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Iterative solutions of integral equations and structural stability of fluids
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We argue that the threshold density of structural stabifitys;, of a classical fluid can be determined from
the Floquet matrix for the iterative form of the integral equation for the pair structure. A measure of the
structural stability of the fluid is provided by the Lyapunov exponent related to the perturbed dynamics. The
hypernetted-chain and Percus-Yevick equations yield, for hard spheres, a vaiyg, dhat is about 10%
smaller than the freezing densify51063-651X98)51104-X]

PACS numbe(s): 64.70.Dv, 05.45+b, 05.70.Fh, 61.20.Gy

A still open problem in equilibrium statistical mechanics an operator mappin onto itself. Usually these equations
is whether an intrinsic stability threshold of the dense fluidcannot be solved analytically and thus one resorttetative
phase, which is expected to be close to the freezing densitynethodswhich, in turn, occupy an important niche in mod-
can be deduced on the basis of one-phase criteria, i.e., witlern mathematical physics. When applying the simple itera-
out considering also the free energy of the solid. A welltive method to Eq. 1, one generates, starting from some ini-
known such criterion is the Hansen-Verlet “rule” stating tial value f,, successive approximations to the solution
that a simple fluid freezes when the maximum of the structhrough the mapping
ture factor is about 2.8HL]. The configurational entropy also
provides a measure of the structure which correlates well frri=Af,. (2
with freezing[2]. Other “freezing criteria” arise quite natu-
rally from the properties of solutions of integral equations for " > - ,
the pair distribution function of the flui3], or from the towards avalug®, thenf* is a*flxed *pomt_for operatof,
instability of the iterative solutions for such equatigdg In  1-€- it is a solution of Eq(1): f*=Af*. This procedure is
particular, Rosenfelf4] showed that the stability limit of the the starting point of other more refined iterative .methods. For
hypernetted-chaifHNC) equation, with respect to its defin- €xample, a simple but effective technique to improve con-
ing diagrammatic iteration loop, falls close to the freezingV€rgence is provided by linear relaxation which gives origin
density for a large variety of interaction pair potentials.© the modified iterative method in which input and output
However, this semiempirical result did not allow one to de-arémixedat each iteration:
fine some functional of the given pair correlation function _ _
which identifies the stability property of the fluid structure fr1=Amixfn= @Aty + (1= a)fy, ©)
per se In this Rapid Communication we study the relation here q is a real parameter©a< 1, which is kept constant
between the physical stability of a statistical system and thg can be altered in some suitable way at each iteration.
sta_blhty_ of the _s_olu_tlon of the |r_1tegral equations used to _o_le- Generally, the operatof of Eq. (1) describes how the
scribe . its equmbnum propertleg. We present a Stab"'thalues assumed Hiyover the whole system should be “pro-
analysis that is based on the application of the Floquet matrixessed in order to determing at the point considered. In
[5] (for the iterative form of the integral equation for the pair o icylar, the nonlinear integral equations for fluids, which
structurg on arbitrary perturbations and show that the 5o gptained by supplementing the Ornstein-Zernike relation
Lyapunov exponent related to the corresponding dynamicg;it, some appropriate closure, i.e., an independent relation

provides ameasureof the structural stability of the fluid. We between the totalh(r)] and the direcfc(r)] correlation
focus on distribution-function theorid$,7] as those repre- functions[6], have the form

sented by the Percus-YevidRY) and HNC equations, but

our analysis can be easily extended to other theoretical meth-

ods, such as the density functional the¢BFT). As a dem- f(r)zK[r,f(r)]+f K[r=9,f([r=s)]f(s)ds, (4)
onstration, we calculate the structural stability boundary of

the hard-sphere fluid through the PY, HNC, and modifiedwheref(r) denotes one of the above mentioned correlation

