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Characterizing the dynamics of constrained physical systems
with an unsupervised neural network
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The method of Lagrange multipliers is utilized in the unsupervised training of a three-layer, single-output,
feed-forward neural network for characterizing the dynamics of constrained physical systems. Training aims at
minimizing the energy function that is obtained from the equations of state which are generated using the
method of Lagrange multipliers. The approach is illustrated~1! to solve an inverse problem in nuclear reactor
design,~2! to determine how competing biological entities organized~cells in a tissue,Eucalyptustrees!, and
~3! to solve an ill-posed differential equation.
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We demonstrate a new neural network~NN! approach to
characterizing the dynamics of constrained physical syste
The method of Lagrange multipliers~MLM ! @1# is utilized in
the unsupervised training of a single-output feed-forw
NN.

An NN is trained to do a particular task by minimizing
certain quantity like the sum-of-squares error in supervi
training, or the energy function in unsupervised training@2–
5#. In other problems such as finding the principal comp
nents of an ensemble of images, training is aimed at m
mizing the projection of the NN weight vector on th
multidimension vector formed by the principal compone
@6#. In any manner, training is always aimed at findin
within the shortest possible time, the appropriate interc
nection strengths between neurons that make the netw
yield a satisfactory solution to a given problem.

In this paper, an unsupervised NN is trained to descr
the behavior of a constrained system, by minimizing the
ergy function whose form is derived from the equations
state which are generated via MLM.

The ability of MLM to produce functional relationship
between the various dynamical variables, is combined w
the hyperdimensional fitting capability of NN@2–5# to obtain
a description of the dynamics of a constrained system. Gi
the set ofK constraints$Ck(x1 ,x2 ,...,xM)5kk% where k
51,2, . . . ,K; the cost functionF(x1 ,x2 ,...,xM)5F(xi) is
optimal when the Lagrange formulation

]F

]xi
1 (

k51

K

lk

]Ck

]xi
50 ~1!

is satisfied, wherelk’s are the Lagrange undetermined mu
tipliers. Equation~1! is used to generate the equations
state of a constrained system. The NN is trained to reduce
quantity on the left-hand side~LHS! of Eq. ~1!, to a pre-
defined small value near zero. At the start of training
LHS value is far from zero, and Eq.~1! is not satisfied.

Figure 1 shows the architecture of the three-layer, fe
forward NN that is trained to output an accurate approxim
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tion of F(xi) corresponding to specific values o
x1 ,x2 ,...,xM , l1 ,..., andlk .

The output yh
hi of the hth hidden neuron is:

yh
hi5fh(Whr

in yr
in)5( r@sin(Whr

inyr
in)1cos(Whr

inyr
in)#, where

fh(Whr
in yr

in) is its activation function,Whr
in is the connection

strength between thehth hidden neuron and ther th
input neuron, yr

in is the output of the r th input
neuron, h51,2, . . . ,D; and r 51,2, . . . ,(M1K11). The
input neurons exhibit a linear response so that$yr

in%
5(x1 ,x2 ,...,xM ,l1 ,...,lK ,bias)5$x1 ;lk ,bias%. The NN
output is: Zout5s(Wh

hiyh
hi)5(hChWh

hiyh
hi , where s(Wh

hiyh
hi)

is the activation function of the output neuron,Wh
hi is the

connection strength between the output neuron and thehth
hidden neuron, andCh is a multiplicative constant.

The sinusoid combination is utilized forfh(Whr
in yr

in) be-
cause it permits efficient higher-order polynomial curve
ting and faster trainability@6–8#. We found, however, tha
training is not successful if a purely~even! cosine function is
used forfh(Whr

in yr
in). A linear s(Wh

hiyh
hi) is selected becaus

Zout is expected to cover a range of possible values. A s
moidal output response is most suitable in pattern classifi
tion networks whose outputs operate on thresholding@6#.

