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von Karman—Howarth equation for magnetohydrodynamics and its consequences
on third-order longitudinal structure and correlation functions
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A derivation in variable dimension of the scaling laws for mixed third-order longitudinal structure and
correlation functions for incompressible magnetized flows is given for arbitrary correlation between the veloc-
ity and magnetic field with full isotropy, homogeneity, and incompressibility assumed. When close to equi-
partition between kinetic and magnetic energy, the scaling relations involve only structure functions in a
manner similar to the 4 law” of Kolmogorov. [S1063-651X98)50601-(

PACS numbds): 47.27.Jv, 47.27.Gs, 47.6ba

Magnetized flows are common in the universe, and argjisplacement vector and=|r|; hereafter, the subscrigt
often in a turbulent state; examples are that of the solar cadenotes longitudinal components. Whereas the first two laws
rona, where magnetohydrodynami@¥HD) turbulence is stem from phenomenological considerations, the third one is
likely at the origin of the power-law distributions of the lu- deduced rigorously from the Navier-Stokes equations, in the
minosity of flareg1], or the interstellar medium where tur- inertial range neglecting viscosity. Extensions of the so-
bulence plays an essential role to sustain dense cold cloudgalled “£” law of Kolmogorov to the case of a scalar pas-
[2]; in the solar wind, several in situ measuremefes., Sively advected10], such as the temperature or a pollutant
from the spacecrafts Helios, Voyager, and now U|y}5993. in the atmosphere, as well as to the case of a scalar with a
vide information on structure functions of the velocity and dynamical effect on the velocity, such as the magnetic po-
magnetic fields indicating that the fields are strongly inter-tential in two-dimensional MHD[11], show that it is the
mittent [3]; finally, the ground-based instrument Themis, correlat]on between .the scalar and the_ velocity field th{;\t is
soon operational, will provide similar information for the constrained by the invariance properties of the equations,
small magnetic structures of the solar photosphere. In viedereby indicating the necessity not to neglect such correla-
of these various domains of application, a theoretical basillons in modeling turbulent flows, since they are essential for
equivalent to the rigorous results of von dd@n and nonzero t_urbfulent transfer. ibl ducting fl
Howarth[4], and of Kolmogoroy5] for incompressible non- We write for an incompressible conducting flow
hgllcgl flows—concerning the temporal_ evolution of the an- (6+2-V)2"=—VP, +v, V22 +v_V?z* (1)
gitudinal second-order energy tensor in terms of the third-
order one, and the scaling of the latter in the inertial range—for the Elsaser fieldsz=v=b, whereb is the magnetic
but for magnetized flows is in demand. The technicallyinduction, P, =P+b?/2 the total pressurey. =(v= 7)/2,
helpful restriction to incompressible nonhelical flows is un-wherewv is the viscosity andy the magnetic diffusivity, and
realistic (although often usedas far as the above-mentioned V-v=0, V-b=0; a force term can be added as well.
astrophysical and geophysical flows are concefég¢dNev- In conducting flows, the nonlinear interactions and thus
ertheless, this work represents a first step in providing theathe ensuing phenomenology describing such interactions are
retical constraints on the dynamical evolution of small-scalenore complex than for neutral fluids. The standard model of
structures in MHD. These structurémagnetic flux tubes Iroshnikov and Kraichnan [12] leads to ET(k)
and vortex and current sheptsve been studied analytically ~ (e"B,)¥% %2 for the energy Fourier spectrum and, in
(e.g., in the context of reconnectiprmostly in the linear three dimensions in the simplest case, a decay of energy that
regime, and have also been investigated numerically mostlis substantially slower than for neutral fluids wifa'(t)
in the incompressible cage.g.,[7] in two space dimensions, ~(t—t,) %6[13], whereBy is a large-scale magnetic field,
and in three dimensior[8]). E' is the total (kinetic plus magnetic energy, ande'=

