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Effect of boundary conditions on fluctuations measures
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A change in boundary conditiond8C) from uniform Dirichlet to nonidentical BC on the edges of a
triangular billiard often brings about a dramatic change in quantum spectral fluctuations. We provide a theory
for this based on periodic orbits and show that nonidentical BC on adjacent edges can legdatatian
splitting of periodic orbit families, which results in a significant change in the form factor. Thus, the classical
spectrum alone cannot determine quantum correlations.
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Recent studie$l,2] on fluctuation measures in chaotic rather dramatic change in the quantum eigenstates. The
systems seem to indicate that the quantum correlations agggenfunctions, for example, often exhibit irregular nodal
fully determined by the classical spectrum of the Perronpatterns and a Gaussian amplitude distribufid6l, while
Frobenius operatof3]. Using different approaches, Agam, fluctuation measures display a behavi@rl7], that ranges
Altshuler, and Andreev(AAA) [1] and Bogomolny and from the integrablg¢7] to the chaotid18—20,7 limits.

Keating (BK) [2] show that the diagonal and off-diagonal  There are several interesting questions concerning quan-
parts of the density-density correlation are related to a pureljum fluctuations that polygonal billiards throw up. A point
classical quantity, which under some approximation reducethat has often been debated is the role of diffractive periodic
to the classical function[3]. orbits in determining spectral measufgg]. Admittedly, the

There are several fallouts of the AAA-BK theory. One quantum spectrum does know about these of@i?$ though
that has been scrutinized recently by Prafigk concerns its importance in determining spectral measures is possibly
possible deviations from random matrix theory results andegligible [23]. A related question concerns the effect of
the conditions under which this can be observed. Anotheboundary conditions on spectral fluctuations. To illustrate
consequencéand one that is of relevance hgiis the ab- this, we refer to Fig. 1 where the rigiditj\ s, is plotted as a
sence of parity effects in fluctuation measures. In othefunction of L for the right triangle(w/2, =/3, w/6) with (a)
words, the AAA-BK theory predicts that quantum systemsDirichlet boundary condition on all three edges afig
having the same classical dynamics exhibit identical quan-
tum correlations. There is, however, a tacit assumption in the 07 . . . .
BK approach which leads us to this conclusion: that degen-
erate periodic orbits with identical actions and stabilities also
have the same quantum phase. There can be instances, how-
ever, when this is not true. For example, arithmetic billiards P
abound in degenerate periodic orbits and exhibit Poisson e
fluctuations when the boundary conditions are Diricljfgt “
However, when the boundary conditions are not identically /a
Dirichlet, pairs of degenerate periodic orbits can have phases ® A
differing by , leading to a net decrease in the form factor 4 | ,9/"

[6].

The effect of boundary conditions can be even more sig- . ‘ o9
nificant in planar triangular billiards, and we shall deal with o S oo ®’
these henceforth. Of these, the ones that are integrable have 00— T
internal angles of the formr/n; and in all these cases, de- s S o S
generacies exist in the classical periodic orbit actions of to- s
pologically distinct orbits leading to nonuniversal spectral ,,;;’;'/*"
fluctuations[7,8]. Thus, the spectral rigidit§9], As(L), in- N
creases with a slope larger thah [10] in the regionL e
<L max, WhereL ., is determined by the frequency of slow- 0 9 4 ; 8 10
est oscillation in the quantum densjtyE) [11]. L

Generic rational triangles, on the other hand, have internal g5 1 As(L) for the (/2, /3, /6) triangle with(a) Dirichlet

angles of the formmm;/n;, Wherel'[iszlmﬁﬁl. These are poundary conditions on all edgés) and (b) Neumann boundary
referred to as pseudointegralgel) billiards [12—-14. Asin  conditions on the edges enclosing the right angle and Dirichlet on
integrable systems, their invariant surface in phase space {Re third (¢). The averaging interval ife,—Ae, €,+A€] with
two-dimensional but the topology is that of a sphere withe,=800 andA e=300. The straight line and the smooth curve are,
multiple holes and not a tor§&5]. This difference leads to a respectively, the Poissor_.{15) and GOE results.
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With this background, we are now ready to explore the
effect of BC on spectral measures. For two-point correlations
such asA;(L) and X,(L), the central object is the form
factor ¢(T)=J7 .. Ry(X)exp(xT/a)dx, where Ry(x) is the
two-point spectral correlation function[R,(x) ={p(E
+x)p(E))]. Expressed in terms of periodic orbitg,(T)
=(Z|Z;AA; cos§—S)AT—(Ti+T;)/2)) where Aj=Caq/
NS for margmally unstable billiardsS, =kl;— 7/4—n;r,