If the sequence of successive approximatipihé converges

HNC (MHNC) equations. functions, typicallyh(r), andK is a kernel that depends on
Quite generally, integral equations can be written in thethe closure adopted. Equatiéf) definesf(r), i.e., the value
form: of the functionf at an arbitrary point of the system with

spatial coordinate, in terms of the values df at all of the
f(r)y=Af(r), (1) points of the system. Within the approximation inherent to

the closure, this mathematical procedure appears as the coun-
wheref(r) e S describes the particle distribution of the sys- terpart of a physical process since every point of the system
tem investigatedS is a set of a metric space, aAdS—Sis  contributes, via mutual interactions, to determine the value
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of f at a given point. As suggested by the fixed-point form of(which in principle depends op) only up to a valuep;,;.
Eq. (1), at equilibrium there is a “detailed balance” between As follows from the Banach fixed-point theorem this implies
the local value off and that resulting from the “process- that for p> p;,s; OperatorA is no longerk contractive. Usu-
ing,” represented mathematically by operafor of the val-  ally, one is interested in the solution of the integral equation
ues thatf assumes over the entire system. We assert that thigither than in the stability of the simple iterative method.
condition is tantamount to a definition efructural equilib- Indeed, when this becomes unstable, the current attitude is to
rium for the system investigated. In order to ascertain theeduce, as far as possible, the region where the numerical
nature of this equilibrium state let us suppose to perturb theolution is unstable through the adoption of other numerical
equilibrium correlation functiori* (r) by an arbitrary pertur- techniques. For example, if af,s; OperatorA changes from
bation &(r). The nonequilibrium distributiorf(r)=f*(r) k contractive to nonexpansive the adoption of the modified
+8(r), is then “processed” by the operatdy, and to first iterative method Eq(3) suffices to find the solutiori* of
order in the perturbation it yields! 5(r), where the matrix EQ. (1) beyond p;,s; (though more refined methods may
M= (9A/df) |+ is the Floquet matrix acting on the pertur- achieve convergence more rapidlyrhe importance of the
bation vectorin numerical applications is represented by a stability threshold of the simple iterative method resides then
grid of N points, the functiorf is anN vector andA is an  in that it signals a fundamental change in the properties of
f-dependenN X N matrix). M 8 may be considered, in turn, operatorA which is related, as specified before, to the struc-
as a perturbation which, when processed by the system, givédral stability of the fluid. This indication is lost when more
origin to a new perturbatioM M 8, and so on. The succes- refined methods are adopted.
sive processings thus generatéiciitious dynamicsonsist- It may be useful to observe that, though the mappings
ing of repeated applications of the Floquet matrix to the ini-defined in Eqs(2) and (3) have the same fixed point equa-
tial perturbation. The nature of theructural equilibriumof  tion and thus the same fixed poifit, the range of stability
the system can be associated with this dynamics and with thef f* is different for the two operators. From the functional
resulting fate of the perturbation. It follows that the proper-analysis results recalled above it follows thafifis nonex-
ties of operatoA, on which the fictitious dynamics depends, pansive them, is k contractive(while, if A is k contrac-
are crucial as far as the structural stability of the fluid istive, Ay is @ fortiori k contractiv@. Thus, if f* is a stable
concerned. fixed point forA, then it is also a stable fixed point f8i,;y,
Generally, the operatdk depends on one or more param- but the opposite does not hold, namefl§, may be a stable
eters, and when these parameters are changed, one can psad point forA.,;, though being an unstable fixed point for
