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Directed percolation universality in asynchronous evolution of spatiotemporal intermittency
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We present strong evidence that a coupled-map-lattice model for spatiotemporal intermittency belongs to the
universality class of directed percolation when the updating rulesasyachronousi.e., when only one
randomly chosen site is evolved at each time step. In contrast, when the system is subjected to parallel
updating, available numerical evidence suggest that it does not belong to this universality class and that it is not
even universal. We argue that in the absence of periodic external forcing, the asynchronous rule is the more
physical.[S1063-651X98)50303-0

PACS numbsgs): 05.45+b, 05.70.Jk, 47.27.Cn, 64.60.Ak

The onset of spatiotemporal intermittency is a commortivated when the system dynamics is driven by a global pe-
phenomenon of many extended systems ranging from modiodic external forcgor “clock” ). Recently it was observed
els based on coupled-map lattidgds-3] to various experi- that the critical properties of a standard CML, using coupled
ments in convectiori4,5] and in the “printers instability”  logistic maps, actually depend on whether synchronous or
[6,7]. A particular elegant coupled-map latti@ML) show- ~ asynchronous updating is appli€t2]. Here, asynchronous
ing spatiotemporal intermittency was introduced some year§1eans that in each step a random site on the CML is chosen
ago by Chateand Manneville[1,2]. This CML employs in- and is iterated forward.
dividual maps that can be in two very different states: either This result forces us to reconsider the evidence for non-
in a Chaotic(or “turbu|ent”) state or in a “laminar’ state. universal behavior for STI, which is all based on the syn-
For a single map the laminar state is “absorbing”: once thechronous updating rule. In this Rapid Communication, we
motion is in the laminar state it cannot escape. For thdhus apply the asynchronous updating to the coupled-map
coupled system, one observes interesting dynamical patterf@itice of spatiotemporal intermittency discussed above. We
of turbulent patches penetrating into a laminar state, and bdind that all critical exponents, independent of the choice of
cause of the strong fluctuations, this has been céllgdpa- parameters, fall into the universality class of directed perco-
tiotempora| intermittencYSTD_ Once the system isin a pure lation. All critical characteristics of DP, such as hyperscal-
laminar state, it cannot escape: this is an absorbing state 819, seem to be fuffilled, leading to independent controls of
the full spatially coupled system. These properties of the STthe values of the critical exponents.
led Pomeayig] to conjecture that the critical properties atthe ~ The original dynamics of the coupled-map lattice of Chate
onset of STI should be governed by the exponents of diand Manneville[1] for a lattice with one space- and one
rected percolation. The turbulent spots of the dynamics in dme-direction is written in terms of a fieldi(t) at sitei and
space-time plot percolate through the system in a manndimet as
very similar to the connected bonds in directed percolation
(DP), which also has an absorbing state. Subsequent exten-
sive numerical studies and scaling argum¢gt8,9| did not
show agreement with this conjecture. On the contrary, it was
found that the generic critical properties were not in the uniiwhereA ¢u;(t) = f(u;_,(t))— 2f (u;(t)) + f (u; - 1(t)). The pa-
versality class of directed percolation. In fact, since the criti-rametere measures the strength of the coupling from bite
cal properties vary with the parameters, they are not evefis two neighbors. The dynamidg) is parallel or synchro-
universal. Nevertheless it was argued 19] that the appar- nous: all sites are updated at the same time.
ent nonuniversality is due to traveling solitary excitations The local mapf is of the form
with long lifetimes, and that one should in principle recover
the DP behavior only for extremely long time scales. rx, if xe[0,1/2]

The standard time evolution of a coupled-map lattice is b .
synchronousior paralle) updating, in whioh al mdividual fg=4 r(d=x), if xe[1/2,1] 2
maps of the lattice are iterated forward simultaneously in a X, if xe]l,r/2].
completely deterministic wall1]. The connection between
such coupled-map lattices and physical systems, describékhe chaotic motion of for x<1 is governed by a standard
by partial differential equations is, however, not straightfor-tent map of slope&. However, wherr exceeds the value 2,
ward. In particular, the synchronous update can only be mathe trajectory may escape to a “laminar” state with>1,

and this state is marginally stable, because the slope in the
line of fixed points is 1. As mentioned above, the laminar

