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Spatially localized unstable periodic orbits of a high-dimensional chaotic system
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Using an innovative damped-Newton method, we report the calculation and analysis of many distinct
unstable periodic orbitdJPOS9 for a high-fractal-dimension¥=8.8) extensively chaotic solution of a partial
differential equation. A majority of the UPOs turn out to be spatially localized in that time dependence occurs
only on portions of the spatial domain. With a escape-time weighting of 127 UPOs, the attractor’s fractal
dimension can be estimated with a relative error of 2%. Statistical errors are found to decreade as the
numberN of known UPOs increasefS1063-651X98)50703-9

PACS numbe(s): 05.45+b, 05.70.Ln, 47.27.Cn, 82.40.Bj

Over the last ten years, there has been a blossoming tikely aid the development of high-dimensional spatiotempo-
research concerning the set of unstable periodic orbitsal control algorithms by suggesting the number and location
(UPOs9 associated with a chaotic attractor in phase spaceaf control points for a particular UPO and for a particular
Researchers have shown that knowledge of the short-pericystem parameter that is varied.

UPOs can often be used to estimate dynamical invariants of In this Rapid Commuication, we take a significant step
a chaotic attractor such as its fractal dimension andowards understanding the relation of the set of UPOs to
Lyapunov exponentgl] and to improve forecasting of time high-dimensional spatiotemporal chaos by reporting the cal-
series generated by the attrac{@]. In some cases, the culation and analysis of mar(pver 100 distinct UPOs for a
shorter-period UPOs can be extracted from time series anigh-fractal-dimension @=8.8) driven-dissipative partial
these can then be used to characterize experimental chadéferential equation(PDE) [9]. This calculation represents
[3]. For engineering applications in which chaos is undesirthree advances. One is numerical, that a simple modification
able, researchers have discovered algorithms that can convéft a Newton algorithm by the addition of dampirid0]
chaotic to periodic behavior by stabilizing a given UPOQ greatly increases the likelihood of convergence and so makes
through weak parameter modulatiofg. practical the computation of many UPOs. The second

These many achievements are based on mathematical s&shievement is several discoveries in nonequilibrium phys-
sumptions that restrict their applicability to low-dimensionalics, €.g., that most of the UPOs turn out to be spatially lo-
systems. Theory that expresses the natural measure of &alized as discussed below and that about 100 UPOs are
attractor in terms of the set of UPOs requires the assumptio@lready sufficient to estimate the fractal dimension of a high-
of hyperbolicity[5], which fails for most dynamical systems dimensional chaos to two significant digits. The third
because of tangencies of stable and unstable manifalds achievement is an empirical discovery, that a weighting of
and because of unstable dimension variab[l&} The pow- UPOs based on escape times can approximate several statis-
erful cycle expansion method that expresses averages tital averages accurately. These results suggest that a statis-
terms of a moderate number of UP{1g is practical only if  tical theory of high-dimensional attractors in terms of UPOs
a symbolic dynamicgunique labeling of each UP(QL]) is  might be possible even in the absence of hyperbolicity or of
explicitly known and it is widely believed that most dynami- @ symbolic dynamics.
cal systems lack a symbolic dynamics. Even if a system is Our calculations were carried out for one of the simplest
hyperbolic and has an explicit symbolic dynamics, it is stillmodels of spatiotemporal chaos, the one-dimensional
nontrivial to calculate a relatively complete set of UPOsKuramoto-SivashinskyKS) equation[11]
from specified equations or from measured time series to
apply a cycle expansion. In the absence of hyperbolicity and du=—dzu—dgu—udu, xe[O0L], (1)
of a symbolic dynamics, it is not known how to weight a
given set of UPOs so as to approximate a given statisticavhere the fieldu(t,x) exists on an interval of length and
average in a high-dimensional regime. satisfies rigid boundary conditions=d,u=0. For system

A consequence of these restrictions is that extremely littlssizesL =50, Manneville has shown that typical initial con-
is known about the relation of UPOs to high-dimensionalditions evolve towards a chaotic attractor that is extensive in
chaotic attractors such as those associated with large d@hat the Lyapunov fractal dimensioD increases linearly
strongly driven nonequilibrium systenig,8]. An improved  with L [11]. In our calculations, we chose a fixed length
understanding of the spatial structure of UPOs, of the distriL =50 and spatial resolutiorAx=0.5 for which the
bution of their periodsT, and of their stabilities will also Lyapunov fractal dimension wal® =8.8 and there were 4

positive, 1 zero, and 94 negative Lyapunov expongh#.
The system sizé =50 was just large enough to be in the
*Also at Center for Nonlinear and Complex Systems, Duke Uni-extensively chaotic regime and yet small enough that the
versity, Durham, NC 27708. numerical calculations were manageable with available re-
TElectronic address: zoldi@phy.duke.edu sources and algorithms.
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The problem of calculating UPOs of E(l) can be posed B

