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Directed percolation universality in asynchronous evolution of spatiotemporal intermittency

Juri Rolf,* Tomas Bohr,† and Mogens H. Jensen‡

Niels Bohr Institute and Center for Chaos and Turbulence Studies, Blegdamsvej 17, DK-2100 O” Copenhagen, Denmark
~Received 22 December 1997!

We present strong evidence that a coupled-map-lattice model for spatiotemporal intermittency belongs to the
universality class of directed percolation when the updating rules areasynchronous, i.e., when only one
randomly chosen site is evolved at each time step. In contrast, when the system is subjected to parallel
updating, available numerical evidence suggest that it does not belong to this universality class and that it is not
even universal. We argue that in the absence of periodic external forcing, the asynchronous rule is the more
physical.@S1063-651X~98!50303-0#

PACS number~s!: 05.45.1b, 05.70.Jk, 47.27.Cn, 64.60.Ak
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The onset of spatiotemporal intermittency is a comm
phenomenon of many extended systems ranging from m
els based on coupled-map lattices@1–3# to various experi-
ments in convection@4,5# and in the ‘‘printers instability’’
@6,7#. A particular elegant coupled-map lattice~CML! show-
ing spatiotemporal intermittency was introduced some ye
ago by Chate´ and Manneville@1,2#. This CML employs in-
dividual maps that can be in two very different states: eit
in a chaotic~or ‘‘turbulent’’ ! state or in a ‘‘laminar’’ state.
For a single map the laminar state is ‘‘absorbing’’: once
motion is in the laminar state it cannot escape. For
coupled system, one observes interesting dynamical patt
of turbulent patches penetrating into a laminar state, and
cause of the strong fluctuations, this has been called@1# spa-
tiotemporal intermittency~STI!. Once the system is in a pur
laminar state, it cannot escape: this is an absorbing sta
the full spatially coupled system. These properties of the
led Pomeau@8# to conjecture that the critical properties at t
onset of STI should be governed by the exponents of
rected percolation. The turbulent spots of the dynamics
space-time plot percolate through the system in a man
very similar to the connected bonds in directed percolat
~DP!, which also has an absorbing state. Subsequent ex
sive numerical studies and scaling arguments@2,3,9# did not
show agreement with this conjecture. On the contrary, it w
found that the generic critical properties were not in the u
versality class of directed percolation. In fact, since the cr
cal properties vary with the parameters, they are not e
universal. Nevertheless it was argued in@10# that the appar-
ent nonuniversality is due to traveling solitary excitatio
with long lifetimes, and that one should in principle recov
the DP behavior only for extremely long time scales.

The standard time evolution of a coupled-map lattice is
synchronous~or parallel! updating, in which all individual
maps of the lattice are iterated forward simultaneously i
completely deterministic way@11#. The connection betwee
such coupled-map lattices and physical systems, descr
by partial differential equations is, however, not straightf
ward. In particular, the synchronous update can only be
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tivated when the system dynamics is driven by a global
riodic external force~or ‘‘clock’’ !. Recently it was observed
that the critical properties of a standard CML, using coup
logistic maps, actually depend on whether synchronous
asynchronous updating is applied@12#. Here, asynchronous
means that in each step a random site on the CML is cho
and is iterated forward.

This result forces us to reconsider the evidence for n
universal behavior for STI, which is all based on the sy
chronous updating rule. In this Rapid Communication,
thus apply the asynchronous updating to the coupled-m
lattice of spatiotemporal intermittency discussed above.
find that all critical exponents, independent of the choice
parameters, fall into the universality class of directed per
lation. All critical characteristics of DP, such as hypersc
ing, seem to be fulfilled, leading to independent controls
the values of the critical exponents.

The original dynamics of the coupled-map lattice of Cha´
and Manneville@1# for a lattice with one space- and on
time-direction is written in terms of a fieldui(t) at sitei and
time t as

ui~ t11!5 f „ui~ t !…1
e

2
D fui~ t !, ~1!

whereD fui(t)5 f „ui 21(t)…22 f „ui(t)…1 f „ui 11(t)…. The pa-
rametere measures the strength of the coupling from sitei to
its two neighbors. The dynamics~1! is parallel or synchro-
nous: all sites are updated at the same time.

The local mapf is of the form

f ~x!5H rx, if xP@0,1/2#

r ~12x!, if xP@1/2,1#

x, if xP]1,r /2].

~2!