from regions in which the numerical procedure adopted toA. In the last casé* satisfies the equilibrium condition, but
solve Eq.(1) does converge and the methodskble to  the equilibrium state describedssructurally unstablén the
regions where the procedure does not converge and theense previously specified. Though we have considered in
method becomesnstable The stability threshold may de- detail only the modified iterative method, a similar effect can
pend on the particular iterative method employed, a featurbe expected when “forcing” convergence through more re-
which surely contributed to cast heavy shadows on the physfined techniques. The preceding point may be efficaciously
cal meaning of the numerical instability. In order to clarify illustrated with a simple example. Let us consider the well
the relationship between structural and numerical stabilityknown one-dimensional logistic map9], X,.1=F(X,)
we resort to a mathematical result which is fundamental for= ux,(1—Xx,), and the following “modified” logistic map,
our purposes. Banach'’s fixed-point theorgdj states that, x,.,=aF(x,)+(1—a)X,, where 06<a<1. The logistic
given an operatoA:S— S, whereSis a closed nonempty set map follows a period-doubling route to chaos. Its attracting
in a complete metric space with distandeif A is k con-  set evolves withu as follows: for 0<u <1 the map has a
tractive[i.e., if d(Ax,Ay)<kd(x,y) for all x,ye Sand fora point attractor,x;=0, which becomes unstable far=1;
fixed k with 0=<k< 1], thenA has exactly one fixed point in here the fixed point,= u— 1/u becomes stable and remains
S, i.e., Eq.(1) has one single solution, and the sequence obo until w=3 where a bifurcation gives origin to a periodic
successive approximations defined through Bj), which  attractor with period two. Through a series of successive
amounts to the simple iterative method, converges to theitchforklike bifurcations a chaotic attractor eventually ap-
solutionf* for an arbitrary choice of the initial poirit in S. pears. The “modified” logistic map shows a similar behav-
Under these conditions the above defined fictitious dynamior but bifurcations are shifted towards higher valuesuof
ics, and thus the structural equilibrium of the fluid, is stable.Upon focusing our attention on the point attractors, we note
On the other hand, iA is nonexpansivéi.e., the above de- that the two maps have the same fixed-point equation, and,
fined condition holds fok=1) the simple iterative method consequently, the same fixed poirisandx,. However, the
needs not converge while, according to a suitable generalimixing procedure alters their range of stability: in particular,
zation of Banach theorefseg[8]), the sequence of modified the stability ofx, is extended beyon@gi=3 up to u=pu,
successive approximations constructed through(Bgdoes  =(2+ a)/«, where the first bifurcation takes place.
converge to the fixed point of. A particularly well known application of integral equation
Let us now interpret, in the light of the preceding consid-theories in the statistical mechanics of fluids is gmalytic
erations, the behavior of the numerical solution of the intessolution of the PY equation for the hard-sphere fl@dl It is
gral equations for the fluid structure in the high-density re-a well-established resul6] that the three-dimensional hard-
gion. For simplicity, we suppose th#t depends on some sphere fluid undergoes a freezing transition fgr=0.49,
parametep (e.g., the particle number densityt is a well-  where = (7/6) po™ is the packing fraction in terms of the
known feature that successive approximations, i.e., théard-sphere diametar. On the other hand, the analytical
simple iterative method, converge to the fixed poffit  solution of the PY equation is well-behaved up 4e=1,
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where the pressure as calculated via both the virial and comknown) E(r), is close to the freezing point; for the fluid.
pressibility expressions diverges, and apparently shows nbhis can provide a constraint for approximationsfr).

