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Generic density functional for electric double layers in a molecular solvent

T. Biben, J. P. Hansen,* and Y. Rosenfeld†
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A simple, generic density functional for a statistical description of electric double layers in a molecular
solvent is presented. The functional, which may be adapted to any geometry, is applied to the case of planar
geometry, to pinpoint the limitations of the usual continuum description of the solvent.
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Electric double layers of microscopic co- and counterio
distributed around mesoscopic polyions, play a key role
determining the stability and structure of aqueous soluti
or suspensions of macromolecules~polyelectrolytes!, mem-
branes and colloids. Since the pioneering work of Gouy@1#
and Chapman@2#, statistical theories of isolated or interac
ing double layers almost invariably neglect the molecu
nature of the solvent, which is generally replaced by a c
tinuum of dielectric constante. Such a ‘‘primitive model’’
may be a reasonable approximation on scales much la
than the diameter of the solvent molecules, but it is clea
inadequate on nanometric scales, where surface force m
surements detect oscillatory solvation forces due to mole
lar layering@3#. Efforts to incorporate the molecular natu
of the solvent are mostly restricted to double layers n
infinite, uniformly charged planes. Excluded volume effe
may be modeled via a lattice gas approach@4#, which cannot
reproduce layering. More realistically, the solvent may
modeled by bare@5–7# or dipolar @8,9# hard spheres. The
former can only capture packing or layering effects, wh
the latter pose the notoriously difficult problem of an acc
rate statistical description of the dielectric properties. Qu
tative results may be obtained from the mean-spherical
proximation ~MSA! @10,11,8#, which is known to grossly
underestimate the dielectric constante. More elaborate theo
ries, based, e.g., on the hypernetted chain~HNC! closure@9#,
are technically very demanding.

In this Rapid Communication we present a simple, g
neric free energy functional suitable for the description
electric double layers in any geometry. The functional w
be written down for a mixture of spheres with embedd
point charges~for the electrolyte! or dipoles~for the solvent!,
but may easily be generalized to account for higher mu
poles and other refinements. For comparative purposes
functional is put to work to obtain density profiles and r
lated properties in the much studied planar geometry.

Consider a three-component mixture of spheres of dia
eter s i carrying point chargesQi or point dipolespi (1< i
<3), and adopt the conventionQ15Q1 , p150: cations;
Q25Q2 , p250: anions; Q350, p35p: dipolar solvent.
The electrostatic interaction between two spheresi and j is
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Vi j ~qI i ,qI j8!5
QiQj

r i j
2~Qipj82Qjpi !•“ r iS 1

r i j
D

2pi •“ r i
“ r iS 1

r i j
D •pj8 , r i j .s i j , ~1!

where qI i5(r i ,p̂i), pi5pi p̂i , r i j 5ur i2r j8u is the center-to-
center distance between particles of speciesi ~at r i! and j ~at
r j8! ands i j 5(s i1s j )/2. The free energy of the inhomoge
neous mixture is a functional of the three local densit
ni(r ,p̂), which satisfy the normalization conditions,

E ni~r ,p̂!dr dp̂5E ni~r !dr5Ni , ~2!

where Ni is the total number of particles of speciesi and
ni(r ) is the spatial density profile of speciesi .

The intrinsic part of the free energy functional separa
into ideal~noninteracting! and excess parts, and the latter
turn naturally splits into hard sphere~excluded volume! ~HS!
and Coulombic (C) parts,

F@$nk%#5F id@$nk%#1FHS
ex @$nk%#1FC

ex@$nk%#, ~3!

whereF id is of the usual form (b51/kBT)

bF id@$nk%#5(
i 51

3 E ni~r ,p̂!$ ln@L i
3ni~r ,p̂!#21%dr dp̂.

~4!

For the HS part we adopt the best available non-local fu
tional based on ‘‘fundamental measure’’ weight functio
@12,13#. The remaining Coulombic part is expanded aroun
homogeneous charge-neutral reference system with
densities$ni

o%, and all terms beyond second order are n
glected@13#,

bFC
ex@$nk%#5bFC

ex~$nk
o%!

2(
i
E Ci

~1!C~$nk
o%,qI !Dni~qI !dqI

2
1

2 (
i , j

E Dni~qI !Ci j
~2!C~$nk

o%;qI ,qI 8!

3Dnj~qI 8!dqI dqI 8, ~5!
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whereDni(qI )5ni(qI )2ni
o/4p. The one and two point direc

correlation functions~DCF! appearing in Eq.~5! are~minus!
the first and second functional derivatives ofbFC

ex@$nk%#,
taken at the homogeneous densitiesni

o @15#. Note that these
DCF’s are not the actual, full DCF’s of the homogeneo
mixture, since the HS contribution already contained
bFHS

ex has been substracted.
The ions and dipoles are subjected to the external po

tials Vi
ext(qI ) due to the polyions; this contributes a term

Fext5(
i
E Vi

ext~qI !ni~qI !dqI ~6!

to the total free energy. Minimization of the latter with r
spect to the$ni(qI )%, subject to the constraints~2!, leads to
the following generic expression for the local densities:

ni~qI !5ni
o expH 2bVi

ext~qI !2b@m i
HS@$nk~qI !%#2m i

HS~$nk
o%!#

1(
j
E Ci j

~2!C~$nk
o%;qI ,qI 8!Dnj~qI 8!dqI 8J , ~7!

where the local hard sphere chemical potentials are defi
by

m i
HS@$nk~qI !%#5

dFHS
ex

dni~qI !
~8!