In 1941, Kolmogorov wrote three oft-quoted paps®]  —ET is its flux. The phenomenological modeling of Ref.
concerning homogeneous isotropic incompressible fluid turf12] relies on taking into account the slowing down of the
bulence viz.(a) the distribution of kinetic energy among energy transfer due to the interactionzf eddies propagat-
Fourier modeSEV(k)~(s_)2/3k_5/3, where e iS_ the kinetic |ng in Opposite directions a|onBO_
energy flux to small scal¢éand decay rate-EV); (b) the The Kolmogorov law{5] arises from the conservation of
temporal decay of the kinetic enerdy’(t)~(t—t,) %"  energy in the limit of negligible dissipation, i.e., in the iner-
(wheret, is typically the time at which the enstropkiw?)  tial range(and then taking the limit —0, otherwiseSs(r)
reaches its first maximum, wite=V X v the vorticity andv. ~r? trivially from a Taylor expansiop the # law follows
the velocity; and (c) the scaling law for the longitudinal from the von Kaman—Howarth equation, which we first
third-order structure functiorS;(r)=—zer, where S;(r) generalize to MHD using the fact that the invariants in terms
=(6vi(r)) with v (r)=[v(x+r)—v(x)]-r, r being the of the Elsaser fields ar&* =(|z"|?)/2. In the derivation, a

1063-651X/98/5{1)/21(4)/$15.00 57 R21 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R22 H. POLITANO AND A. POUQUET 57

few steps of a kinematical nature concerning the properties aci [t =B/ [T -2/ (n=4Ck* ", (2

of tensors are needed; the algebra is somewhat lengthy but

the principles are well known. where C/'\[1 " (n)=(z" ()7, (X)z_ (x")), and where homo-
One proceeds in two steps4]. We first seek to derive the geneity has been taken into account. We thus finally arrive at

equation for the temporal evolution of the second-order corthe alternative form of the von Kman—Howarth equation
relation tensors, which in the full isotropic case can be writ-for MHD where

ten as[14]
+ + + + + _E_E(yBE—L(r):riya rY BEL1+(r)—C:Lt_(r) }
Rij (N=(z7 (X)z; (X"))=F=(r)rirj+G=(r) &, d 2 4t ' 4 2
wherex’=x+r. Since the MHD equations are symmetric in =17 79{r"a,[v.B{L(r)

the exchange of the: variables, it suffices to work with, say, +v B 3)
z". Particularizing the correlation tensor now to thecase, Tt ;

its longitudinal[ f*(r)] and I?tera[g+(r)] coefficients can | ith y=d+1 and BL,*(r)=(5z] (r) 6z (r)). Neglecting
b92 written as usual ag™ f*(r)=(z (X2 (x')), and the time-derivative ternfas compared te") and the dissi-
27 gt (r)=(z: (X)z (x")); isotropy implies equipartition of ~pative terms in the inertial domain, we now integrate aver
the energy of the longitudinalL{) and lateral ) compo- and obtain the law analogous to that of Kolmogof&y; but
nents of z*, namely (Zf2>=<Z§2>=d;1(zi+zi+>zz+2, for magnetized flows, namely

whered, =d is the number of components of the vectors

2 - - ’ —
that are retained in the dynamical evolution of the flcs]; (62 (r) 6z (1)) =2(z (0z] (X)z (X'))=—Cqe’T,
a similar definition holds forZ~)2. In space dimensiod, (4)
incompressibility yieIdsgf(r):f*(r)ﬂer’*(r)/(d—.l). . with Cy=2K4/3 and
Proceeding in a similar manner for the two-point third-
order correlation tensor between thé and z~ fields, we d, (d+2)K4=12; (5)

consider its longitudinal component
Ks=12 in the standard three-dimensional case whired,
ChiLT(n=(zf (X z] () (x"))=Csk* " (r), =3. Using thex symmetry, the equivalent law far im-
mediately obtains

WhereC§=z+22‘. Using incompressibility and homogene-

2
ity again, the von Keman—Howarth equation for MHD is (9% (1) 8z (1) =2(z, (020 (07 (x'))=~Cqe .
now derived after a few lines of algebra as 6)
Note that foret~¢, i.e., for a negligible flux of velocity
L2, g d+1) . i 00 C C_ _+__—__oEC
o[zt tr(n)]= —+—)Csk (r) magnetic-field correlatiore (W|th.24_= € —¢€ 2E"~,
ar r whereE€=(v-b)), the left-hand side of Eq$4) and(6) are
2 d+1 9 , comparable.
+2|—+— —)[u+z+ f(r) At this point, it is instructive to go back to the original
or roor physical variables of MHD, namely, the velocity and the
I At A ()] magnetic field. One uses now, insteadkdf the correspond-

