
=p%(c%kgT)=2.5; solvent density: n3=0.80"3; o=4A; shows the polarization profiles near contact.

T=298 K; € (pure solvent58.4. ) ) ] ) ] ]
difference in the layering is observed, particularly in the

where ep=€e(a=1) is the above quoted Debye value. We marked oscillations of the counterion profile, which are sig-
checked analytically the consistency of the MSA, wherebynificantly shifted towards the plate in the dipolar case, and
the value ofe predicted by Eq(14) (obtained from the den- pile up to a contact value higher by nearly a factor of 2
sity profile near a charged walis identical to the standard compared to the bare HS solvent; this in turn means a stron-
expression fore obtained from Wertheim’s solution of the ger depletion of the solvent. The marked discrepancies be-
MSA for a bulk solvent of dipolar hard spheres. For physicaltween the two models point to a strong interference between
parameters appropriate for watep,=7.2, the MSA yields packing and electrostatic effects which are not simply super-
a=0.87 ande=35, while the experimental value=78 cor-  posable(a similar conclusion was reached in REf] in the
responds tar=0.854. This extreme sensitivity @to small  case of surface forces between highly charged plafégure
variations ofa, which contrasts with a lack of sensitivity of 2 shows the polarization profiles per partic{z)/[ pns(z)]

the density profiledexcept in the asymptotic regime gov- for two surface charge densities, and two electrolyte concen-
erned by the Debye screening length, and hence)bgug- trations. While the profiles hardly change close to the plate,
gests a simple and very useful phenomenological approackhe decay of the polarization is much faster beyond a few
Multiplying the asymptotic MSA form ofc, and hence the molecular diameters in the more concentrated solution, due
value ofg, by a constant facto we recover Eq(14). a«is  to the reduction of the screening length; in the latter case the
then chosen such as to makeoincide with the best avail- local polarization vanishes beyore-100-.

able estimate for the bulk dipolar HS model, based on
QHNC theory[16]. The resultinga is found to be of the
order of 0.8, and only slightly state dependent.

Having developed a satisfactory, semiphenomenological
DFT of the pure solvent, we are now in a position to make
realistic predictions for electric double layers near an infinite,
uniformly charged plane. For the sake of simplicity, we con- &
sider a symmetric ion-dipole mixture witlr;=0,=03 i
=0, and Q;=—Q,=e (monovalent electrolyle neglect =
image forces, and restrict dipoles to six discrete orientations®
(parallel or antiparallel to each of the three coordinate axes
The latter assumption greatly simplifies the iterative solution
of the set of Eqs(10) and(11). Some representative results
are shown in Figs. 1 to 3 under physical conditions roughly
appropriate for aqueous solutions. In Fig. 1 the co- and coun : . : :
terion density profilesi;(z) andn,(z), obtained for a bare 10 15 20 25 80
HS (p=0) and a dipolar HS{#0) solvent are compared. 2o
In the case of a bare HS solvent, the Coulomb interaction FIG. 3. Co- and counterion density profiles versus distance from
between ions is reduced by a dielectric constaiaken equal  plate; the curves show|m@—n? (i=1,2). 3* =3.2x 10 *. Elec-
to that derived for the pure dipolar solvent. A clear phaserolyte concentrations: I¢, 1072, 2x1072, and 4102
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The asymptotic decay of the ionic density profiles is ex-order of 1% or less, the rapidly decaying profiles exhibit
amined in Fig. 3, where Ii(2)—n?]) is plotted versus/c  increasingly pronounced oscillations, induced by the molecu-
for co- and counterions € 1,2), for several electrolyte con- lar nature of the solvent; under these conditions a “primi-
centrations. At the lower concentrations, the plots areive” model description of the electric double layer is found
straight lines beyond/o=10, signaling a monotonic expo- to be totally inadequate. This observation should have far-
nential decay, as would be predicted by the “primitive” reaching consequences on the derivation of effective interac-
model. The slopes yield a Debye screening length, tions between charge-stabilized colloids in the presence of
=(87n°e?/ ekgT) Y2, wheren®=n9=n$, from which an  high concentration of added salt.
effective dielectric constané can be extracted; the latter  The results presented in this Rapid Communication pro-
agrees very well with the bulk dielectric constant of the purevide an illustration of the suitability of the proposed func-
dipolar sphere solvent. We conclude that the ionic densitgional to cope with the molecular nature of the solvent. The
profiles in a molecular solvent are well reproduced by theflexibility of the functional will be put to use in a systematic
“primitive” model, beyond a few molecular diameters, in investigation of more complex geometries, including finite
the low concentratioiweak screeningregime. At higher membranes and platele€t$7], charged rods, and curved in-
concentrations, such that the Debye screening length is of therfaces.
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