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von Kármán–Howarth equation for magnetohydrodynamics and its consequences
on third-order longitudinal structure and correlation functions

H. Politano and A. Pouquet
Centre National de la Recherche Scientifique, UMR 6529, Observatoire de la Coˆte d’Azur, Boıˆte Postale 4229,

06304 Nice Cedex 4, France
~Received 17 June 1997!

A derivation in variable dimension of the scaling laws for mixed third-order longitudinal structure and
correlation functions for incompressible magnetized flows is given for arbitrary correlation between the veloc-
ity and magnetic field with full isotropy, homogeneity, and incompressibility assumed. When close to equi-
partition between kinetic and magnetic energy, the scaling relations involve only structure functions in a
manner similar to the ‘‘45 law’’ of Kolmogorov. @S1063-651X~98!50601-0#

PACS number~s!: 47.27.Jv, 47.27.Gs, 47.65.1a
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Magnetized flows are common in the universe, and
often in a turbulent state; examples are that of the solar
rona, where magnetohydrodynamics~MHD! turbulence is
likely at the origin of the power-law distributions of the lu
minosity of flares@1#, or the interstellar medium where tu
bulence plays an essential role to sustain dense cold cl
@2#; in the solar wind, several in situ measurements~e.g.,
from the spacecrafts Helios, Voyager, and now Ulysses! pro-
vide information on structure functions of the velocity a
magnetic fields indicating that the fields are strongly int
mittent @3#; finally, the ground-based instrument Them
soon operational, will provide similar information for th
small magnetic structures of the solar photosphere. In v
of these various domains of application, a theoretical ba
equivalent to the rigorous results of von Ka´rmán and
Howarth@4#, and of Kolmogorov@5# for incompressible non-
helical flows—concerning the temporal evolution of the lo
gitudinal second-order energy tensor in terms of the th
order one, and the scaling of the latter in the inertial rang
but for magnetized flows is in demand. The technica
helpful restriction to incompressible nonhelical flows is u
realistic~although often used! as far as the above-mentione
astrophysical and geophysical flows are concerned@6#. Nev-
ertheless, this work represents a first step in providing th
retical constraints on the dynamical evolution of small-sc
structures in MHD. These structures~magnetic flux tubes
and vortex and current sheets! have been studied analyticall
~e.g., in the context of reconnection!, mostly in the linear
regime, and have also been investigated numerically mo
in the incompressible case~e.g.,@7# in two space dimensions
and in three dimensions@8#!.

In 1941, Kolmogorov wrote three oft-quoted papers@5,9#
concerning homogeneous isotropic incompressible fluid
bulence viz.~a! the distribution of kinetic energy amon
Fourier modesEV(k);( ē)2/3k25/3, where ē is the kinetic
energy flux to small scale~and decay rate2ĖV!; ~b! the
temporal decay of the kinetic energyEV(t);(t2t* )210/7

~wheret* is typically the time at which the enstrophy^v2&
reaches its first maximum, withv5“3v the vorticity andv
the velocity!; and ~c! the scaling law for the longitudina
third-order structure functionS3(r )52 4

5 ēr , where S3(r )
5^dvL

3(r )& with dvL(r )[@v(x1r )2v(x)#•r , r being the
571063-651X/98/57~1!/21~4!/$15.00
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displacement vector andr 5ur u; hereafter, the subscriptL
denotes longitudinal components. Whereas the first two la
stem from phenomenological considerations, the third on
deduced rigorously from the Navier-Stokes equations, in
inertial range neglecting viscosity. Extensions of the s
called ‘‘ 4

5’’ law of Kolmogorov to the case of a scalar pa
sively advected@10#, such as the temperature or a polluta
in the atmosphere, as well as to the case of a scalar wi
dynamical effect on the velocity, such as the magnetic
tential in two-dimensional MHD@11#, show that it is the
correlation between the scalar and the velocity field tha
constrained by the invariance properties of the equatio
thereby indicating the necessity not to neglect such corr
tions in modeling turbulent flows, since they are essential
nonzero turbulent transfer.

We write for an incompressible conducting flow

~] t1z7
•“ !z652“P* 1n1¹2z61n2¹2z7 ~1!

for the Elsässer fieldsz65v6b, whereb is the magnetic
induction, P* 5P1b2/2 the total pressure,n65(n6h)/2,
wheren is the viscosity andh the magnetic diffusivity, and
“•v50, “•b50; a force term can be added as well.