ing total energy and correlation fluxes and e with "
- _ T . . .
where 2z~ £+~ (1) =(z{ (02 (X'))=z*z2 f~*(r) is the +e =2€'. The two scaling laws in terms of the velocity

longitudinal coefficient of the cross correlator between theand magnetic-field moments 4&6]

z* fields whose trace corresponds to the relative en&y Sv3 2 — T
r))—6(by(x X+r))=—Kye'r, 7
=(|v|?~1|b|?), and is not an invariant of the MHD equa- (8oL(r))=6(bLOvL (x+1)) d€ @)
tions. Another von Keman—Howarth equation can easily be a3 2 — _w .Cr.
written for f*~(r), but this is not done here, since this term (0L(N)) +6(vL()bL(x+ 1)) = —KqeTr; ®
is discarded in the inertial range on which we concentratey, Kolmogorov law[5] recovers foth=0. Alternatively, in
The pressure term disappears from the above equation, Si”‘f@rms of correlation functions only, and noting that
it involves a first-order solenoidal isotropic tensor equal t°<5b3(r)>—6<b2(x)bL(x+r)) these scaling laws can be
L - L ’

zero assuming regularity at=0. written in term of the Doi ; -
co . point-wise relative energy of the lon-
We now restate the above von tg@en—Howarth equation gitudinal components defined aBR(x)=v2(x)—bZ(x),

for /b n ol <c;fzfs(trr)“§;fir(er)>f“”‘gf§s gff_'rl‘??) %S leading to (v, (x+1)ER(X))=—(Ky/6)e'r, and similarly,
3 ! : (b (Xx+1)EX(X)) = — (K4/6)€Cr.

et - + - il
=09z (1) 37, (r)ézl_ (1)), and+d2ef|n|ng a+s well the constant 5 %, general case with comparable velocity and mag-
total flux of the + field asd(z )=—2e"/d, ; we further  petic fields,only cross correlators, as indicated in fact by a
express the second- and third-order structure functions igjrect inspection of the nonlinearities of the MHD equations,
terms of the correlation functions, namely, scale asr; such conservation laws imply nonzero correla-
tions between thév,b) fields, as for the scalar cases men-

R/L(N=(1id)(z )= (})B{ (), tioned beforg10,11].
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The consequences of the exact scaling laws derived in thithe independent variablenstead ofr itself) may yield better
paper deserve a thorough study; numerical computations iresults for computing the anomalous scaling exponents of
both two and three dimensions are under way. It has beestructure functions at all orders; this was shown experimen-
shown[17,18 that in a flow withEC~0, i.e., with weak tally for fluids at moderate Reynolds numbg28]. This re-
(v,b) correlations, the spatial correlation pg(X) lationship implies that the skewness of the magnetic fietd
=2v(x) - b(x)/(v(x)|?+|b(x)|?) is in fact quite strong lo- more precisely the normalized third-order longitudinal struc-
cally; similarly, large scales and small scales hayb) cor-  ture function) is of the same sign as the flux ¢f,b) corre-
relations of opposite polaritie)l8]. These are the correla- lation. It is known empirically from both closure calculations
tions that are responsible for a locéds well as global and numerical computations that is of the same sign as
slowing down of the dynamical evolution of magnetized E®, i.e., that the correlation undergoes a direct transfer to
flows giving rise to a different scaling for MHD than for small scales, albeit more slowly than the endi2g]. Hence,
neutral fluids. Furthermore, because of the presence of twhg. (11) implies that the skewness bfis of the same sign as
independent scaling functions for the two HEsar variables, the (v,b) correlation in the strong magnetic-field regime.
different scaling laws may arise for highly correlated flows, a On the other hand, in the context of the dynamo problem,
result already known18] at the level of second-order mo- assuming that initially the magnetic field is weak and thus
ments[19]. neglecting its third-order correlator in E¢B), we deduce

