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Lattice Boltzmann simulation of viscous fluid systems with elastic boundaries
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A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is
proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered
for the full system. As examples of application, the flow in elastic vessels is simulated with the pressure-radius
relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow are in good
agreement with the analytical prediction, while the simulation results for pulsative flow agree with the experi-
mental observation of the aortic flows qualitatively. The approach has potential application in the study of the
complex fluid systems such as the suspension system as well as the arterial blood flow.
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PACS numbeps): 47.60+i, 47.10+g, 87.45-k

The study of viscous fluid systems with elastic or mov-tic vessels is simulated with the pressure-radius relationship
able boundaries has attracted much attention over forty yeasmilar to that of the pulmonary blood vesséld]. The nu-
(see, e.g.[1,2]) due to their great relevance to the arterial merical results for steady flow are in excellent agreement
blood flow as well as the suspension system in the field owith the analytical prediction, and the simulation results for
complex fluids. As the need to account for the effect ofpulsative flow agree with that of the aortic flows observed
changeable geometries adds considerably to the difficulty ofxPerimentallyf11]. These results, together with the simplic-
the analysis, numerical simulation plays a major role in thigty and the ease of implementation of the model, suggest that
field. our approach may be a promising tool in studying the blood

Conventional methods for simulating viscous fluid flow flow in arteries, es_pecially in. the diseased ones.that suffer
include, macroscopically, numerical integration of thefrom atherosclerosis, stenosis, or aneurysm. It is also' ex-
Navier-Stokes equations, and, microscopically, molecularPected that the model may find applications in numerical
dynamics simulation. The former is, however, particularlySimulation of the suspension in the complex fluid systems
difficult to implement in complex and changeable geom-L12]- . o .
etries, while the latter is extremely computationally inten-  Let us first recall some basic ideas of the LBM in the
sive. An alternative approach, the lattice Boltzmann methodlomain of fluid flow. We choose to work on a square lattice
(LBM) [3,4], has recently proved competitive in studying the in two dimensions. Lef;(x,t) be a non-negative real number
domain of fluid flow for various physical systerfis]. De- des;rlbmg the dlstr|bu't|on.fun(.:t|o€.DF) of the fluid density
rived from the lattice gas automathGA) [6], the LBM  at sitex at timet moving in directione . Hereg=(0,0),
inherited from the LGA most of its major advantages over& = (cosm(i—1)/2,sinm(i—1)/2), i=1, 2, 3, 4, ande
the conventional computational method. It is easy to imple-=(cosm(i—4—3)/2,sinm(i—4—3)/2),fori=5, 6, 7, 8 are the
ment and parallel in nature due to the fact that all the infor-nine possible velocity vectors. The DF’s evolve according to
mation transfers in local time and space. And compared witi® Boltzmann equation that is discrete in both space and time:
the LGA, the LBM may suppress the statistical noise and
satisfy the requirement of the Galilean invariance. filx+e,t+1) - fi(x,1)=Qi(x1). @)

Although numerical accuracy of the LBM is of second
order inside the fluid, an inappropriate implementation o
boundary conditions will substantially degrade the LBM.
Several boundary treatments have thus been proposed for 1
achieving second-order accurd@y-9], but most of them are Qi(x,t)=— = (f;— 9, )
restricted to the systems with fixed geometries. In addition, T
all current approaches neglect the requirement of the Gal- i ) i i
ilean invariance at the solid-fluid boundary, which is of criti- 1"€ densityp and macroscopic velocity are defined by

cal importance for the fluid systems with elastic or movable
boundaries. = . = .

In this Rapid Communication we propose a lattice Boltz- P EI fi e Z fie ®
mann model that is capable of simulating viscous fluid sys-
tems with elastic and movable boundaries. This is achievednd the equilibrium DF'sf79 are usually supposed to be
by introducing virtual distribution function§VDF'’s) at the  dependent only on the local flow velocity. A suitable
boundary. With this model, numerical accuracy up to seconghoice of which makes the macroscopic equations recover
order is attained, and the recovery of the Galilean invariancéhe Navier-Stokes equations by a Chapman-Enskog proce-
for the full systems including boundaiy shown by analyti- dure[3].
cal analysis and verified by numerical calculation. As ex- We next describe the DF’s at the boundary. For clarity of
amples of application for the model, the viscous flow in elasthe following description, let us define some concepts. In

fThe most convenient choice fér;(x,t) is a single time re-
laxation form[3]
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l boundary, and keeps it approximate to the fluid density at
¢ % neighbored FN’s, as required by the LBM. Moreover, the
“f’\fifi"je scale step helps guarantee the Galilean invariance for the
RN simulation result§see below.