as a set of nonlinear equations which specify that an orbit A

U(t) starting at a certain point, in the numerical phase | y

space will close on itself after a peridd[13]. By introduc- ‘ /

ing a single vector of unknown$=(T,U,), these nonlinear " |

equations can be written abstractly @&s F(X)=U(T)—U, \

where the specific form of the vector functi&iix) will de-

pend on how Eq(1) is discretized(we used second-order

finite differences to approximate the spatial derivatives on a |

uniform mesh with spacing\x). A standard way to solve _

these nonlinear equations is then a Newton mefi&iid,

in which a current estimat¥ of the unknowns is improved

by adding a correction 6X=—J"}X)F(X), where

J=0dF/dX is the Jacobian matrix. The iteratiofk— X+ 6X

is repeated until the magnitudes of the correctjoX|| and

of the residual|F(X)| are sufficiently smal[14]. -
For high-dimensional Newton methods, it is essential to |

have a good starting guess since Newton methods are guar '

anteed to converge only locally and often diverge for initial

values that are not close to a solution. We failed to find good | '

I
|

initial guessesXy=(Ty,Up) by searching for approximate
recurrenceg2,3] of chaotic time seried);=U(iAt) in the
99-dimensional numerical phase space of Bj. For ex-
ample, forL=50, no approximate recurrences were found FIG. 1. Density plots of three representative URQsx) of Eq.
for a large integration time of £&time units within a ball of (1) in a spatial domain of length=50. The horizontal axis is space
rather large radius O.ZHU(T+t)—U(t)||OO<O.1 [15]. and the vertical axis spans a time interval of 35 time urids A
Since no approximate recurrence was close to a UPO dfPO of period T=9.9 with dynamics localized near the right
Eq. (1), we then tried to choose an initial gueXg by as- boundary;(b) a UPO of periodl =10.7 with dynamics localized in

signing a positive random numbér for the period and the interior of the interval;(c) a nonlocglized UPO of period
choosing an initial vectod, from a point on the numerically T=23.4. The greyscales represent amplitude variations between 3

calculated chaotic attractor. This also failed to converge un@d =3

lessdampingwas introduced10], in which only a fraction

a e (0,1] of a Newton correction was added to update the

unknowns X+ X+ a6X. Damping is a widely used strategy

in many numerical problems, in which convergence of athroughout the domain, which holds also for the other 124

Newton method is improved by solving a related sequence df/POs. Figures @) and Zd) indicate more clearly the local-

one-dimensional minimization probleni%0]. Using a par- ization of the dynamics, which is evidently uncorrelated with

ticular damping algorithm known as the Armijo rJl&0], we  the mean pattern. The variance decreases three to five orders

obtained convergendé4] for 5% of all initial guesses tried. of magnitude outside the regions of substantial variation.

A deeper insight into what determines this success rate is Using the explicit knowledge of the space-time evolution

unlikely at this time, since it would require an understandingof our computed 127 distinct UPOs E({), we explored to

of the basins of attraction associated with the high-what extent important quantities such as a mean spatial pat-

dimensional Newton map of the discretized KS equation. tern and a fractal dimension can be approximated in terms of
We now discuss the properties of the UPOs calculated/POs. Time-averaged patterns of spatiotemporal chaos have

with the above numerical methods. Using the dampedbeen recently found experimentally and are not yet under-

Newton method discussed above, 262 UPOs were found ogtood[17]. If the dynamics was hyperbolic and ergodic, and

of 5000 initial guesseX,=(Ty,Uy) of which 127 UPOs if the UPOs could be ordered by symbolic length, then a

were distinct[16]. UPOs with periods shorter than 8 were trace formula could be used to approximate avergdgs

not found while the Armijo-Newton algorithm failed to con- Empirically, no such ordering could be found rendering the

verge for UPOs with periods larger than 42. As shown qualitrace formula inapplicablésee below

tatively in Fig. 1 and more quantitatively in Fig. 2, a surpris- Because of our inability to order UPOs by symbolic

ing feature of the calculated UPOs is that a majority islength, we developed an escape-time weightirgl/(= ;\)

spatially localized in that the time variation is substantialfor the contribution of each UPO in an average, based on the

only in isolated portions of the domain. The spatially local-local instability = ;N of a UPO, given by the sum over all

ized dynamics of these UPOs suggests a mechanism lkgositive transverse Lyapunov exponenis=log(im|)/T,

which a large chaotic system becomes extensive, acting asherem is a Floquet multiplier of a UPO of periodl. The

statistically independent subsystef8$ The majority of the  number of positive Lyapunov exponents for each UPO var-

UPOs are not flip-symmetric but occur in pairs that preservéed between 3 and 8 and the largest Lyapunov exponent of

the inversion symmetry of the attractor. The correspondinghe UPOs varied between 0.02 and 0.34. The escape-time

mean and variance patterfi5] are given in Figs. @—-2(f).  weightingw reflects the fraction of time that a chaotic orbit

In Figs. 2a), 2(c), and Ze), the mean pattern is nonzero spends in the vicinity of a particular UPO. Using this new-

o
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1'0 2'0 3'0 4'0 1'0 2'0 3'0 4'0 variancev (x) below 0.03 vs periodT of 127 distinct UPOs calcu-
X X lated for the KS equatiofEqg. (1)] in an extensively chaotic regime
with system size.=50. (b) Degree of instability as measured by
FIG. 2. Time-averaged mean pattemgx)=(u(t,x)) and vari-  the sumX_,\ of positive transverse Lyapunov exponents vs the
ance patterne(x)=<(u(t,x)—m(x))2> for the three representative periodT for all 127 UPOs.
UPOs of Fig. 1.(a) and(b): for the UPO with dynamics localized

near a boundaryc) and(d): For the UPO with dynamics localized . . . .
away from boundariege) and (f): For the extended UPQig) and 1S & trend with smaller period UPOs being more unstable.