(1) = (D) + 5 A (D), M

*Electronic address: rolfnbi.dk state is absorbing, i.e., the trajectory cannot be pulled back
"Electronic address: tbohrnbi.dk into the chaotic state. This is no longer the case, when the
*Electronic address: mhjensennbi.dk maps are coupled, since the interactions with its neighbors
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FIG. 1. Time evolution of the asynchronous CMB) with FIG. 2. Phase diagrams of one-dimensional CML for asynchro-
r=3.0, e=0.58 and system size=128. The turbulent sites with nous updatingcrossesand synchronous updatirigoxes.
u=<1 are black while the laminar sites with>1 are white.
update introduced above. As only one site is updated at a
may pull a laminar site back into chaotic motion, thus caustime, a new horizontal line in the time axis is added only
ing the interesting interplay between laminar and turbulentfter L =128 time stepgi.e.,t—t+1). We observe that the
regions. turbulent sitegblack in Fig. 2 percolate through the system,
In this work we consider the same CML under asynchro-sometimes ending in a dangling bond.
nous updating: at time a random sité, is selected and is  To estimate the critical exponents for the randomly up-
altered according to E@1) while all the other variables keep dated CML(3), we follow the finite size scaling methods of
their values: Houlrik et al. [9,15,14. First of all we have to locate the
critical line in the parameter planes,f). This is done by
measuring the absorption time(r,e,L), i.e., the time it
takes the system starting from a random initial state to reach
(©)) the absorbing state, averaged over an ensemble of initial con-

U (44 1) = £y (1) + S A (1),

u(t+1L)=u(t) for i#i, ditions. At the critical pointe= e(r), this time diverges like
wherelL is the size of the system. Note that with this choice T(€es,L)~L7 4
of time step on average each site is updated once in one unit

of time. : :
: . . . where the usual dynamical exponemt v /v, has been in-
The introduction of chaotic iterated maps in extended dy- y b VL

. . X , ’ roduced. Figure 2 shows the phase diagram with the critical
namical systems, and especially simple one-dimension

. ) ; . ~ “iine and contrasts it with the critical line for the synchro-
noninvertible maps, can only be motivated in a very heur|st|c‘hou$|y updated systefd) taken from[9]. We consider three

way [1]. The closest physiqal parallel is probably a COIIeCtiOr‘different values of and the corresponding values f and
of weakly coupled subunits, each able to perform chaotlcZ are found in Table |

dynamics.. In ,order.to derive a discretez Igcal map, ON€ ap- 1pa order parameten(e,L,t) is defined as the fraction of
plies a Poincareection. Note that the Poincameap owes its turbulent sites in the lattice, again averaged over many dif-

simplicjty to the fact that it is obtained by restricting the ferent initial stated9]. The order parameter scales in the
dynamics to a surface through the local phase space and | ual way when approaching the critical line from above
therefore not in general equivalent to moving the system

forward through a fixed time interval. In the absence of an

external, periodic forcing, the time interval between consecu- m~(e—e€)? for e—e; 5)

tive crossings of the section will generically be variable and

thus vary from unit to unit in space. To find the state of the  TABLE 1. Direct measurements of the critical exponents for

entire system afixedtime intervals, this variation has to be system(3). The critical valuese, and the exponent are found

taken into account. This can, in a rough way, be accomsimultaneously by approaching the valueeofihere the scaling4)

plished by using the asynchronous update in which the unitg best. The estimation of the other exponents are described in the

experience slightly different update times. Of course we argext. The bottom line shows the directed percolation exponents.

thereby replacing the complicated, deterministic update rule

by a random one and this is obviously a crude approxima- B

tion. But we believe that this is often closer to physical re-f € z B q Y

ality than the synchronous update. As an example, synchra- |

nous updating can lead to complicated, spatial structures, ip.2 0.019%2) 1.582) 0.281) 0.161) 1.512)

cellular automat413], which disappear under asynchronous2.6 0.50962) 1.592) 0.291) 0.161) 1.492)

updating[14], and should therefore be considered unphysicak.o 0.587¢3) 1.603) 0291 0.152) 1.502)

in the absence an external clock. DP 1.57 0.28 0.16 1.51
Figure 1 shows a pattern generated by the asynchronous
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FIG. 3. Order parameten(t) versus timet for system sizes FIG. 4. Rescaling of the order parameter at2.2 according to

between 2 and 2%atr=2.2. As expected the data falls on one line (g) to obtain estimates fof/», and forz. Data for system sizeis
as long ad is much smaller than the escape time. between 2 and 2° collapses on one curve.