The chaotic motion off for x<1 is governed by a standar
tent map of sloper . However, whenr exceeds the value 2
the trajectory may escape to a ‘‘laminar’’ state withx.1,
and this state is marginally stable, because the slope in
line of fixed points is 1. As mentioned above, the lamin
state is absorbing, i.e., the trajectory cannot be pulled b
into the chaotic state. This is no longer the case, when
maps are coupled, since the interactions with its neighb
R2503 © 1998 The American Physical Society
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may pull a laminar site back into chaotic motion, thus ca
ing the interesting interplay between laminar and turbul
regions.

In this work we consider the same CML under asynch
nous updating: at timet a random sitei r is selected and is
altered according to Eq.~1! while all the other variables kee
their values:

ui r
~ t11/L !5 f „ui r

~ t !…1
e

2
D fui r

~ t !,
~3!

ui~ t11/L !5ui~ t ! for iÞ i r ,

whereL is the size of the system. Note that with this choi
of time step on average each site is updated once in one
of time.

The introduction of chaotic iterated maps in extended
namical systems, and especially simple one-dimensio
noninvertible maps, can only be motivated in a very heuris
way @1#. The closest physical parallel is probably a collecti
of weakly coupled subunits, each able to perform chao
dynamics. In order to derive a discrete, local map, one
plies a Poincare´ section. Note that the Poincare´ map owes its
simplicity to the fact that it is obtained by restricting th
dynamics to a surface through the local phase space an
therefore not in general equivalent to moving the syst
forward through a fixed time interval. In the absence of
external, periodic forcing, the time interval between conse
tive crossings of the section will generically be variable a
thus vary from unit to unit in space. To find the state of t
entire system atfixed time intervals, this variation has to b
taken into account. This can, in a rough way, be acco
plished by using the asynchronous update in which the u
experience slightly different update times. Of course we
thereby replacing the complicated, deterministic update
by a random one and this is obviously a crude approxim
tion. But we believe that this is often closer to physical
ality than the synchronous update. As an example, sync
nous updating can lead to complicated, spatial structure
cellular automata@13#, which disappear under asynchrono
updating@14#, and should therefore be considered unphys
in the absence an external clock.

Figure 1 shows a pattern generated by the asynchron

FIG. 1. Time evolution of the asynchronous CML~3! with
r 53.0, e50.58 and system sizeL5128. The turbulent sites with
u<1 are black while the laminar sites withu.1 are white.
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update introduced above. As only one site is updated
time, a new horizontal line in the time axis is added on
after L5128 time steps~i.e., t→t11). We observe that the
turbulent sites~black in Fig. 1! percolate through the system
sometimes ending in a dangling bond.

To estimate the critical exponents for the randomly u
dated CML~3!, we follow the finite size scaling methods o
Houlrik et al. @9,15,16#. First of all we have to locate the
critical line in the parameter plane (e,r ). This is done by
measuring the absorption timet(r ,e,L), i.e., the time it
takes the system starting from a random initial state to re
the absorbing state, averaged over an ensemble of initial
ditions. At the critical pointe5ec(r ), this time diverges like

t~ec ,L !;Lz, ~4!

where the usual dynamical exponentz5n i /n' has been in-
troduced. Figure 2 shows the phase diagram with the crit
line and contrasts it with the critical line for the synchr
nously updated system~1! taken from@9#. We consider three
different values ofr and the corresponding values ofec and
z are found in Table I.

The order parameterm(e,L,t) is defined as the fraction o
turbulent sites in the lattice, again averaged over many
ferent initial states@9#. The order parameter scales in th
usual way when approaching the critical line from above

m;~e2ec!
b for e→ec

1 ~5!

FIG. 2. Phase diagrams of one-dimensional CML for asynch
nous updating~crosses! and synchronous updating~boxes!.

TABLE I. Direct measurements of the critical exponents f
system~3!. The critical valuesec and the exponentz are found
simultaneously by approaching the value ofe where the scaling~4!
is best. The estimation of the other exponents are described in
text. The bottom line shows the directed percolation exponents

r ec z b
b

ni
h

2.2 0.0195~2! 1.58~2! 0.28~1! 0.16~1! 1.51~2!

2.6 0.5096~2! 1.59~2! 0.28~1! 0.16~1! 1.49~2!

3.0 0.5870~3! 1.60~3! 0.28~1! 0.15~2! 1.50~2!

DP 1.57 0.28 0.16 1.51
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Using this relation we have estimated theb exponent di-
rectly and the results are found in Table I. Applying finit
size scaling arguments we find the following scaling form
the critical point

m~ec ,t,L !;L2b/n'g~ t/Lz!. ~6!

