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A discrete model based on the Boltzmann equation with a body force and a single relaxation time collision
model is derived for simulations of nonideal-gas flow. The interparticle interaction is treated using a mean-field
approximation. The Boltzmann equation is discretized in a way that preserves the derivation of the hydrody-
namic equations from the Boltzmann equation, using either the Chapman-Enskog method or the Grad 13-
moment method. The previously proposed nonideal-gas lattice Boltzmann equation model can be analyzed
with rigor. [S1063-651X98)50401-1

PACS numbg(s): 47.55.Kf, 02.70--c, 05.70.Ln, 51.206+d

Computer simulations of fluid dynamical problems in- relaxation-time approximation, also known as the Bhatnagar-
volving fluid interfaces and phase transitions are of both funGross-Krook(BGK) collision model[5]. The interparticle
damental and practical importance. Traditional computaattraction is treated using a mean-field approximation in the
tional fluid dynamics (CFD) methods for solving Same way that the Coulomb interaction among the charged
macroscopic hydrodynamic equations have many difficultieParticles of a plasma is treated in the Viasov equaffh
in this area. For instance, fluid interfaces often undergo toFollowing the work of Enskog, the effect of the exclusion
pological change due to both coalescence and phase tran¥plume is taken into account by an additional term in the
tions. In problems where the capillary effect is important,collision operator. The final Boltzmann equation is then dis-
high resolution is required for accurate computation of inter-cretized in the velocity space in a way that guarantees that
face curvature. The treatment of these problems using #¢ Navier-Stokes equation is obtained at the macroscopic
Navier-Stokes solver is cumbersome, if not impossible, inevel. This discretization is similar to the truncation made in
many situations. The macroscopic motion of a fluid can als¢he well-known 13-moment method of Gréd]. The previ-
be solved by computing motions of its constituent particlesOUsly proposed nonideal LBE modg2] can be obtained
Since the complexity of the nonideal-gas fluid systems igVith only minor differences. The present derivation allows
essentially due to the microscopic interparticle interactionthe LBE model to be implemented on nonuniform grids. The
particle methods such as molecular dynamics can simulaténteraction potential” introduced previously now has a
complex fluid phenomena naturally by implementing the corClear cpnnection v_vith the interparticle pairwise pqtential in
rect interparticle potential. However, these methods are verjeal fluids. Analysis of some other schenj@sg] for incor-
inefficient for fluid simulations. porating interparticle forces into LBE models in the frame-

At the mesoscopic level, the lattice-Boltzmann-equationwork of the present derivation shows that anisotropy is a
(LBE) method simulates the motion of fluids by following consequence of an inappropriate intermolecular interaction.
the evolution of a lattice Boltzmann equation that governs We start from the following Boltzmann equation in which
the behavior of the single-particle distribution function. It the collision term is replaced by the BGK collision model,
was found that solving the LBE directly is an efficient and
accurate method for simulating fluid motigh]. More im- of f—fed
portantly, the interparticle interaction can be easily incorpo- S TEVIHFR Vf=m——, @
rated into the LBE method to form a model that can simulate

macroscopic complex fluid phenomena at least as efficientl

as the conventional CED methods solve the hydrodynami}é/‘/herefEf(x'f’t) is the single-particle distribution function
equations for simple fluidg2]. in the phase space(§), & is the microscopic velocityf is

Although the LBE method has shown its ability to simu- &1 €xternal body force which can depend on both space and
late complex fluids, a recent stufl§] shows that this method {iMe; A is the relaxation time due to collision, arfflis the
can be greatly improved if one can establish the relationshiff!@xwell-Boltzmann distribution function:
between the LBE and the continuous Boltzmann equation
[3]. Historically, the continuous Boltzmann equation has . p (£€—u)?
mainly been used to solve supersonic fldwW$ This is par- o= (ZR—T)D’ZeXF{ T ORT
tially due to both the extreme complexity of the collision m
kernel when dealing with dense, interacting particles and the
tremendous computer resources required to resolve the sixith R andD being the gas constant and dimension of the
dimensional distribution function. In this paper, we proposespace, respectively. The macroscopic dengityelocity u,
a computational scheme for the simulation of nonideal gaseand temperatur@ are calculated as the moments of the dis-
based on the continuous Boltzmann equation using a singldribution function:
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exclusion volume of the molecules on the equilibrium prop-
P:J' fd§, (3)  erties of a dense gas can be approximated by the following