trace of the crystallization of the fluid. On this basis it might ~Having substantiated the equivalence between the struc-
have been stated that the PY equation is unable to furnisiiral stability of the fluid and the numerical stability of Eq.
any hint on the phase behavior of the hard-sphere fluid(2), one might study how the last evolves with the density

However, one should consider that the analytical approackind eventually is lostthrough the standard method based
gives no information on the dynamical properties of the op-On the anglyss of the e|genyalues of the Floguet matrix. We
: . " applied this procedure for different closur@$NC, PY) and
eratorA relative to the PY equation, unless these are explicyqtentials(inverse-power potentials, Yukawa potential, gtc.
itly stud.|ed, e.g., throggh a Imear stability analysis. For in-and found, in agreement witf], that even for densities
volved integral equations this may be hardly feasible bymuch smaller than the stability threshgsg,s; some eigen-
analytical means. On the other hand, the numerical iterativ@alues of the Floquet matrix can assume values greater than
approach furnishes not only the solution of the equat@® 1 [13]. This can be explained by observing that when the
viously within numerical accuragybut, when implemented matrix is not normal then in general one cannot find a ortho-
through the simple iterative methoteveals itself as an in- hormal set of vectors, or even a pair of orthogonal eigenvec-
dicator of the structural stability of the systefwithin the  tors. In fact, theN nonorthonormal eigenvectors do not al-
accuracy of the closure adopieth the case considered here, Ways span  the N-dimensional ~vector space and,

the simple iterative method has an upper stability thresholgonsequently, the eigenvectors do not always form a com-
at 7. ~0.43. Calculations were performed using a grid OfpIete set. As a result, the existence of eigenvalues greater

B . . . : than 1 does not necessarily imply a divergence of the pertur-
N=1024 points with spacing of 0.62 however, 7inst IS pation upon repeated application of the matrix. Since the

rather insensitive to the mesh used and remains (_assentiz_ilghawsis of the eigenvalues of the Flogquet matrix is not use-
the same even for much less accurate calculations Wlthﬂ to predict the result of a repeated app”cation of the ma-
coarser grids. In analogy with the logistic map case considtrix, this deserves a direct investigation. Thus, starting from
ered above, when solving the PY equation through the modian arbitrary (we tried a wide variety of functional forms
fied iterative method, the stability threshold is shifted to-initial perturbationsy(r) of the fixed pointf*(r), repeated
wards higher values of;, the smaller the parameter the  applications ofM generate the successi¢@,}, where 5,
larger the shift observed. We note that the stability threshold®M 6y—1. This succession either converges to zero or di-
of the simple iterative method is an indicator of the transitionV€'9es, depending on whether the structural equilibrium of
of the system investigated from a regime where it is structhe fluid is stabl_e(l.e., for p<pisy) Or unstable(i.e., for_p
turally stable to a regime where it &ructurally unstable ~ — Pinst): réspectively. We note that the Floquet matidxis

while at the freezing point the fluid becomiermodynami- a functional of the solution of qu)! f*, and Fhus can be
cally unstable (or metastable with respect to the solid. Ccalculated also fop=pis by employing numerical methods

Hence,7;..; and 7; are expected to be close but need not beSPNVerging beyongins. In particular, within the PY ap-

identical. proximation for hard spherelsl can be obtained from the
It is interesting to compare the PY estimategf.; with corresponding analytic solution for any<1. As expected,

that provided, for the hard-sphere fluid, by other closias th_e _stability poundary thl_JS ide_ntified agrees very wed
which, however, only the numerical solution exjstsve  Within numerical uncertainly with the stability limit ob-
considered the HNC equation and two MHNC approacheéa'ned from the dynamic behavior of the simple |terat|ve
that employ approximate functional expressions for thgn€thod. The procedure based on the Floquet matrix has,
“bridge function” [10] [representing the sum of all elemen- NOWeVer, the obvious advantage that EL). can be solved
tary diagramsE(r)], specifically those proposed by Verlet USing @ numerical method that is both faster and less sensi-

: tive to the initial input as compared to the simple iterative
V) [11 d by Mart d SarkisaS) [12]. We ob- X . .
gai)ne[d 7];-an—0{13 a(; )L/lr:lovoagg 0a5r2|sf0r th)e[ P\]( H?\lg vy Mmethod. Moreover, it makes possible to define, as shown
inst— Y- M 1 Y ’ . ’ ’ ’

pelow, ameasureof the structural stability of the system.
The effect of repeated applications of the Floquet matrix
pn the initial perturbations, can be represented as follows:

and MS approximations, respectively. The HNC estimate o
Tinst IS Close to that provided by the PY equation, while the
two MHNC schemes give quite different results. Since, as fa
as thermodynamical and structural quantities are concerned, 15l n-1