Preliminary results of direct numerical simulations in two immediately that since correlations between the growing
space dimensions at low global correlatign--0.05) and field and the velocitythat creates jtgrow asb grows, this in
with a slight excess of magnetic enerfyy a factor~3 in  turn affects the Kolmogorov scalir{§] of the velocity itself
the statistically steady regimedicate that in that case both in Eg. (7); this indicates again the role of the velocity—

longitudinal structure function&‘izfzazf} scale ag inthe  Magnetic-field correlation in the building up of an intermit-

inertial range, and furthermore, that the third-order structurdent field, like the passive scalar that is known to be more
function of the velocity does not scale linearly with intermittent than the velocity that carries it. Furthermore,

whereas that for the magnetic field ddes]. when the correlation flux® is weak compared to the flux.of
The extensions of thé law of Kolmogorov for MHD energy[a case that corresponds to a more efficient nonlinear
derived here involve moments with different orders in thetransfer of energy towards small scales thaivdf) correla-
parameteryy =(|b|2)/(|v|?) and must be fulfilled for the t!on, as ots)served |£1 several models and numerlcal simula-
whole range of values that this ratio can take. It is knowntions], (dby(r))~(v{(x)bi(x+r)); note that this does not
[21] that MHD flows evolve asymptotically in time towards imply EF(x)~0, sincee"#0.
either of three possible regimes: the hydrodynamical re- At this stage, a simplification can be made whgp~1
gime wherey,,~0 is dominated by the velocity field, the and thus when the normalized cross correlator between
opposite regime wherg,, is large, a regime corresponding fields defined as @z )/({|z*|*+|z7|%)=(1—xw)/(1
to strongly magnetized plasmas as encountered in tokamakisxy) is close to zero. Indeed, most of the time, #iefields
or in the solar corona, and a third regime wjgly~1. It is  evolve quasi-independently, traveling in opposite directions
instructive to rewrite the scaling laws for MHD introducing along the large-scale quasi-uniform magnetic field; one can
normalizing factors which can be defined with the rms of anythen assume that they are decorrelated at different spatial
velocity and magnetic-field component, viz:?=(v?)  locations, but of course are fully correlated when considered

=(v2) andb?=(b?)=(b?). Denoting the adimensionalized at the same point where they interact to give rise to the

third-order tensors with & symbol, we now obtain nonlinear coupling of MHD turbulencghis is the essence of
the weakening of nonlinear steepening due to the presence of
€' Alfvén waves [12)). Thus, the correlator

(Bui(r)=6xm(bf (v (x+1))=—Kq 3O (7 (%)z (x)z (x')) can be factorized with this hypothesis
into (zf’(x)zf(x))(zl_(x’»:o. Note however that this does
3 —a 12 3 o~ not imply that a correlator such as, for example,
— X (BL(M)+6xm (oL ()bL(Xx+1)=—Kq 3. (77 (07 (X2 (X)z,(x')) factorizes; of course this does
(10) not imply any factorization fofv,b) moments either.
With that hypothesis, the above expressions simplify into
In each of these distinct regimes, some terms of the abova form more akin to the Kolmogorov law, since it involves
relationships dominate and must scaler adience it can be only structure functions:
conjectured that the combination of terms for each power of
xwm scales independently linearly with <5zf2(r)5z[(r))= —Cye'r, (12)
Thus, the linear scaling in holds for the structure func-
tion cubic in the magnetic field for magnetically dominated
flows. It stems from the flux ofv,b) correlation(with v+ 0)
and leads in dimension three to

—

(62, %(r) 6z (r))=—Cqer. (13

In terms of the(v,b) fields again, these restricted relation-
(8b3(r))y=2¢Cr. (11)  ships now read svP(r))— (v (r) 8bf(r))=—Cge'r, and
similarly, —(8b3(r)) + (b (r) sv?(r))= — CqeCr.
In the solar wind, this relationship does not seem to apply Finally, the calculations presented in this paper provide a
[22], possibly an indication that the turbulence is not fully set of surrogate lengths for MHD which are useful for data
developed; however, using the left-hand side of 8d) as  analysis, e.g., in terms of the correlators in E@g.and (6)
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because, as noted before, this allows for extended power-larelevant, for example, to magnetospheric phydi2g]—
ranges. Besides providing a guide to a phenomenologicaloses no particular problem and is left for future work; it will
description of MHD flows, this should also be useful in ana-represent a more realistic step towards describing astrophysi-
lyzing, e.g., the solar wind daf@5]. cal or geophysical fluids.

The extension of the present analysis to several variants

of the MHD equations, including small-scale kinetic effects We received financial support from CNRS Grant No.
[26] such as the Hall current or the Pedersen resistivity—MSS 1202.
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