addition to the collision term:

pu= [ g @ ~fpy(£-u)-V In(p2y), (10

whereb=27¢3/3m, m is the mass of a single molecule, and
D RT= 0)2d 5 x is the increase in collision probability due to the increase
2 PRI= (§-w)tdg. 5) in fluid density, which has the following asymptotic form:

These macroscopic fluid variables can be shown to obey the
familiar Navier-Stokes equations.

The derivativeV .f cannot be calculated directly because ] ] )
the dependence of the distribution function on the micro-The form of Eq.(10) allows it to be combined with the
scopic velocity is unknown. Considering thigfl is the lead- corrections due to intermolecular attraction, yielding a single
ing part of the distributiorf and the gradient of®d has the ~ €quivalent force field in Eq(7):
most important contribution to the gradient fofwe assume F=—VV—bpRTYV In(pZy). (12)

5
x=1+ §lop+o.286£1b,o)2+ 0.1103bp)3+--- . (11)

V.f~V.fee — §—Ufeq 6) It should be noted that in the derivation above a few crude
¢ ¢ RT approximations have been employed. The correspondence
with the details of the molecular properties should only be

Consequently, we obtain taken as heuristic when the equations above are applied to
real systems to obtain quantitative results.
a—f+§-Vf—— f—f% F-(&-u) feq @) To solve Eq.(7) numerically, we first discretized it in
at B A RT ' time. The equation can be integrated over a time stefi t6
become

In the simplified Boltzmann equation abowve,s the ex-
ternal force experienced by each particle. In this paper, we f(x+&dt,&t+6t)—f(x,&1)
will use the same term to aCC(_)unt_for _the pgrticle interac_tion, t+otf—fed ot Fe (£-U)
similarly to the Vlasov approximation in which each particle = _f dt J -
experiences an averaged electric field arising from the Cou- t A t RT
lomb interaction from the other particl¢§]. To simulate a
nonideal gas, two important factors have to be taken int
consideration: the intermolecular attraction and the exclusio
volume of molecules.

The intermolecular attraction is treated using the sam
mean-field approximation, i.e., a particle can be considere
to move in the following averaged force potential due to
intermolecular attraction9]:

fedt. (13

d:ollowing previous lattice Boltzmann models for an ideal
as, the integrand of the first term on the right-hand side of
g. (13) is assumed to be constant over one time step. This
éassumption yields an artificial viscosity that can be absorbed
Hwto the real viscosity of fluids. However, a trapezoidal rule
IS necessary for the second integration as discussed later.
With these considerations, EGL3) becomes

f(x+ &dt, &1+ 6t) —f(X,&1)

V(rl):f Uard M 12) p(r2)dr 2, tS) f—fea  St[F.(£&-u)
r1o=>0 = |+ — —fe
|, 2| RT [*”5‘
where,r 1,=|r;—r5|, Uau(r 1) is the attractive component of
the intermolecular pairwise potential, andis the diameter F-(§-u) eq
of the molecules. Expanding(r,) in Eq. (8) aboutr, and RT = (14
assuming that the gradient @f is small, the leading two
terms are where 7=\/6t is the nondimensional relaxation time. The
right-hand side involves quantities evaluatedtatst. To
V=—2ap—«V?p, (9)  eliminate this implicity, we introduce the following new
variable:
wherea and x are constants given by F.-(&-u)
h=f—erqﬁt, (15)

il
a=—= U () dr,
2)i>o and ") in terms of which, Eq(14) becomes

h(x+ £3t, £ t+ 8t) —h(x,£1)

. h(X7§,t)_hEC(X,§,t) + F- (f_ U)
T RT

1 2
K=— Efo I “Ugdr)dr.