F2 T,= S /9E andC= \1/(3277).
It is customary to analyze the diagonal and off-diagonal
parts of(T) separately and we first show that for cdbg
the diagonal contribution ¢p(T)=(Z;A26(T—T;)) is
smaller as compared to ca&®. Let us assume that the fam-
ily labeled byi splits up quantum mechanically in cagg
into two parts, occupying areas; and a;, respectively
wherea;;+aj,=4a; . Its contribution to¢p(T) is thus pro-
portional toa? +a%, while in case(a), it is proportional to
a? +a’%+2a;,a,,. Further, since the two parts of the clas-
sical family have a different phase in cad®, there is an
1 off-diagonal (OD) contribution from within this classical
family. Its magnitude is proportional toa2;a;, cos@r) so
FIG. 2. Two periodic orbits~1 (thick line) andF2 belonging to  that the net decrease in contribution of a single classical fam-
the same classical famlly ||y is proportional to lailaiZ'
Note that the off-diagonal part of the form factor has cross
Neumann boundary condition on the edges enclosing thgontributions as well where parts of two distinct classical
right angle and Dirichlet BC on the third. One might arguefamilies are involved. When the classical dynamics is inte-
that the crossover is related to the fact that d@ges inte-  grable and no QS occurs, the OD contributions average to
grable while(b) is not[24]. We have thus verified that there zero in the absence afegeneraciemmongst periodic orbit
is indeed a shift with boundary conditions in genuineactions. Thus, the diagonal contribution equals the
pseudo-integrable enclosures such as th& @n/10,7/5) asymptotic value of¢(T), which equalsp,,/27. This
triangle. asymptotic law is referred to as the semiclassical sum rule
At first glance, it may seem that apart from an overall[11]. Even in the presence of QS, the semiclassical sum rule
phase factor, the contribution of each periodic orbit family isholds. Thus, cross terms involving parts of distinct classical
identical for the two cases of ther/2, w/3, w/6) triangle.  families do contribute in cas@). In summary then, the fol-
We shall demonstrate here that this is not the case. To thi@wing comparison between cas@s and (b) can be made
end, consider the family of periodic orbits shown in Fig. 2.when there ar@o degeneraciei the lengths of topologi-

Orbits F1 and F2 belong to the same familglassically  cally distinct periodic orbits. Fof<Ty, the form factor
though the quantum phase accumulated by these differ by equals

when edges 1 and 3 have Neumann boundary condifiees

refer to this as casé), while case(a) denotes Dirichlet BC

on all edge$ In other words, the family of periodic orbits ¢(T)= <C22 T O(T—=T; )> case(a), 2
split up in thequantum-mechanicaense in casé), while '

case(a) preserves the full classical family. The semiclassical 2

density of states, < 22 1ai( 2“' 1)} (T—Ti)> case (b),

1 oA
- = 3
p(E)=pa,(E)+ Va2 % 21 rrlp ()

while in both casesg(T)=p,,(E)/(27) as T—x. Here
xoos(krl m —~rn 77) (1) ;1= ;a, aj,=(1—a;)a; and Ty is the Heisenberg time.
Note that in an integrable enclosure, the ar@aare iden-
tical for almost all orbit families so that for cad@), a
for the two cases are thus distinct. In the abdwe,k? while  straightforward application of the proliferation law for peri-
a, refers to the area occupied by a primitive periodic orbitodic orbit families leads to the conclusion thaT) is con-
family characterized by their lengtly andthe numbern, of  stant and equalp,,(E)/27. For casgb), however, the fac-
reflections from Dirichlet edges€quation(1) has only the tor (2a;—1)? varies with the orbit and depending on the
leading order fluctuation in the density of states. It neglectsplitting mechanismg(T) may be explicity T dependent
the contribution of isolated periodic orbits and diffractive even in an “integrable” enclosurf25].
periodic orbits. Also note that orbits that occur in families In order to concretize these notions, let us take another
necessarily undergo an even number of reflections from thkok at the @r/2,7/3,7/6) enclosure of Fig. 1. For this inte-
edges so that the net phase in cémds zero. grable billiard, the length spectrum can be expressed in terms
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FIG. 3. Plot ofl(7) for the (7/2, 7/3, w/6) billiard. The curve FIG. 4. The chain and dotted curves are the exact values of

marked (integrable is for case(a), while (PI) represents cas@).  A,(L) for case(a) and(b), respectively. The diamonds and squares
Also shown are three lines with slopes 1.0, 0.85, and 0.45 markegre estimates obtained using periodic orbits for c@eand (b),
(0), (d), and(e), respectively. For averaging, see Fig. 1. respectively. For averaging, see Fig. 1.

of yvinding numbe.rs on tori and it is easy to ver!fy that _thgre The discussion so far holds for all polygonal billiards
e):rsiésdigeogrgir,zsr?:ccljsca'gég‘?héenn%:‘; Scjr;ﬂﬁollziggﬂyo\%?un%vhere adjacent edges enclosing an angle of the fefm
peri N ' . e . have nonidentica(NIl) boundary conditions. In such cases,
distinct lengthsl; instead of topologically distinct orbits.