(h): Mean and variance patterisolid lineg averaged over all 127~ The same instability versus period trend does not hold in
distinct UPOs using the escape-time weighting. For comparison, théhe classic low-dimensional Lorenz equations for which we
dashed lines give the corresponding mean and variance patterh@ve used the same damped-Newton method to calculate
obtained from an integration of a chaotic solution ovef tithe  over 700 UPOs associated with the chaotic attractor. We
units. speculate that the decay in instability of UPOs versus period
for the KS equationFig. 3(b)] is due to the fact that we are
weighting and averaging over tie= 127 time-averaged pat- not able to compute the most unstable high-period UPOs.
terns of each individual UPQi(t,x) with period T; we  Fyrther, without the assumption of a symbolic dynamics and
found rather good agreemefsiolid curve in Fig. 2g)] with  sing the above escape-time weighting in the Lorenz equa-
the mean patterm(x) =(u(t,x)) obtained by a direct aver- {jong we were able to estimate the fractal dimension to an
age of the chaotic field(t,x) over 16 time units[dashed accuracy close to that obtained by a cycle expansion, giving
curve in Fig. Zg)]. The relative error in the infinity norm further verification of the escape-time weighting.
between the two averages is 24%, and is substan.tially better Using the data in Fig.®), the fractal dimensiol of the
near the boundaries. The trace formula average without SYMhaotic attractor was estimated as follows. First, a fractal

bolic ordering of UPOs is unable to reproduce even th\egimension was associated with each UPO by expressing the

ualitative features of the mean pattern. An escape-time a . :
d P P Kaplan-Yorke formula[ll] in terms of its transverse

erage of the 127 variance patteffsolid line in Fig. Zh)] L ) tound di X g 6
does not agree as well with the variance pattée relative ~ -YaPUnov exponents; we found dimensions ranging from
to 12 for the 127 UPOs. An escape-time weighting of the

error is 46% but there is still a qualitative similarity. i : '

Figure 3 shows how the extent of localization and in-127 dimensions then gave an estiméxe:9.0=0.1 for the
stability depends on the peridd The degree of localization fractal dimension of the attractor, a relative error of 2%
was defined as the fraction of the interf@|L] for which the ~ compared to the Lyapunov fractal dimensibr=8.8+0.1
variancev(x) was smaller than 0.0%he results were not calculated directly from the Lyapunov exponents of the spa-
sensitive to the choice of this cutpffFigure 3a) shows the tiotemporal chaotic solution of Eq1) [11]. The conver-
localization versus the periofl for all 127 UPOs. Although gence of the escape time estimate to the Lyapunov dimen-
there is scatter in the points, we see that shorter periodion is statistical in that the error decreases approximately as
UPOs tend to be more strongly localized, that there can b&/\/N, whereN is the number of UPOs contributing to the
many UPOs of approximately the same perisdy T=14),  weighted sum. Other previously published weightings of the
and that the UPOs can vary substantially in their locali-UPOs were tried2,5] but were found not to give results as
zation. In Fig. 8b), we summarize the instability of all accurate as our escape-time weighting, with relative errors
127 UPOs as a function of their periddand find that there larger than 10%.
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In conclusion, we have used a damped-Newton algorithn8.8+0.1. The UPOs are typically localized in space which
to calculate many UPOs associated with a high-fractalsuggests a new way to think about the dynamically indepen-
dimension chaotic solution of a PDE in a large spatial do-dent subsystems associated with extensive chaos. The local-
main, Eq.(1). An important numerical insight was the use of ization also.has important.impliqati_ons for the control of
damping to increase the likelihood of convergence of an othl@rg€ chaotic systems using distributed sets of control
erwise straightforward Newton method. Damping was espePOints:[4]

cially important, since no close recurrences could be found \ye thank L. Bunimovich, S. Newhouse, and M. Strain for

even overT=10" time units. The 127 distinct UPOs found yseful discussions. This work was supported by the Compu-
were also used to predict successfully the qualitative featuregtional Science Fellowship Program of the Office of Scien-
of the time-averaged mean pattern and the variance of thgfic Computing in the Department of Energy, by NSF Grant

chaotic attractor. We could estimate the fractal dimension ofNos. NSF-DMS-93-07893 and NSF-CDA-92123483-04, and
the attractor to be 9:00.1 compared to the actual value of by DOE Grant No. DOE-DE-FG05-94ER25214.
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