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Helicity transfer in turbulent models
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Helicity transfer in a shell model of turbulence is investigated. We show that a Reynolds-independent
helicity flux is present in the model when the large scale forcing breaks inversion symmetry. The equivalent in
shell models of the “2/15 law,” obtained from helicity conservation in Navier-Stokes equations, is derived and
tested. The odd part of the helicity flux statistics is found to be dominated by a few very intense events. In a
particular model, we calculate analytically leading and subleading contributions to the scaling of triple velocity
correlation.[S1063-651X98)50603-4

PACS numbes): 47.27.Gs, 47.27.Jv

One of the most intriguing problems in three-dimensionalof 3D Navier-Stokes equatiorj$—8], to determine leading
(3D) fully developed turbulencéFDT) is related to the ap- or subleading scaling properties of correlation functions in
pearance of anomalous scaling laws at high Reynolds nunmhe inertial range. Recentf,9], an exact scaling equation
bers, i.e., in the limit when Navier-Stokes dynamics is domi-for the third-order velocity correlations entering into the he-
nated by the nonlinear interactions. licity flux definition has been derived using two hypotheses:

The celebrated 1941 Kolmogorov thediy41) was able (i) there exists a nonvanishing helicity flux, atid the flux
to capture the main phenomenological ideas by performinggecomes Reynolds independent in the limit of FDT. This
dimensional analysis based on the energy transfer mechgelation predicts arr? scaling for a particular third-order
nism. Kolmogorov postulated that the energy cascade shoulgelocity correlation. The new relation has been called the
follow a self-similar and homogeneous process entirely de«2/15 law” because of the coefficient appearing in front of
pendent on the energy transfer rate,This idea, plus the ther? in analogy with the “4/5 law” derived by Kolmog-
assumption of local isotropy and universality at small scalesgrov for the third-order structure functions entering into the
led to a precise prediction of the statistical properties of theexpression of energy flux. In the 4/5 law, the scaling of a
increments of turbulent velocity fieldsév()~|v(x+1) different third-order velocity correlation is found to be linear
—v(x)|~[le(1)]*3. The scaling of moments afv(l), the inr.
structure functions, can be determined in terms of the statis- This simple fact tells us that a different velocity correla-
tics of (1), i.e., tion with the same physical dimension but with different

tensorial structure may have very different scaling properties.
Sp(N=([6v(NTP)=Cp([e()]P)IPE, @) Moreover, even if overwhelming evidence indicates that the

whereC, are constants and the scalés supposed to be in main physics ?S driven_ by th_e energy_trgnsfejr, ther_e can be
the inertpial range, i.e., much smaller than the integral scal§°Me subleading new intermittent statistics hidden in the he-

and much larger than the viscous dissipation cutoff. If icity flux properties. . .
Sp(l)ng(p) and(eP(1))~17®, then Homogeneous qnd |sotrop|c_turbulence always has, by
definition, a vanishing mean helical flux. Nevertheless, both
L(p)=pl3+ (p/3). (2) fluctuations about the zero mean in isotropic cases and/or net
nonzero fluxes in cases where inversion symmetry is explic-
In the K41 thee(l) statistic is assumed to Heindepen- itly broken can be of some interest in the understanding of
dent, or 7(p)=0, implying {(p)= p/3,Vp. On the other fully developed turbulence. In this paper, we analyze the
hand, there are many experimental and numerical resultselical transfer mechanism in dynamical models of turbu-
[1,2] telling us that the K41 scenario for homogeneous andence[10,8,11, built so as to explicitly consider helicity con-
isotropic turbulence is quantitatively wrong. Strong intermit- servation in the inviscid limit. We give strong numerical evi-
tent bursts in the energy transfer have been observed amténce that a Reynolds-independent helicity flux is present in
nontrivial 7(p) set of exponents are measured. Moreover, theases where the forcing mechanism explicitly breaks inver-
problem of investigating scaling properties of observablesion symmetry. We confirm that in all cases where two
with the same physical dimensions but with different tensofluxes can coexist in the inertial range, velocity correlations
rial structures has only recently been addregSed. with the same physical dimension but with different transfor-
Many different authors have focused their attention on thenation properties under inversion symmetry can show
possible role played by helicity, the second global invariantstrongly different scaling behavior.
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In the following, we briefly summarize the main motiva- d ) y 5
tion behind the introduction of shell models for turbulence. gt ign H;=kn((uuu))— anign Hi+Hi,, ()
We present the equivalent derivation of the 2/15 law for the ’ ’
helicity flux in our shell model language and we conclude, ook, andH; are the energy and helicity of theth shell,
with our numerical results about the Reynolds 'ndependenc%spectively: E=(|u [2+]u 12, Hi=k(u']2=|u|?).
of helicity flux and about its statistical intermittent proper- E. andH,, arelthe elnergy r;md heliclity irlwpult due té foreing
tes. Leffects, Ej=Re((u)* +1(up)*)), Hin=Rel(f"