In conducting flows, the nonlinear interactions and th
the ensuing phenomenology describing such interactions
more complex than for neutral fluids. The standard mode
Iroshnikov and Kraichnan @12# leads to ET(k)
;(eTB0)1/2k23/2 for the energy Fourier spectrum and,
three dimensions in the simplest case, a decay of energy
is substantially slower than for neutral fluids withET(t)
;(t2t* )25/6 @13#, whereB0 is a large-scale magnetic field
ET is the total ~kinetic plus magnetic! energy, andeT5

2ĖT is its flux. The phenomenological modeling of Re
@12# relies on taking into account the slowing down of th
energy transfer due to the interaction ofz6 eddies propagat-
ing in opposite directions alongB0 .

The Kolmogorov law@5# arises from the conservation o
energy in the limit of negligible dissipation, i.e., in the ine
tial range~and then taking the limitr→0, otherwiseS3(r )
;r 3 trivially from a Taylor expansion!; the 4

5 law follows
from the von Kármán–Howarth equation, which we firs
generalize to MHD using the fact that the invariants in ter
of the Elsässer fields areE65^uz6u2&/2. In the derivation, a
R21 © 1998 The American Physical Society
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few steps of a kinematical nature concerning the proper
of tensors are needed; the algebra is somewhat lengthy
the principles are well known.

One proceeds in two steps@14#. We first seek to derive the
equation for the temporal evolution of the second-order c
relation tensors, which in the full isotropic case can be w
ten as@14#

Ri j
6~r ![^zi

6~x!zj
6~x8!&5F6~r !r i r j1G6~r !d i j ,

wherex8[x1r . Since the MHD equations are symmetric
the exchange of the6 variables, it suffices to work with, say
z1. Particularizing the correlation tensor now to the1 case,
its longitudinal@ f 1(r )# and lateral@g1(r )# coefficients can
be written as usual asz12

f 1(r )5^zL
1(x)zL

1(x8)&, and

z12
g1(r )5^zn

1(x)zn
1(x8)&; isotropy implies equipartition of

the energy of the longitudinal (L) and lateral (n) compo-

nents of z1, namely ^zL
12

&5^zn
12

&5d
*
21^zi

1zi
1&[z12

,
where d* 5d is the number of components of the vecto
that are retained in the dynamical evolution of the flow@15#;
a similar definition holds for (z2)2. In space dimensiond,
incompressibility yieldsg1(r )5 f 1(r )1r f 81(r )/(d21).

Proceeding in a similar manner for the two-point thir
order correlation tensor between thez1 and z2 fields, we
consider its longitudinal component

CLLL
121~r ![^zL

1~x!zL
2~x!zL

1~x8!&[C3
1k121~r !,

whereC3
15z12

z2. Using incompressibility and homogene
ity again, the von Ka´rmán–Howarth equation for MHD is
now derived after a few lines of algebra as

] t@z12
f 1~r !#5S ]

]r
1

d11

r DC3
1k121~r !

12S ]2

]r 2 1
d11

r

]

]r D @n1z12
f 1~r !

1n2z1z2 f 12~r !#,

where z1z2 f 12(r )[^zL
1(x)zL

2(x8)&5z1z2 f 21(r ) is the
longitudinal coefficient of the cross correlator between
z6 fields whose trace corresponds to the relative energyER

5^uvu22ubu2&, and is not an invariant of the MHD equa
tions. Another von Ka´rmán–Howarth equation can easily b
written for f 12(r ), but this is not done here, since this ter
is discarded in the inertial range on which we concentra
The pressure term disappears from the above equation, s
it involves a first-order solenoidal isotropic tensor equal
zero assuming regularity atr 50.

We now restate the above von Ka´rmán–Howarth equation
for MHD in terms of structure functions defined a
usual as Bi j

1(r )[^dzi
1(r )dzj

1(r )& and Bi jl
121(r )

[^dzi
1(r )dzj

2(r )dzl
1(r )&, and defining as well the constan

total flux of the1 field as] t^zL
12

&522e1/d* ; we further
express the second- and third-order structure function
terms of the correlation functions, namely,

RLL
1 ~r !5~1/d!^zL

12
&2~ 1

2 !BLL
1 ~r !,
s
ut

r-
-

e

e.
ce

in

4CLLL
121~r !5BLLL

121~r !22CLLL
112~r !54C3k121, ~2!

where CLLL
112(r )[^zL

1(x)zL
1(x)zL

2(x8)&, and where homo-
geneity has been taken into account. We thus finally arriv
the alternative form of the von Ka´rmán–Howarth equation
for MHD where

2
2e1

d
2

1

2

]BLL
1 ~r !

]t
5r 2g] rFr gS BLLL

121~r !

4
2
CLLL

112~r !