Using this relation we have estimated tjseexponent di- To extract further critical exponents and to check hyper-
rectly and the results are found in Table I. Applying finite- scajing we have looked at the spatial correlations. Even
size scaling arguments we find the following scaling form alhough any dynamics of this CML will end up in the absorb-
the critical point ing (laminap state, it is possible to find nontrivial spatial
©6) correlations in a long lasting quasistationary situafitb].
The correlations can be obtained from the pair correlation

The functiong(t/L?) has the following properties: At times function
much smaller than the absorption time, one expects a power-

law decay in time due to critical correlations and the
L-dependent prefactor in E¢6) must drop out. Fot<L?

we therefore have

m(eg,t,L)~L #rig(t/L?).

L
Ci(t)= 21 (Ui (DU (D)= (u(D)?, ®

|~

@ where the brackets denote the average over different initial
conditions. If the coupling between the sites is weak, i.e, if

For times much larger that the absorption time, we may asis small, one might expect the spatial correlations to fall off
sume uncorrelated decay of the order parameter, and theréxponentially with distance. At criticality, on the other hand,
fore the functiorg, will decay exponentially. Figure 3 shows One expects an algebraic decay of correlatidr
a plot of m(e.,t,L) versust at r=2.2. The curves for 7
different system sizes in the interda=2%, . . . ,2%°fall very Ci()=j""y(jl&1)), )
accurately on the same line in the double logarithmic plot
allowing determination of3/v| as listed in Table I. As we wherey is the associated critical exponent, and correlations
see in this table all the critical exponents are, within the erroare induced over a length scalg) ~t'# as the CML relaxes
bars, consistent with the values for directed percolationtowards a steady state. Tkequal time correlation function
listed at the bottom line in Table I. for various timeqatr =2.2) is shown in Fig. 5, indicating an

In order to obtain independent checks on the values of thelgebraic decay in space after long time. The corresponding
critical exponents we have performed a rescaling analysigalue of  from this direct measurements is shown in Table
using Eq.(6). The rescaled curves are shown in Fig. 4. For

m(eg,t,L)~t" A"l

systems sizes in the interval=2% ... 20 the rescaled 0.100F T —
curves collapse very accurately to a single curve. The corre- f - t=300
sponding values oB/v, andz are shown in Table Il, again 5 . E;gggo
consistent with DP. o0 1229998

TABLE Il. Exponents and relations obtained from rescaling = 0.010
analysis using finite size scaling. The fourth column is an estimate © i
of 7 using the hyperscaling relatidd0).

r E z 17:2£+1 z n

& & 0.001
22  026) 1571 1522 1562 1532 1 10 100
2.6 0.261) 1.571) 1.522) 1.582) 1.492) I
3.0 0.2%2) 1.581) 1.50(3) 1.582) 1.532) FIG. 5. Spatial correlation functio@;(t) for various timeg at
DP 0.26 1.57 1.51 1.57 1.51 r=2.2.C;(t) approaches a straight line with slope-% for large

times, indicating an algebraic decay.
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: giving a third way of estimating the exponent All three
ways of finding» give results that, within error, are in agree-
ment with the directed percolation value 1.51.

We thus conclude that our numerics gives very strong
evidence for the fact that spatiotemporal intermittency in the
form of asynchronous coupled maps falls in the universality
class of directed percolation. The reason why synchronously
updated maps do not behave in a universal way must thus be
sought in the complicated correlations built up by the strong
constraint of exactly simultaneous, completely deterministic

FIG. 6. Rescaled spatial correlation functiorr at2.2. The data  updating, which, in most applications will not be fulfilled.
for various times collapses on one curve if the exponerasdn ~ Thus, experiments showing spatiotemporal intermittency
take the values in Table II. should be describable by directed percolation near the tran-

sition to turbulence—at least insofar as they do not involve
| together with values obtained at othewalues. Again the global periodic forcing. One might speculate on the possibil-
agreement with DP is confirmed. ity of observing the nonuniversal “synchronous” behavior

For the spatial correlations, a rescaling analysis can alst periodically forced systems, as, say, the printers instability
be performed by plotting/t*# versusj”~1C;(t). Figure 6 driven by a cylinder of noncircular cross section.
shows the corresponding rescaled plot and this technique al-

0

S 0.020F

-1

0.010F

0.000& i ;
00 02 04 06 08 1.0
174

lows another independent determinatiorzadind #, the val- We would like to thank Bernardo Huberman and Benny
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