The final values of the interconnection strengths are
termined using the gradient-descent backpropagation me

FIG. 1. Feed-forward NN for characterizing the dynamics
constrained systems. It has (M1K11) inputs,D hidden neurons,
and one output.
R1247 © 1998 The American Physical Society
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~momentum term50! @2–5#. The NN undergoes unsupe
vised training to reduce the energy functionE(yr

in) to a de-
sired value. The strengths are updated according to:Wmn

(p11)

52a@]E(p)(yr
in)/]Wmn

(p)#1Wmn
(p) , where a is the learning

rate, andWmn
(p) is the previous strength value between themth

neuron in the current layer and thenth neuron in the next
layer.

The training set consists ofT combinations ofxi ’s and
lk’s values and the initialWmin values are chosen random
between21 and 11. The NN input number (M1K11)
depends on the problem at hand while theD value is deter-
mined by trial and error, and is chosen to yield the fast
decrease in the average energyEav

(p)(yr
in) with increasing it-

eration numberp.
The functional form ofE(yr

in) depends on the problem a
hand, and is derived from Eq.~1!. We found that the
Zout(yr

in) plot accurately approximates theF(xi) profile when
Eav

(p)(yr
in) is reduced to a value at least in the order of 1022.

The NN approach is used to determine:~1! the cost func-
tion that is minimized when designing a cylindrical nucle
reactor~CNR!, ~2! the nearest-neighbor distributions~NND!
of biological systems with competing constituents~Eucalyp-
tus trees, contiguous cells in a tissue!, and~3! the solution of
an ill-posed second-order differential equation~DE! that de-
scribes the dynamics of heart vibrations. The problems
chosen to highlight the various advantages of the NN
proach.

A CNR design must satisfy a constraint imposed by
neutron diffusion theory @1#: C1(R,H)5(2.4048/R)2

1(p/H)25u2, whereH is the reactor height,R is the ra-
dius, andu is a constant. The forward problem concerns
determination of theR andH values that minimize the CNR
volume V(R,H)5pR2H. The cost functionF(R,H) is
given by V(R,H) and MLM shows thatV(R,H) is mini-
mized only if H51.847R.

We solve the inverse problem of determining the form
F(R,H) knowing that it is a minimum whenH51.847R,
and thatC1(R,H)5u2. Note that it is difficult to obtain
F(R,H) by directly solving the coupled DE’s: (]F/]H)
1l1(]C1 /]H)50, and (]F/]R)1l1(]C1 /]R)50, where
F(R,H) is minimum whenH51.847R. Equation~1! yields
(]F/]R)]C1 /]H2(]F/]H)]C1 /]R50, or @22(2.408)2/
R3#]F/]R1(22p2/H3)]F/]H5Q(R5H/1.847,H)50.

The NN approach exploits the fact thatF(R,H) is a
solution to Q(R5H/1.847,H)50. The energy function
to be minimized is: E(R,H)5Q2(R5H/1.847,H)
5 @„ 22(2.408)2 / R3

…(]Zout/ ]R) 2 2p2 / H3(]Zout/ ]H)#2.
Thus, Zout(R,H) becomes equal toF(R,H) if E(R,H) is
reduced to zero for allR2H pairs @9#.

In Fig. 2 are plots ofEav
(p)(Rt ,Ht) vs p where Eav

(p)

5(1/T)( tE
(p)(Rt ,Ht), Rt5Ht/1.847, t51,2, . . . ,T5100.