feast, (16)
According to the analysis of Enskdg.f. Chap. 16 of Ref.
[10]), when the temperature is a constant, the effects of thevhere
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F-(&-u) . With exp(—&/2RT) being the weight function, the integra-
ToRT feq, (17)  tion scheme has to be a Gauss-Hermite quadrature of at least

fifth order. On a hexagonal lattice, for example, it has been
Here we restrict our interest to the recovery of mass anghown[3] that these restrictions yield the following colloca-
momentum equations only and will defer the discussion ofion points:
the temperature equation to future publications. The macro-

heq={1— st

scopic density and momentum are now relatet toy 0 a=0,
= a—1 a—-1 (22
a c| cos—m,sin——m=| a=1,..,6
f hdé=p, (18 3 3 e
wherec=2RT, and the corresponding weight coefficients
J h&dé=pu— LpFat. (19 of wo=7RT, andw,= me’RT/6 fora=1,...,6. By introduc-
ing
To solve the time-discretized system given by Ed$), h,=w,h(x,e,,t), (23

(18), and(19) numerically, the velocity space, denoted &y
must be discretized. It is well known that the form of the and the similar definitions fof, and 3%, Eq. (16) can be
distribution in the velocity space affects the macroscopionritten as

fluid equations through its first few moments. When derivin
the Ngvier-Stokes eguations from the the Boltzmann equ%— ha(X+€0t,t+8t) —ha(x,1)

tion with the BGK collision model using the Chapman- 1 F-(e,—u)
Enskog expansion, only velocity moments of the Maxwellian =— —[hy(x,t)—h&] 4
distribution up to third order are used. Alternatively, Grad T c
[6] was able to obtain the hydrodynamic equations from the

£o9st, (24)

Boltzmann equation by expanding the distribution functionWhere’

in the velocity space in terms of Hermite polynomials, and 1 eru 4(egu)? U2

keeping only the first three terms in the expansion. For any fe9=t.p §+2—2+ — 3 (25
function that can be represented by a finite number of Her- c c c

mite polynomials, the moments, or, equivalently, the expany,i, to=1 andt,=1/6 for a=1,..,6. The corresponding

sion coefficients, can bexactlycomputed by Gaussian inte- eqyilibrium distribution forh can be calculated using
gration using the function values at a set of discrete points

[11]. Truncating the higher-order Hermite polynomials in the

functional space is equivalent to truncating the continuous ha'=
velocity space into a finite set of discrete points. After this

truncation, the moment integrals in Eq48) and (19) are  and the macroscopic density and velocity given by E48)
replaced by summations of the function values using &ecome

Gaussian quadrature of the following form:

F-(e;—u
1_2L)5t

% e, (26)

2 ha=p, 27

f POhXEDAE=D Wa(e)h(x.e,,1), (20
) 2 hee,=pu—3pFat. (28)

where{e,} is the set of collocation points in velocity space,
w, are the corresponding weight coefficients, and@) is a  The discretized equations have the same form as LBE mod-
polynomial in £ In order for the velocity moments to have €ls if the space is discretized so thag,ot is the distance
the correct hydrodynamic behavior, it is sufficient to havebetween two neighboring grid points.
only information of the distribution function at the points in It is interesting at this point to use our results to analyze
the velocity space given by the Gaussian quadrature formuldhe previous lattice Boltzmann models with interparticle in-

As long as the integration scheme is accurate for po|ynomi1eractions. A direct comparison can be made with the nonlo-

als of up to third order, the summation in velocit cal mpdgl p_roposed _by _Shan and Ctieh By realizing that
spacl//e(é;)/ields t%e correct moments, and the derivation of){ch e distribution function in Ref§2] corresponds to the func-
Navier-Stokes equation from the Boltzmann equation surson h in the present model, and replacifigwith pFot, the

vives the discretization of the velocity space. For more deP revious model is equivalent to the present model except for

tails, readers are referred 8] Here we only focus on the a minor difference on the right-hand side of the evolution
' ) ) ) y . equation. This difference, which can be written as
two-dimensional, isothermal, low-Mach-number floti.ge.,