2 D G
2r 2g] r$r

g] r@n1BLL
1 ~r !

1n2BLL
21~r !#%, ~3!

with g5d11 and BLL
21(r )[^dzL

2(r )dzL
1(r )&. Neglecting

the time-derivative term~as compared toe1! and the dissi-
pative terms in the inertial domain, we now integrate over
and obtain the law analogous to that of Kolmogorov@5#, but
for magnetized flows, namely

^dzL
12

~r !dzL
2~r !&22^zL

1~x!zL
1~x!zL

2~x8!&52Cde1r ,
~4!

with Cd52Kd/3 and

d* ~d12!Kd512; ~5!

K35 4
5 in the standard three-dimensional case whered5d*

53. Using the6 symmetry, the equivalent law forz2 im-
mediately obtains

^dzL
22

~r !dzL
1~r !&22^zL

2~x!zL
2~x!zL

1~x8!&52Cde2r .
~6!

Note that fore1;e2, i.e., for a negligible flux of velocity
magnetic-field correlationeC ~with 2eC5e12e2522ĖC,
whereEC5^v•b&!, the left-hand side of Eqs.~4! and~6! are
comparable.

At this point, it is instructive to go back to the origina
physical variables of MHD, namely, the velocity and th
magnetic field. One uses now, instead ofe6, the correspond-
ing total energy and correlation fluxeseT and eC with e1

1e252eT. The two scaling laws in terms of the velocit
and magnetic-field moments are@16#

^dvL
3~r !&26^bL

2~x!vL~x1r !&52KdeTr , ~7!

2^dbL
3~r !&16^vL

2~x!bL~x1r !&52KdeCr ; ~8!

the Kolmogorov law@5# recovers forb[0. Alternatively, in
terms of correlation functions only, and noting th
^dbL

3(r )&56^bL
2(x)bL(x1r )&, these scaling laws can b

written in term of the point-wise relative energy of the lo
gitudinal components defined asEL

R(x)5vL
2(x)2bL

2(x),
leading to ^vL(x1r )EL

R(x)&52(Kd/6)eTr , and similarly,
^bL(x1r )EL

R(x)&52(Kd/6)eCr .
In the general case with comparable velocity and m

netic fields,only cross correlators, as indicated in fact by
direct inspection of the nonlinearities of the MHD equation
scale asr ; such conservation laws imply nonzero corre
tions between the~v,b! fields, as for the scalar cases me
tioned before@10,11#.
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The consequences of the exact scaling laws derived in
paper deserve a thorough study; numerical computation
both two and three dimensions are under way. It has b
shown @17,18# that in a flow with EC;0, i.e., with weak
~v,b! correlations, the spatial correlation rC(x)
52v(x)•b(x)/„uv(x)u21ub(x)u2… is in fact quite strong lo-
cally; similarly, large scales and small scales have~v,b! cor-
relations of opposite polarities@18#. These are the correla
tions that are responsible for a local~as well as global!
slowing down of the dynamical evolution of magnetiz
flows giving rise to a different scaling for MHD than fo
neutral fluids. Furthermore, because of the presence of
independent scaling functions for the two Elsa¨sser variables,
different scaling laws may arise for highly correlated flows
result already known@18# at the level of second-order mo
ments@19#.

Preliminary results of direct numerical simulations in tw
space dimensions at low global correlation (rC;0.05) and
with a slight excess of magnetic energy~by a factor;3 in
the statistically steady regime! indicate that in that case bot

longitudinal structure functionŝdzL
62

dzL
7& scale asr in the

inertial range, and furthermore, that the third-order struct
function of the velocity does not scale linearly withr ,
whereas that for the magnetic field does@20#.

The extensions of the45 law of Kolmogorov for MHD
derived here involve moments with different orders in t
parameterxM5^ubu2&/^uvu2& and must be fulfilled for the
whole range of values that this ratio can take. It is kno
@21# that MHD flows evolve asymptotically in time toward
either of three possible regimes: the hydrodynamical
gime wherexM;0 is dominated by the velocity field, th
opposite regime wherexM is large, a regime correspondin
to strongly magnetized plasmas as encountered in tokam
or in the solar corona, and a third regime withxM;1. It is
instructive to rewrite the scaling laws for MHD introducin
normalizing factors which can be defined with the rms of a
velocity and magnetic-field component, viz.v25^vL

2&
5^vn

2& andb25^bL
2&5^bn

2&. Denoting the adimensionalize
third-order tensors with â symbol, we now obtain

^dvL
3~r !̂&26xM^bL

2~x!vL~x1r !̂&52Kd

eT

v3 r , ~9!