Iteration numberp represents the number of times that t
entire set has been fully utilized in the training. The pertin
NN has only three inputs:R5H/1.847,H,bias51.0; because
Q(R,H) is independent ofl1 . The training set consists o
100 Rt2Ht pairs with Ht equally sampled within: 0<H
<1. We also found that the NN still learns the correct inp
output mapping even if a pure sine function is used
fh(Whr

in yr
in).
st

r

re
-

e

e

f

t

-
r

In Fig. 3 is the Zout(R,H) plot produced by a
trained NN with Eav

(p)50.0251, ~p5400, D510!. The
Zout(R,H) plot has a normalized mean-squar
error (NMSE)5((muFT(m)2Zout(m)u2)/((muFm

T u2)52.08
31024, where Zout(m)5Zout(Rm ,Hm), and FT(m)
5V(Rm ,Hm), and m51,2, . . . ,1600 @10#. The plot illus-
trates the ability of a trained NN to interpolate accurate
F(Rm ,Hm) values corresponding toRm2Hm pairs that were
not part of the training set.

We next analyze how competing biological species d
tributes spatially in the presence of other species. In part
lar, we consider~1! Eucalyptustrees in Queensland, Austra
lia and~2! contiguous cells in an insect tissue. Recently@11#,
the principle of maximum entropy~PME! has been used to
model explicitly their NND’s:Q(Ri)5Q, whereRi is the
nearest-neighbor distance of thei th individual, and i
51,2, . . . , P5total number of individuals in the system.

FIG. 2. CNR design. Plots ofEav
(p)(R5H/1.847,H) vs iteration

number p for different D values ~a51025, Ch5p!. Choosing
Ch5p for all hidden neurons, results in faster decrease ofEav

(p) .
Note thatEav

(1)5238.24 for D510, Eav
(1)5431.98 for D55, Eav

(1)

5501.37 forD515. OtherD values (D58,20,30) were also teste
but the resultingEav

(p) plots were not promising.

FIG. 3. CNR design. A 1600 datapointZout(R,H) plot of NN
with Eav

(p)50.0251 (D510).
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We used the NN approach to determine the form
Q(Ri) using the assumption that each system beha
in a manner that maximizes its entrop
T52k( i@Q(Ri)# log@Q(Ri)#, wherek is the Boltzmann con-
stant. The dynamics are subject to the following constrai
~1! average spatial-competition pressure is constant, and~2!
average nearest-neighbor area is constant.

Constraint 1 implies that the average-competition press
of a pattern is given by:U05( iQ(Ri)U(Ri)5C15const.
Constraint 2 implies thatA05p( iRi

2Q(Ri)5C25const.
Quantities U0 and A0 represent the repulsive interactio
between individuals, and their tendency to aggregate, res
tively. The pressureU(Ri) between interacting species
U(Ri)5exp(2Ri

2/4w2)/@12exp(2Ri
2/4w2)# wherew is the

effective size of the species. Equation~1! yields the follow-
ing equation of state:@]T/]Q#1l1@]U0 /]Q#1l2@]A0 /
]Q#50. Multiplier l1 represents the combined effect
environmental factors~biological species, temperature, ava
ability of resources, etc.! andl2 is the number density.

The pertinent NN has five inputs~Ri ,w,l1 ,l2 ,bias50!
and D515. The energy function to be mini
mized is E(Ri ,w,l1 ,l2)5@(]T8/]Zout)1l1(]U08/]Zout)
1l2(]A08/]Zout)#2, where T852k( iZout(Ri)log@Zout(Ri)#,
U085( iZout(Ri)U(Ri), and A085p( iRi

2Zout(Ri). The train-
ing set consists of 23104Ri2w2l12l2 combinations
where 5,Ri,10, 0.5,w,4, 0.1,l1,1, and 0.1,l2,1.

Figure 4 shows theZout(Ri) plot produced by a trained
NN with Eav

(p)'1.631022 (p51.23104). Also plotted is the
best-fit curveQPME(Ri) that is obtained by analytically solv
ing the equation of state and then finding the values ofw,
l1 , andl2 ~w50.5m, l150.01, andl250.03! that fit best
the experimental data@11#.