™ As yet we have not described the real Dfx,t) at the

BN. Since there should be no VDF at any FN, we assume, at

the BN for the flat wall and after collision,
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fi(x,t)=gi(x,t), if the node atx+e is an FN,

fi(x,t)=0, if the node atx+¢ is a BN or WN,

FIG. 1. Schematic plot of part of the lattice system we consid- ©®)
ered. The dashed line is a bottom boundary, below which is an
impermeable wall. The solid box represents the nodes inside the 8
impermeable wall, the open circles are FN's, and the crosses denote fo(X,t)=p(X,t)— Z fj(X,t),
BN'’s. The shaded square centeredAais the square associated =1
with the node A
wherei may be 1, ... ,8, ang is the real fluid density at

Fig. 1 we show an example. The dashed line is a bottonthe BN (see below Equation(6) leads to the fact that only
boundary, under which is an impermeable wall. The solidfluid particles propagate between the BN and its neighbored
box represents the nodes inside the impermegiiigsica) FN’s, while only virtual particles propagate between neigh-
wall, which will be called wall nodesSWN’s) hereafter. bored BN'’s for the flat wall. When a WN just becomes a BN
Similarly, the open circles in the domain of fluid are the fluid due to the motion of wall, the real fluid density at this node
nodes(FN’'s) and the crosses denote the boundary nodep=0. In the subsequent streaming steps, the density at the
(BN's). BN may increase or decrease, depending on the velocities at

Associated with each lattice node is a square of unit sidethe BN and the neighbored FN's as well as the density at the
centered at the node, as shown in Fig. 1 by the shaded parteighbored FN's.
Then, a node is a BN if any physical boundary crosses its At the BN for the nonflat wall, the VDF's are still given
square(see, e.g., noda in Fig. 1). by Eqg. (4) except those forg;(x,t) with the nodesx—eg

It is clear that only part of the square of the BN is filled being WN’s, which are obtained by generalizing the method
with fluid, so the real fluid density at the BN is significantly in [7], mainly based on the bounce-back rule for the nonequi-
less than those at its neighbored FN’s. However, in any latlibrium part of the DF normalor approximately normalto
tice Boltzmann scheme, the sums of DF's at neighboredhe boundary. The velocity needed to determine the VDF'’s at
nodes should be about the same. To this end, we introduabe BN is evaluated by an average of extrapoldtaterpo-
VDF's g;(x,t) at the BN, so that the sum of which is ap- lated values of two or more directions, and sog% in the
proximately the same as those of the DF’s at its neighboredcale step. For the real DF’s at the BN, on the other hand, the

FN’s. second equation of Eq6) should also be modified, in order
We now describe the VDBEj;(x,t) at the BN for flat wall, to guarantee the Galilean invariance. Some fluid particles, in
say nodeA shown in Fig. 1. In each streaming step, addition to virtual particles, are assumed to stream among

. . neighbored BN’s. Due to the limitation in length, the full

gi(x,t)=fi(x—e), if the node atx—eg is an FN, algorithm for the VDF’s and the real DF’s at the BN for the

. ) nonflat wall, together with its applications in systems with

gi(x,t)=gi(x—&), if the node atx—e is a BN, (fixed and changeablecomplex geometries, are presented

elsewherd13].

gi(x,t) is determined from nonslip condition as [f] Now we show that the technique guarantees that the LBM

results recover the Galilean invariance. Consider a channel
with a flat wall moving with a fixed velocityu=(uy,uy)

wherei may be 0, 1, ... ,8, whereas the velocity at the BN=(U,v), whereu andv are the components of the velocity

needed to determing; as in[7] is obtained by quadratic Parallel and perpendicular to the channel, respectively. With-

extrapolation or interpolation. Then the collision step of theOUt loss of generality, we assume>0. After the system

single time relaxation type is applied t(x,t) at any BN. ~becomes stable, all nodéboth FN's and BN'$ share the