In arriving at Eq.~7! the three components of the inhomog
neous mixture in the external field are assumed to be at
same chemical potentialm i as the homogeneous referen
system characterized by the bulk densitiesni

o . The Ci j
(2)C

have an asymptotic, long-range contribution equal to2bVi j
and it is customary to introduce the short range parts defi
by:

C̄i j ~qI ,qI 8!5Ci j
~2!C~qI ,qI 8!1bVi j ~qI ,qI 8!. ~9!

Substitution of Eq.~9! into Eq. ~7! leads to the following
operational expression for the local densities:

ni~qI !5ni
o expH 2bVi

ext~qI !2b@m i
HS@$nk~qI !%#2m i

HS~$nk
o%!#

1(
j
E C̄i j ~qI ,qI 8!Dnj~qI 8!dqI 82bQic~r !

2bpi •“c~r !J , ~10!

wherec~r ! is the total electrostatic potential of the ion-dipo
distribution which satisfies Poisson’s equation,

Dc~r !524p(
i

Qini~r !14p(
i
E pi •“ni~r ,p̂i !dp̂i .

~11!

The remaining unknowns are theC̄i j , for which we adopt
the MSA, in the strong coupling limit, wherebyC̄i j 50 if
r i j .s i j , while for r i j ,s i j , C̄i j reduces to the interactio
s

n-

ed

he

d

energy between the corresponding point charges or dipo
minus the interaction energy between pairs of effective p
ticles of diameterss i ands j carrying suitably smeared sur
face charge densities; the latter are the constantqi

5Qi /(ps i
2) for ions andqi(r )5p•r /(ps i

3/6) for dipoles,
wherer is the position of a point on the surface of the sphe
relative to its center@13,14#.

Together with the above prescriptions form i
HS and C̄i j ,

Eqs.~10! and~11! form a closed set, which has the structu
of the usual mean-field Poisson-Boltzmann theory of elec
lytes, except that short-range correlations due both to
cluded volume~HS! and electrostatics are explicitly take
into account at all levels~ion-ion, ion-solvent, and solvent
solvent!.

Before considering an application of the above formali
to a specific double-layer geometry, we specialize it to
case of the pure dipolar solvent polarized by a uniform
plied field. The geometry is that of a condenser, i.e.,
solvent is confined between two infinite parallel planes, c
rying opposite surface charge densities6S, and is in equi-
librium with a reservoir of unpolarized solvent of bulk de
sity no, which fixes the chemical potentialm. The local
density now depends only onz ~the coordinate along the
normal to the plates! and p̂z . Specializing the general ex
pression~10! to the present situation leads to the followin
local density of the dipolar solvent:

n~z,p̂z!5no expH 4pbSpz2b@mHS@n~z!#2mHS~no!#

2b~2p!2E gS uz2z8u
s D pzpz8@n~z8,p̂z8!2no#

3
dz8

s
dp̂z8J ~12!

where g(j)512(1/52j21j32 1
5 j5)u(12j) ~u denoting

the Heaviside step function!. The resulting local polarization
per unit volume is

P~z!5pE
21

11

p̂zn~z,p̂z!dp̂z . ~13!

Far from the macroscopically distant condenser plates,P(z
→`) reduces to the macroscopic~bulk! polarizationP. For
low plate chargeS, a simple linear response calculatio
based on thez→` limit of the profile ~12! leads to Debye’s
result for the dielectric constant,e2154pbp2no8/3, where
no85n(z→`) differs from the reservoir valueno due to
electrostriction. This seemingly disappointing result may
traced back to the asymptotic MSA form forC̄(r
2r 8;p,p8), leading to ag(j) function which integrates up to
exactly 2. An alternativeg(j) function, like that resulting
from the full solution of the MSA, integrating up to a valu
2a, would yield the following expression for the bulk dielec
tric constant:

e5
eD1~a21!~eD21!

11~a21!~eD21!
, ~14!
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whereeD5e(a51) is the above quoted Debye value. W
checked analytically the consistency of the MSA, where
the value ofe predicted by Eq.~14! ~obtained from the den
sity profile near a charged wall! is identical to the standard
expression fore obtained from Wertheim’s solution of th
MSA for a bulk solvent of dipolar hard spheres. For physi
parameters appropriate for water,eD.7.2, the MSA yields
a.0.87 ande.35, while the experimental valuee.78 cor-
responds toa.0.854. This extreme sensitivity ofe to small
variations ofa, which contrasts with a lack of sensitivity o
the density profiles~except in the asymptotic regime gov
erned by the Debye screening length, and hence bye!, sug-
gests a simple and very useful phenomenological appro
Multiplying the asymptotic MSA form ofC̄, and hence the
value ofg, by a constant factora we recover Eq.~14!. a is
then chosen such as to makee coincide with the best avail
able estimate for the bulk dipolar HS model, based
QHNC theory @16#. The resultinga is found to be of the
order of 0.8, and only slightly state dependent.