) . periodic orbit families do not split up at this angbassi-
Correspondingly, the area; should now be interpreted as . : .
the total area occupied by all orbit families having length cally, though as demonstrated earlier, they can spliserpi

An immediat o nce is thatT) is no longer n classically For angles of the forrm;=/n; (m;>1), how-
ediate consequence is tha(T) is no longer a con- ever, orbit families do split up classically and traverse

stant for all T since the degree of degeneracy varies withdifferent . I .
- N paths, thereby reducing the extent of periodic orbit
length[8]. A plot of I(7) = 27/ pa, [ p(7')d7" with respect ¢, s Thys, different sets of boundary conditions only

to 7=T/(2mpy,) is provided in Fig. 3. For generic inte- g, in an overall phase factor for each family and hence do
grable systems without degeneracies in periodic orbit

lengths,| (7) =7, while in the present case, one observes a 07
nonlinear increase.
For case(b), the splitting mechanism needs to be incor-
porated and for this example, the ratio in which certain orbit
families split up has been arrived at by Shy@6)]. As be-
fore, the sum in Eq(3) now refers to distinct lengths while

the effective area;(2a;—1) (denoted bya;) is the sum of
all areas occupied by degenerate orbit familiesghted ap- )
propriately by the phase§husa;=2X(—1)"a,, wherea, o Lo’
is the area occupied by a family having lendgitrand which 4 | S
undergoes reflections from the Dirichlet edge. S

Once more, rather than the asymptotic proliferation rate .
of periodic orbit families, it is the variation &; with length A
[27] which determines the form factor. A plot &f7) for
case(b) (see Fig. 3 reveals a nonlinear increase having a Vi s
smaller overall slope and a form that is distinct from cage A
Thus, a change in BC from uniform Dirichlet to nonuniform
BC leads to a significant change in the form factor. This 4
difference indeed shows up in the spectral rigidity(L). In 0
Fig. 4, we compare the predictions of periodic orbit theory 0 2 4 6 8 10
with the exact(numerica) values ofA3 in the range 4&L
<10[28] for caseda) and(b). While the agreement for case  FIG. 5. Rigidity for the irrational trianglém/2, =//9.1). Case
(a) is excellent, the predictions of periodic orbit theory cap-(a) exhibits Poisson fluctuations® ), while case(b) shows GOE
ture the overall behavior in cagb). fluctuations(+) when e,=500 andA e= 150.
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not significantly affect spectral measures. In exceptionathe other hand, when the lifting of degeneracies is accompa-
cases, however, the effect of boundary conditions can baied by a difference in phase between tspdit families[case
significant. This can be observed when the angle is of thgb)], the change is significant and leads to GOE-like fluctua-
form m;zr/n; (m;>1) but close to arnintegrablewedge. As tions for the energy range consider&9].

an example, consider the rigidit3(L) for the irrational In summary, we have demonstrated that a change from
triangle (7/2, w/+/9.1), which is close to the integrabler/2,  uniform Dirichlet to nonidentical boundary conditions on the
7/3) enclosuregFig. 5). Case(a) clearly exhibits fluctuations edges of triangular billiard can lead to significant changes in
close to Poisson, while cagb) shows typical GOE fluctua- fluctuation measures. This can be observed when the angle
tions for the energy range considered. Note that the trianglenclosed by the edges with NI boundary conditions is of the
has infinite genus though over short time scéless than the  form =/n or sufficiently close to iff{30]. The mechanism
Heisenberg timethe dynamics hovers around its integrable involved isquantum splittingdue to which adjacent families
counterpart, while even after 1@eflections from the bound- having (almosi identical lengths acquire different phases,
ary, parts of the constant energy surface remain unexplore¢eading to a significant drop in contribution from both the
The twononintegrableacute angles, however, serve to split diagonal and off-diagonal terms in the form factor. In par-
up periodic orbit families though the lengths of the resultingticular, we have shown that it is possible to explain the spec-
families remain close to that of the original family in the tral fluctuations of the(w/2, /3, =/6) triangle when the
integrable enclosure. This subtle reorganization of periodiboundary conditions are not identically Dirichlet using peri-
orbit families leads to Poisson fluctuations in cége since  odic orbit theory. We conclude by noting that there exist
the degeneracies in orbit actions which exist for thé2,  quantum systems whose density correlations cannot be deter-
w/3) triangle get lifted in the(7/2, 7//9.1) enclosure. On mined fully by the classical spectrum.
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