However, after collision, gi(x,t) is scaled such that Same and time-independeDE’s (VDF's at BN's). Then it

E?:Ogi(x,t) equalsp’, wherep® is given by extrapolation follovys from Egs.(4) and(6) that the mcre_ment of Fhe fluid _

8], density at any BN of the upper boundary in each time step is
92+ 9s+ge—0s— 07— Js, Which equalsp’v [see Eq.(3)],

p'=2pt—p2, (5  wherep”=p, [see Eq(5)], with p, being the density at any

FN. Letty be the time that a WN at becomes a BN ant

with p* and p? being the densities at the FN’s on the first the time when the BN turns to an FN, i.e.,

layer and second layénodesB andC in Fig. 1). This extra

scale step prevents the sum of VDF’s at the BN from varying at tg at t;

dependent on the component of velocity normal to the aWN — a BN — an FN. @)

if the node atx—e is a WN, (4)
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Then one has the fluid densify(x,ty)=0, and zigtovm 33 %
=1. HereAt=1 is the time step. As a result, the density at
the node at, reads
23 b
ty t1
p(x,t1)= 2, p'vAt=p" > vAt=pq. (8 &
t=tg t=tg
13F b
This new FN, therefore, has the same density as other FN's,
yielding no perturbation when any BN becomes an FN.
Similar results can be obtained for the process 5 M
0 100 200 300
an FN—a BN—a WN 9 ta

as well. Thus all the FN’s and BN’s will always share the FIG. 2. The analytical predictio—) and numerical simulation
same velocityu, andthe fluid in the channel from our simu- (X) of the boundaries of a long and thin elastic pipe along the
lation is static if one observes it in a moving frame of refer-channel.
ence with velocity. We verify this by numerical simulation ) ) o
accurate up to the machine accuracy. locity can be approximated by that of the plane Poiseuille
With the present scheme, the LBM results recover thdlow [10]. After some algebra, we obtain, for steady flow, a
Galilean invariance to the second order for many other systheoretical formula for the widta(x), which is a function of
tems. It can be proved that the increment of the fluid densitypositionx for 0<x<L because of the elastic deformation:
at any BN in each time step j8’v to second ordef13]. It 4 4
follows from Eq. (8) that the perturbation is small enough a’(x)—a’(0)=Bx, B=-3vQla, (13)
during the procesé7) provided that the variance @f is of . .
second order. Things are similar for the procégs In the ~ Where Q is the volume-flow rate, which is a constant
following we take the plane Poiseuille flow as an example throughout of the pipe in a stationary, nonpermeable pipe.
For this system with a fixed velocity componen perpen-  From this equation the pressupgx) is given by

dicular to the pipe, the velocity=(u,,u,)=(u,v) is ob- 4 (0)—pol
—(a0+ %) =Bx. (14

tained from the Navier-Stokes equations analytically, P(X)—Po

ap+

U:UO[l_(y_Uot)z/az], V=V, (10)
) . For our LBM simulation, the pipe is 300 units in length so

for |[y—vot|<a, where ug=—a*(dp/dx)/2pv, a is the  hat each(upper or bottom boundary is composed of 300
width of the pipe,p the pressure at, p the density, and’  gma|| parts with unit length. The mass for each part is 500.
the viscosity. We have carried out simulations with a varietypengte the momentum change at a BNdyy. in each step.
of 7, vo, andup. The range ofr is from 0.6 to 10.00s  Then the force acting on the corresponding partis,
varies from 0.0001 to 0.01; ang from 0.0001 to 0.015. In \yhich in turn gives the velocity of the part and its displace-
the period of Eq.(7), our simulation results thW that the ment from the equilibrium location. The simulation results
maximal value of the error griis less than 10°, where for steady flow are shown in Fig. 2 for the upper and bottom
boundaries, and in Fig. 3 for the pressure. It is seen that the
results are, respectively, very consistent with the analytical
predictions(13) and (14). In our numerical simulationa,
=13.5, «=0.01, andr=2.
with uy'(x) being the analytical velocity at node, and Finally, we present our simulation results on the pulsative
uy(x,t) the velocity at node at timet from numerical simu- ~ flow in elastic pipes. The pipe is units in length and 30
lation. The u,(x,t) from our simulation is accurate up to Units in width initially with both sides closed. At discrete
second order as that shown in Rdfg.8]. time t=T,2T, ... nT, ...,1/810 of the total fluid particles in