Shell models have been shown to be very useful for the - .
understanding of many properties connected to turbulerﬁul)*__]c (ul)*>_)' In Egs.(6) and(7) we have introduced
the triple correlation

flows [12—18. The most popular shell model, the Gledzer-
Ohkitani-YamadaGOY) model ([12—-18), has been shown Ev A+ _ . _
to predict scaling properties f@i(p) (for a suitable choice of ((Uuwn)=(Ansa+Ang) +(bg+t 12 (Aq +4,)

the free parametersimilar to that which is found experi- AX[(TF T )+ (b +1/2(T +T )],
mentally. The GOY model can be seen as a severe truncation

of the Navier-Stokes equations: it retains only one complex (8
modeu,, as a representative of all Fourier modes in the shell H N B N B

of wave numberk betweenk,=k,2" andk,. ;. ((Uuw))y=(An 1= Ap, )+ (bs+ 14 (A; —Ay)

It has been pointed out that GOY model conserves in the + - +_ -
inviscid, unforced limit two quadratic quantities. The first T = Toe) + (b # VAT =T0)],
guantity is theenergy while the second is the equivalent of 9)
helicity in 3D turbulenceg17]. In two recent work$8,11] the
GOY model has been generalized in terms of shell variableand
u, ,u, , transporting positive and negative helicity, respec- y - + -y
tively. It is easy to understand that only four independent An =(IM(Ups2Up Un-)), Ty =(IM(Up pUn 1Up )>('10)
classes of models can be derived that preserve the same he-
lical structure of Navier-Stokes equatidng. All these mod-  assyming that there exists a stationary state, we have
els have at least one inviscid invariant nonpositively deflneqd/dt) ME=(d/dt)IT"=0, where TIE=k <(uuu)E> and
that is similar to the 3D Navier-Stokes helicity. In the fol- HH:k2<Euuu)H> Moreover in the innertinal rang:: we can
lowing, we will focus on the intermittent properties of a mix- nenglecrt] the visnco.us contribuiion in Ed6) and(7), obtaining
ture of two such models. The mixture is a linear combination '
of the old GOY model(extended to includes™,u™) plus UuwE =k 1E uuu™ = k= 2H. 11
another model that has a different helical interaction and has ((uuwn)=ky Ein, - ((UUWR) =Ky Hin . (11

already been extensively investigafdd,19. We focus only  sypposing that there exist the energy and helicity fluxes
on two of the four possible models because they are the onlg, — ¢ H. =h (the latter different from zero only if ©

two classes of models which show a clear forward energy.-{-) and supposing that both are Reynolds independent, we
cascadgsee[11] for more details The time evolution for  paye in the inertial range
positive-helicity shells reads 1]
((uuwE~kt, ((uuwh~k; 2. (12)
Up =iKn(An[U,U]+XBo[U,U])* = wKiun + 8,0 5, (3)
Relation (11) is the equivalent of that found for helical

Navier-Stokes turbulence i#,9]).
o } ) ) Figure 1 reports results for the helicity flux in numerical
versed, foru . In Eq. (3), x defines the relative weights of gjmjations done with two different Reynolds numbers, Re

trle two models in the mixture/,_is the molecular viscosity, ~10°, Re~10 for a choice of mixture parameter=0.1 and
f*,f are the large scale forcing, amju,u] andB[u,u]  4qgitional numerical input as followsN=16 and 26,
refer to the nonlinear terms of the two models. Namely,  _ 1575 3nd 2x10°9. A nonzero helical flux was obtained
. . L using a forcing-term-breaking inversion symmetfy:=5
An[U,U]=Up, Uy 1 +D3Un U 1+ CULaUn 2, (4 x1073(1+i), f~=1*/10. Time marching was obtained by
using a slaved Adams-Bashforth algorithm for a number of
Bulu,ul=u, U, +bsu, .U, +cou,_,ul_,. (5  iterations equal to several thousands of the typical eddy turn-
over time. A clear inertial range with a nonvanishing helicity
It is easy to verify that for the choicBs=—5/12, c5= flux i_s detected. The extension of the range where helicity
—1/24,b,=—1/4, c,= — 1/8 there are only two global in- flux is roughly constant _scqles with the Reynolds numt_)er.
viscid invariants[11]: the energy,EinN:l(|ui+|2+ lu”|?), Moreover, the flux |n.te.nS|ty is rpughly_ constant at changing
and heIicity,HinN_lki(|ui+|2—|ui’|2). Reynplds number, giving the first evidence tha'\t'the model
The equations for the fluxes throughout shell number can simultaneously support both energy and helicity transfers
are and that both of them are Reynolds md_ependent.
Let us remark that this is only possible due to the non-
positiveness of helicity; in 2D turbulence, for example, simi-
i E—k <(UUU)E>_Vk2 E E.+E (6) lar results, concerning enstrophy and energy cascades, is
dt &, ' " n e T clearly a priori forbidden.