Having developed a satisfactory, semiphenomenolog
DFT of the pure solvent, we are now in a position to ma
realistic predictions for electric double layers near an infin
uniformly charged plane. For the sake of simplicity, we co
sider a symmetric ion-dipole mixture withs15s25s3
5s, and Q152Q25e ~monovalent electrolyte!, neglect
image forces, and restrict dipoles to six discrete orientati
~parallel or antiparallel to each of the three coordinate ax!.
The latter assumption greatly simplifies the iterative solut
of the set of Eqs.~10! and ~11!. Some representative resul
are shown in Figs. 1 to 3 under physical conditions roug
appropriate for aqueous solutions. In Fig. 1 the co- and co
terion density profilesn1(z) andn2(z), obtained for a bare
HS (p50) and a dipolar HS (pÞ0) solvent are compared
In the case of a bare HS solvent, the Coulomb interac
between ions is reduced by a dielectric constante taken equal
to that derived for the pure dipolar solvent. A clear pha

FIG. 1. Counterion~upper curves! and coion density profiles
calculated from Eq.~10! for two solvent models: bare hard sphere
with a reduction of the Coulomb interactions bye ~dashed curves!
and dipolar hard spheres~full curves!. The inset shows the profile
near contact. Physical parameters:S* 5Ss2/e50.05; monovalent
electrolyte concentration: 0.1 M; solvent dipole:p* 2

5p2/(s3kBT)52.5; solvent density: n3
o50.8s23; s54 Å;

T5298 K; e (pure solvent)558.4.
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difference in the layering is observed, particularly in t
marked oscillations of the counterion profile, which are s
nificantly shifted towards the plate in the dipolar case, a
pile up to a contact value higher by nearly a factor of
compared to the bare HS solvent; this in turn means a st
ger depletion of the solvent. The marked discrepancies
tween the two models point to a strong interference betw
packing and electrostatic effects which are not simply sup
posable~a similar conclusion was reached in Ref.@7# in the
case of surface forces between highly charged plates!. Figure
2 shows the polarization profiles per particle,P(z)/@pn3(z)#
for two surface charge densities, and two electrolyte conc
trations. While the profiles hardly change close to the pla
the decay of the polarization is much faster beyond a f
molecular diameters in the more concentrated solution,
to the reduction of the screening length; in the latter case
local polarization vanishes beyondz.10s.

FIG. 3. Co- and counterion density profiles versus distance fr
plate; the curves show lnuni(z)2ni

ou ( i 51,2). S* 53.231024. Elec-
trolyte concentrations: 1023, 1022, 231022, and 431022 M.

,

FIG. 2. Dimensionless polarization per dipole as a function
the distancez from the plate. Two electrolyte concentrations a
considered: 0.01 M~full curves! and 0.1 M ~dashed curves!. For
each value of the electrolyte concentration, the upper curve co
sponds to a reduced surface densityS* 50.05, and the lower curve
to S* 50.01; all other physical parameters as in Fig. 1. The in
shows the polarization profiles near contact.
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The asymptotic decay of the ionic density profiles is e
amined in Fig. 3, where ln(uni(z)2ni

ou) is plotted versusz/s
for co- and counterions (i 51,2), for several electrolyte con
centrations. At the lower concentrations, the plots
straight lines beyondz/s.10, signaling a monotonic expo
nential decay, as would be predicted by the ‘‘primitive
model. The slopes yield a Debye screening length,lD

5(8pnoe2/ekBT)21/2, whereno5n1
o5n2

o , from which an
effective dielectric constante can be extracted; the latte
agrees very well with the bulk dielectric constant of the pu
dipolar sphere solvent. We conclude that the ionic den
profiles in a molecular solvent are well reproduced by
‘‘primitive’’ model, beyond a few molecular diameters, i
the low concentration~weak screening! regime. At higher
concentrations, such that the Debye screening length is o
-

e

e
ty
e

he

order of 15s or less, the rapidly decaying profiles exhib
increasingly pronounced oscillations, induced by the mole
lar nature of the solvent; under these conditions a ‘‘prim
tive’’ model description of the electric double layer is foun
to be totally inadequate. This observation should have
reaching consequences on the derivation of effective inte
tions between charge-stabilized colloids in the presence
high concentration of added salt.

The results presented in this Rapid Communication p
vide an illustration of the suitability of the proposed fun
tional to cope with the molecular nature of the solvent. T
flexibility of the functional will be put to use in a systemat
investigation of more complex geometries, including fin
membranes and platelets@17#, charged rods, and curved in
terfaces.
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