the PY equation is, for hard spheres, more accurate than the =11 s, (5
HNC equation, while both MHNC approaches lead to im- 15l =0

provements with respect to P(dnd HNQ results, the above

. ) here
values of7;,s; do not reflect in general the relative accuracy
of the different closures for what concerns thermodynamical M & ()]
and structural quantities. In fact, these properties are related = BRI (6)

to E(r), whereas the stability properties of the numerical

solution depend odA/f |¢« and, consequently, on the func- and||f(r)||=[=N,f%(r;)] is the norm of a functiorf de-
tional derivativedE(r)/af(r). In approximate theories, an fined over a mesh dfl points. Assuming that the norm of the
expression foE(r) may lead to accurate structural and ther- perturbation depends exponentiallgs long as it remains
modynamical quantities while not improving, or even wors-infinitesima) on the number of iterations, i.el|d,(r)]
ening, the accuracy ofE(r)/af(r). It might be expected =|d&y(r)||2'", where is the Lyapunov exponent related to
that the structural stability thresho}d,s; (as defined aboye the perturbation dynamics, one can write the average expo-
for the MHNC integral equation, with the exa@but un-  nential stretching of initially nearby points as
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0.5

less efficacious damping of the perturbation, i.e., a decrease
of the stability of the fluid. The slope of the curve, initially
quite steep, decreases rapidly withso that the valuex
=0, corresponding to the loss of stability of the solution,
might appear attainable only for very large values »f
However, at a density., slightly smaller thany;,s;, the
curve exhibits a sudden increase of its steepness and, corre-
spondingly,\ goes rapidly to zero on approaching,s;.
Note, on the qualitative side, that this behavior does not de-
pend on the closure adopted. It thus appears evident that the
fluid undergoes,before the loss of structural stability, a
rather well-defined “transition” to a regime of rapidly dete-
riorating stability. The phenomenon is not a gradual one: in
fact, as can be better appreciated from the inset in Fig. 1, two
distinct branches, both linear but with different slope, meet at
FIG. 1. The Lyapunov exponent plotted as a function of the ,  This feature is independent of the density of points,
packing. fragtion for the hard-sphere ‘fluid, as est.imated thrqugh thevhich suggests that the derivatida/d 7 is discontinuous at
PY (solid circleg and HNC (open circles equations. The inset ,, 4t |east within the limits of numerical accuracy of the
shows a magnification of the sharp change of behavior in the regiof culation. From a dynamical point of view this behavior
aroundzc. reflects the approaching to the incipient instability and the
no1 growing influence of a new attracting Seto longer a point
1—[ 51) R attractoy. In principle this phenomenon may be reflected in
=0 ' physical properties other than those concerning the structural
stability of the fluid. While equilibrium properties do not
The actual number of iterations after whidhreaches its exhibit any anomalous behavior in correspondence with this
saturation value depends on the density, ranging from fewegion, it is well known that simulation results show a sen-
tens at low density to few hundreds near the instability pointsible variation of dynamical properties at high densities:
Though in principle the Lyapunov exponent depends on therystallization is preceded by a rapid, though gradual, fall of
initial perturbation 8y3(r), we found that wildly different the diffusion coefficient and by a much sharper rise of the
forms of the initial perturbation lead to essentially identicalshear viscosity. The nature of the structural stability limit
values of\. Consequently this quantity can provide a mea-and its relation to freezing deserves further study which may
sure of the stability of the solution, and thus of the structuralead to a physical definition of a stable fluid structure. Details
stability of the fluid. of the present analysis, and applications to various potentials
We calculated\ for the hard-sphere fluid within the PY and integral equations, as well as an extension to the inter-
and HNC approximations. As shown in Fig. 1, as the densitynediate density region in the presence of an attractive com-
increases\ becomes less and less negative, thus signaling ponent in the potential, will be presented elsewha/s.
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