The functiong(t/Lz) has the following properties: At time
much smaller than the absorption time, one expects a po
law decay in time due to critical correlations and t
L-dependent prefactor in Eq.~6! must drop out. Fort!Lz,
we therefore have

m~ec ,t,L !;t2b/n i. ~7!

For times much larger that the absorption time, we may
sume uncorrelated decay of the order parameter, and th
fore the functiong, will decay exponentially. Figure 3 show
a plot of m(ec ,t,L) versust at r 52.2. The curves for 7
different system sizes in the intervalL524, . . . ,210 fall very
accurately on the same line in the double logarithmic p
allowing determination ofb/n i as listed in Table I. As we
see in this table all the critical exponents are, within the er
bars, consistent with the values for directed percolati
listed at the bottom line in Table I.

In order to obtain independent checks on the values of
critical exponents we have performed a rescaling anal
using Eq.~6!. The rescaled curves are shown in Fig. 4. F
systems sizes in the intervalL524, . . . ,210 the rescaled
curves collapse very accurately to a single curve. The co
sponding values ofb/n' andz are shown in Table II, again
consistent with DP.

TABLE II. Exponents and relations obtained from rescali
analysis using finite size scaling. The fourth column is an estim
of h using the hyperscaling relation~10!.

r
b

n'

z h52
b

n'

11 z h

2.2 0.26~1! 1.57~1! 1.52~2! 1.56~2! 1.53~2!

2.6 0.26~1! 1.57~1! 1.52~2! 1.58~2! 1.49~2!

3.0 0.25~2! 1.58~1! 1.50~3! 1.58~2! 1.53~2!

DP 0.26 1.57 1.51 1.57 1.51

FIG. 3. Order parameterm(t) versus timet for system sizesL
between 24 and 210 at r 52.2. As expected the data falls on one lin
as long ast is much smaller than the escape time.
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To extract further critical exponents and to check hyp
scaling we have looked at the spatial correlations. Ev
though any dynamics of this CML will end up in the absor
ing ~laminar! state, it is possible to find nontrivial spatia
correlations in a long lasting quasistationary situation@15#.
The correlations can be obtained from the pair correlat
function

Cj~ t !5
1

L (
i 51

L

^ui~ t !ui 1 j~ t !&2^u~ t !&2, ~8!

where the brackets denote the average over different in
conditions. If the coupling between the sites is weak, i.e.,e
is small, one might expect the spatial correlations to fall
exponentially with distance. At criticality, on the other han
one expects an algebraic decay of correlations@15#

Cj~ t !5 j 12hc„j /j~ t !…, ~9!

whereh is the associated critical exponent, and correlatio
are induced over a length scalej(t);t1/z as the CML relaxes
towards a steady state. The~equal time! correlation function
for various times~at r 52.2) is shown in Fig. 5, indicating an
algebraic decay in space after long time. The correspond
value ofh from this direct measurements is shown in Tab

te

FIG. 4. Rescaling of the order parameter atr 52.2 according to
~6! to obtain estimates forb/n' and forz. Data for system sizesL
between 24 and 210 collapses on one curve.

FIG. 5. Spatial correlation functionCi(t) for various timest at
r 52.2. Ci(t) approaches a straight line with slope 12h for large
times, indicating an algebraic decay.
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I together with values obtained at otherr values. Again the
agreement with DP is confirmed.

For the spatial correlations, a rescaling analysis can
be performed by plottingj /t1/z versus j h21Cj (t). Figure 6
shows the corresponding rescaled plot and this techniqu
lows another independent determination ofz andh, the val-
ues of which are shown in Table II.

The fourth column of Table II contains the values ofh
obtained from the hyperscaling relation

FIG. 6. Rescaled spatial correlation function atr 52.2. The data
for various times collapses on one curve if the exponentsz andh
take the values in Table II.
re
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al-

2b/n5d221h, ~10!

giving a third way of estimating the exponenth. All three
ways of findingh give results that, within error, are in agre
ment with the directed percolation value 1.51.

We thus conclude that our numerics gives very stro
evidence for the fact that spatiotemporal intermittency in
form of asynchronous coupled maps falls in the universa
class of directed percolation. The reason why synchronou
updated maps do not behave in a universal way must thu
sought in the complicated correlations built up by the stro
constraint of exactly simultaneous, completely determinis
updating, which, in most applications will not be fulfilled
Thus, experiments showing spatiotemporal intermitten
should be describable by directed percolation near the t
sition to turbulence—at least insofar as they do not invo
global periodic forcing. One might speculate on the possi
ity of observing the nonuniversal ‘‘synchronous’’ behavi
in periodically forced systems, as, say, the printers instab
driven by a cylinder of noncircular cross section.
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