T=const andi><RT). Under these assumptions, tHé can 1\2[F? 4(e,-F)? 1
be expanded as W,pi 7| T— E) g_? +(1_2_T)
2
e P ¢ " 8(F-u)(g;-u)  4F-(gg—u)u?
27RT 2RT ct ct

fu (Fuw?
ﬁ—'— 2(RT)? ~ 2RT

. —_ . 2
rod). (21 e uey H 29
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is of second order in?/c? andF?/c?. As long as the velocity A
and interparticle force are small, this difference is negligible. m%' II-e,, (39

Attention needs to be drawn here to the choicé&oPre-
viously [2], it was defined as

1 . )
F= — Gi(x X+ e.8,)e,, 30 whereII=VpVp—3|Vpl|l is the stress tensor due to interpar-
a4 )E Yxtead)e, 30 ticle interaction ang is the difference of the densities of the
, B ) o ) two componentgthe so-called color fie)d Similar results
wherey is the “effective mass” which is a function of den- p4ve been found for the model proposed by Swift, Osborn,

sity. By expanding/(x+€,) aboutx, we have and Yeomang8]. By regrouping the equilibrium distribu-
3Gc26,2 3gc4b\f' , tions in [8]_, the Lnteractlon 1term can be identified as
==V > ——g ¥VV (B)  e,-M-e, with I=3k(VpVp—3|Vp|l).
The neglect of the velocity in the second collision term in
whereas in the present results, from ELR), we have this class of models is not a coincidence because the inter-

) ) 5 action in these models was constructed based on equilibrium
pF6=V(ap”—bpRTx) i+ kpS&VV-p. (32 information only. The consequence, however, leads to the
following two unsatisfactory results. First, after neglecting

By matching the first-order derivative term of E¢31) and . : X :
(32), the following relation between the previously unspeci_the velocity dependence, the interparticle force, which can be
found as proportional te,-II, has a dependence on the lat-

fied “effective mass” and the molecular properties can be’. ) . i . .
identified: tice structure, which we believe is responsible for the aniso-

2bRTy— 24| 12 tropic features in these models. Second, the interaction term
3—); (33 in Eq. (34) does not depend on fluid velocity. Microscopi-

cally, the velocity distribution in the laboratory reference
Another class of LBE modelf7,8,13 implements mo- frame, instead of that in the reference frame moving with the
mentum conservation at each collision. Since only local in

_P
c

fluid, was used in computing the interaction term. This might
formation is used at each collision, the integrand of the sectesult in the lack of Galilean invariance in these models. The

ond term in Eq(13) must be treated as a constant during oneShortcomings of the local-interaction-based models have
time step if these models are to be derived with the preserff€en shown in a recent numerical study].

method. This leads to the following evolution equationf of In summary, we have proposed a discrete model for com-
puter simulation of nonideal gases based on the Boltzmann
fa(X+eyot,t+6t) —fa(x,t) equation with the BGK collision model. A mean-field ap-
proximation is used for the interparticle interaction. The dis-
:_E[f (X t)_feq]+4':'(ea_ u) feast. (34) cretization of the velocity space ensures that the Navier-
o 2 c? a Stokes equation can be obtained at a macroscopic level. This

) ) discretization effectively provides a numerical scheme for
It can be shown that the local-interaction-based LBE modelghe solution of the Grad 13-moment system. A previously
can be obtained from Ed34) if the fluid velocity u is ne-  r5h05ed LBE model is found to be consistent with the
glected in the second term on the right-hand side of(B4.  present analysis. It is also found that anisotropy might be

In the model proposed by Gunstensiral. [7] and Grunau, jnevitaple in this type of model if a nonlocal interaction is
Chen, and Eggefft12], the difference between two compo- not included in momentum space

nents[13] satisfies an evolution equation similar to £84)
but with the second interaction term on the right-hand side The authors thank Dr. S. Hou, Dr. L. Wang, and Dr. Q.
replaced by Zou for helpful discussions.
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