2xM
3/2^dbL

3~r !̂&16xM
1/2^vL

2~x!bL~x1r !̂&52Kd

eC

v3 r .

~10!

In each of these distinct regimes, some terms of the ab
relationships dominate and must scale asr , hence it can be
conjectured that the combination of terms for each powe
xM scales independently linearly withr .

Thus, the linear scaling inr holds for the structure func
tion cubic in the magnetic field for magnetically dominat
flows. It stems from the flux of~v,b! correlation~with vÞ0!
and leads in dimension three to

^dbL
3~r !&5 4

5 eCr . ~11!

In the solar wind, this relationship does not seem to ap
@22#, possibly an indication that the turbulence is not fu
developed; however, using the left-hand side of Eq.~11! as
is
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-
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y
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the independent variable~instead ofr itself! may yield better
results for computing the anomalous scaling exponents
structure functions at all orders; this was shown experim
tally for fluids at moderate Reynolds numbers@23#. This re-
lationship implies that the skewness of the magnetic field~or
more precisely the normalized third-order longitudinal stru
ture function! is of the same sign as the flux of~v,b! corre-
lation. It is known empirically from both closure calculation
and numerical computations thateC is of the same sign as
EC, i.e., that the correlation undergoes a direct transfer
small scales, albeit more slowly than the energy@24#. Hence,
Eq. ~11! implies that the skewness ofb is of the same sign as
the ~v,b! correlation in the strong magnetic-field regime.

On the other hand, in the context of the dynamo proble
assuming that initially the magnetic field is weak and th
neglecting its third-order correlator in Eq.~8!, we deduce
immediately that since correlations between the grow
field and the velocity~that creates it! grow asb grows, this in
turn affects the Kolmogorov scaling@5# of the velocity itself
in Eq. ~7!; this indicates again the role of the velocity
magnetic-field correlation in the building up of an interm
tent field, like the passive scalar that is known to be m
intermittent than the velocity that carries it. Furthermo
when the correlation fluxeC is weak compared to the flux o
energy@a case that corresponds to a more efficient nonlin
transfer of energy towards small scales than of~v,b! correla-
tion, as observed in several models and numerical sim
tions#, ^dbL

3(r )&;^vL
2(x)bL(x1r )&; note that this does no

imply EL
R(x);0, sinceeTÞ0.

At this stage, a simplification can be made whenxM;1
and thus when the normalized cross correlator betweenz6

fields defined as 2̂zi
1zi

2&/^uz1u21uz2u2&5(12xM)/(1
1xM) is close to zero. Indeed, most of the time, thez6 fields
evolve quasi-independently, traveling in opposite directio
along the large-scale quasi-uniform magnetic field; one
then assume that they are decorrelated at different sp
locations, but of course are fully correlated when conside
at the same point where they interact to give rise to
nonlinear coupling of MHD turbulence~this is the essence o
the weakening of nonlinear steepening due to the presenc
Alfvén waves @12#!. Thus, the correlator
^zi

1(x)zj
1(x)zl

2(x8)& can be factorized with this hypothes
into ^zi

1(x)zj
1(x)&^zl

2(x8)&50. Note however that this doe
not imply that a correlator such as, for exampl
^zi

1(x)zj
1(x)zl

2(x)zm
2(x8)& factorizes; of course this doe

not imply any factorization for~v,b! moments either.
With that hypothesis, the above expressions simplify in

a form more akin to the Kolmogorov law, since it involve
only structure functions:

^dzL
12

~r !dzL
2~r !&52Cde1r , ~12!

^dzL
22~r !dzL

1~r !&52Cde2r . ~13!

In terms of the~v,b! fields again, these restricted relatio
ships now read̂ dvL

3(r )&2^dvL(r )dbL
2(r )&52CdeTr , and

similarly, 2^dbL
3(r )&1^dbL(r )dvL

2(r )&52CdeCr .
Finally, the calculations presented in this paper provid

set of surrogate lengths for MHD which are useful for da
analysis, e.g., in terms of the correlators in Eqs.~4! and ~6!
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because, as noted before, this allows for extended power
ranges. Besides providing a guide to a phenomenolog
description of MHD flows, this should also be useful in an
lyzing, e.g., the solar wind data@25#.

The extension of the present analysis to several vari
of the MHD equations, including small-scale kinetic effec
@26# such as the Hall current or the Pedersen resistivit
y

A

.

s
-
h
s.

a-
w
al
-

ts

relevant, for example, to magnetospheric physics@27#—
poses no particular problem and is left for future work; it w
represent a more realistic step towards describing astroph
cal or geophysical fluids.
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