As examples of application for the present model, we perthe pipe are injected into the pipe from the left side and
form simulations of a long and thin plane elastic pipe with€jected out of the pipe from the right side simultaneously.
length L. The pressure(x) to width a(x) relationship is  The fluid will then flow from left to right. Figure 4 displays

U0 —uy(x, )|

U0+ uy(x, b))

(11)

assumed to be linear: the typical volumetric flow wave form&/FW’s) through the
cross section at the middle of the pipe foe=725. It is
p(X) = po= a(a(x)—ay), (12)  striking to find that the VFW’s folL=600 andL =350 are

quite similar to the experimental results for the aortic flow
wherea, is the width when the pressure inside is fixed to beand the left anterior descending coronary flsee Fig. 5 in
Po; « is a compliance constant. In the three-dimensiona[11]). There is backflow and an inflexigior dip) before the
case witha being the tube radius, E412) is a good repre- vfw reaches its peak each time, resulting from the elastic
sentation of the pulmonary blood vessgl§)]. Denoting the  behavior of the pipe. Considering that the simulation is per-
pressure at inlet and outlet lp(0) andp(L), respectively, formed in two dimensions while the experiment is in three
we assume(0)>p(L). Since the pipe is long and thin, that dimensions, the agreement between our simulation results
is, L>a, and the pipe is smooth under deformation, the ve-and the experimental on¢§1] is rather satisfactory. These
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FIG. 3. The analytical predictiof—) and numerical simulation FIG. 4. The VFW's with respect to timefor a time period of

(+) of the pressure in the same elastic pipe of Fig. 2. The dashe@T in an elastic pipe fot =350 (solid line) and L =600 (dashed

line is a linear connection between the beginning and ending pointsine). Also shown in the figurédotted ling is a plot of vfw’s with

which should be the result for a rigid pipe. respect to time in an elastic vessel with the masses for some parts of
the wall decreased by 60%ee text for details

results suggest that the present model may provide an altefated by simply changing the masses and the elastic constants
native approach to simulating the blood flow in an artery. of the corresponding parts of the vessel wall along with its

To summarize, we have described a lattice Boltzmanmeometry. In Fig. 4, we show, as an example, the typical
model that is able to simulate viscous fluid system with mov-VFW for a simple model of diseased arterial vessel. The
able boundaries, the main new feature of which is the intromodel is obtained from the system with=600 by simply
duction of VDF's at BN’s. This enables us to obtain an over-decreasing by 60% the masses for the parts of bagper
all lattice Boltzmann model that satisfies the requirement ofind lowej walls that located at a distance of 200 to 210 units
the Galilean invariance macroscopically. As examples of apfrom the left end. Compared with the result for the system
plication, both the steady flows and the pulsative flows inwith uniform mass distributioridashed line in Fig. ¥ the
elastic pipes are simulated. The former is found to be irchange in pusaltive behavior of the VFW for the diseased
excellent agreement with the theoretical prediction, while thenodel(dotted line in Fig. 4is clearly seen. More numerical
latter shows pulsative behavior comparing favorably withresults on this subject as well as th_e blfurcatlon_ _behawor of
that of the aortic flows observed experimentally. the arteries had already been obtaif8]. In addition, the

It should be noted that the conventional methods forM0del may also provide an alternative and competitive ap-
simulating blood flow in an artery include numerical integra-proa.Ch n §|mula}tlng some complex fluid systems su_ch as
tion of the Navier-Stokes equatiof4], which is extremely ~10ving objects in a fluidsee, e.g.[15]) and suspension

; . ) i e . system[12]. Work along this line is also in progress.

computationally intensive and particularly difficult to imple-
ment in complex geometries, especially for the diseased ar- We are indebted to Professor Ruibao Tao for his stimu-

teries that suffer from atherosclerosis, stenosis, or aneurysrtating discussion. This work was partly supported by NSFC
With the present model, such systems can be easily simGrant No. 19704003.
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