with the equivalent equations, but with all helicity signs re-
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Note that helicity flux fluctuations are much larger than
aoots | the average helicity flux. This clearly distinguishes the helic-
ity transfer mechanism from the energy transfer mechanism.
In the former, the strong intermittent behavior shown by odd
moments tells us that the odd part of the statistics is domi-
nated by a few very singular structures. In the case of no
mixture (x=0), one can also exactly calculate subleading
scaling for the triple correlatios, =kn(A; +A.), &, =k2

(A7 —A;). Indeed, from expressiof8) one obtains, after
some simple algebra,

0.0005 -
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wherey= —2(bs+1/2) andz=—4(bs+1/4). Since botty
FIG. 1. Helicity-flux [k3((uuu)™] vs Ig(k,/ko) for N=16, »  and z have a modulus of less then one, we recover the
=10 ° (dashed ling and N=26, »=2x10"° (continuous ling  asymptotic scaling12) and one can also control subleading
Inertial ranges coincide with the regions where the fluxes are congorrection to it:
stants. Helicity is expressed in dimensionless units.

_yn+l _Zn+l
As for the statistics of helicity transfer, we measured the ArT:kn_l( oy +ky % 2h 1—7 )
scaling exponents of the moments of energy and helicity
fluxes: and
SP=([(uuuEPRY~k P (13 L 1yt g
A, =k, | e—=——]—k,“| 2h—————
1-y 1-z
SP=([(uu 1P~k P (14

In conclusion, we have studied a helical shell model for

As one can see in Fig. 2, we have that the even parts of thérbulence with a forcing that explicitly breaks inversion
two statistics coincide, i.e.{(2p)=¢(2p). On the other Symmetry at large scales. For a symmetric forcing the helic-
hand, the scaling exponents of odd moments are different. ity flux is zero, while with the choice of forcing adopted in
The difference in odd moments is the signature of strongur numerical simulation the value of the helicity flux is an
cancellation effects in the statistics connecting fluctuations a@rder of magnitude less than the value of the energy flux. We
different scales. The picture we have in mind is that the maifiave verified that a Reynolds-independent helicity flux is
effect driving turbulent fluctuations is due to the energy casestablished in the system, giving evidence of very different
cade process, with its intermittent fluctuations measured bgcaling for triple correlations entering into the energy flux
the ¢(p) exponents. Superimposed on the energy transfe@nd helicity flux definitions. Contrary to other shell moo_lels,
there are “topological” fluctuations introduced by the asym- Such as the GOY modg17], helicity flux and energy flux in

metric forcing and measured by the odd part of the helicityour model are not correlated; therefore, one can have cases
turbulent transfer. where the importance of the two fluxes may be very differ-

ent. The odd part of the helicity flux statistics is found to be
30 , , , , strongly intermittent.

For a particular class of models we can also calculate
explicitly subleading corrections to pure scaling behavior of
typical triple correlation functions. The existence of sublead-
ing terms explicitly tell us that scaling laws in turbulent
flows must be studied in correlation functions that have a

pure projection, i.e., which fell energy or helicity flux only,

I - on the relevant physical quantities. There is no reason why
= similar effects should not be present also in true Navier-
10} - ] Stokes equations. For example, spurious intermittent correc-
tions can be detected in cases where isotropy is globally or
locally violated(as in boundary layeys
= We may summarize our findings as follows. General ve-
oo , , , , locity correlation functions can serve to probe both the en-
0.0 20 40 6.0 80 10.0 ergy and helicity flux mechanisms, leading to the prediction

P that the typical behavior will be given by a superposition of

FIG. 2. Anomalous exponents for the helicity fly, (circles power laws, the leading one connected to the energy flux, the
and for the energy flux, (squarey obtained forN=26 andv  subleading one connected to the helicity flux. Depending on
=2x10"°. the relative weights of the two fluxes, the subleading power

© W(p)
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laws may or may not have a detectable effect. For a subset af new scaling regime connected only to the physics of the
all possible correlation functions, the class of functions thatelicity transfer.

depends only on the helicity flux, the leading term connected This work was partially supported by the INF{Rrogetto
to the energy transfer is absent and therefore one may detedit Ricerca Avanzata: TURBD
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