Within the training range 5,Ri,10, the differences

FIG. 4. NND of Eucalyptustrees.Zout(Ri) plot ~squares! of
NN with Eav

(p)'1.631022 ~Ch51, Eav
(1)'7552!. Also shown

are best-fit curveQPMB(Ri), and the experimental data plot~51
points, circles!. Distance Ri is measured between the out
diameters of the trunks. The trees~average height517 m, crown
cover ranges from 6.8– 10.2 m! grow in a 1000 hectare study are
with another tree species, about 20 shrub species, grasses and
A data point represents the NN distribution over a certainRi range
@10#.
f
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uQPME(Ri)2Zout(Ri)u are small ~relative NMSE50.3231!.
In the range 0.196<Ri,5, the trained NN performs an
extrapolation and theuQPME(Ri)2Zout(Ri)u values are
larger. Note that~1! Zout(Ri)50 at Ri50.196, ~2! the data
and Zout(Ri) plots have the same peak positions, and~3!
Zout(Ri) values coordinate more closely with data within
<Ri,8.

To illustrate its versatility, the same trained NN is utilize
to determine the NND of contiguous cells in a tissue of
adult insect@11–12#. Figure 5 shows theZout(Ri) plot ob-
tained whenw512, l151.5, andl250.012. Note that the
peak ofZout(Ri) plot is located nearer to the one exhibited
the data. The results illustrate that a trained NN can be
mediately employed to determine the NND’s of other b
logical entities whose dynamics are described by the sa
energy function.

Our last problem emphasizes the ability of the NN a
proach to solve DE’s. In particular, we examine the ope
tion of a cardiograph that converts the heart vibrations i
mechanical displacements. The patient rests on a horizo
tabletop which can vibrate only horizontally~along thex
axis! and in response to the pumping of his heart.

The table displacementx(t) satisfies: Md2x/dt2

1bdx/dt1gx5F5md2y/dt2, where M is the combined
mass of system~patient plus moving tabletop!, F is the force
on the system due to the pumping action of the heart,m is
the mass of blood pumped out of the heart during each
bration,y is the instantaneous location of the center of m
of m, andb andg are proportionality constants. We assum
that the system also experiences a velocity-dependent da
ing force, and a position-sensitive restoring force.

In general @13#, the heart vibrates in a complicate
manner so thaty(t)5(mcm sin(2pmf0t), where cm’s are
the Fourier series coefficients, andf 0 is the fundamental
frequency. If y(t)5c1 sin(2pf0t)1c2 sin(4pf0t), then the
steady-state~particular! solution is

rbs.

FIG. 5. NND of cells in a tissue.Zout(Ri) plot ~squares! of NN
with Eav'1.631022. Also shown are best-fit curveQPME(Ri), and
the experimental data~102 points, circles! whereRi ~in microns! is
measured between cell centers. The curves correspond tow512,
l151.5, andl250.012.



in

on
th
no

f

d

tic

a

to
e
th
ex
ra

c
in

m
t

c

Eq.
he
is

N
riate

ally

ed
-

t
e

ans-
ds

RAPID COMMUNICATIONS

R1250 57CHRISTOPHER MONTEROLA AND CAESAR SALOMA
xa~ t !5@4mp2f 0
2c1 /~4Mp2f 0

22g!214b2p2f 0
2#

3@~4Mp2f 0
22g!sin~2p f 0t !12bp f 0 cos~2p f 0t !#

1@16mp2f 0
2c2 /~16Mp2f 0

22g!2116b2p2f 0
2#

3@~16Mp2f 0
22g!sin~4p f 0t !14bp f 0 cos~4p f 0t !#.

We examine if the NN approach is also capable of find
the steady-state solution in the case whenb.0 where
the transient ~homogeneous! solution is negligible. The
energy function to be minimized is:E(t, f 0 ,M ,b,g)
5@Md2Zout/dt21bdZout/dt1gZout2md2y/dt2#2, with c1

5c251. Note that the problem is ill-posed because two c
straints are not available to provide a unique solution to
second-order DE. Traditional numerical methods can
handle ill-posed DE’s@14#.

The pertinent NN has six inputs~t,w52p f 0 ,M ,b,g,
bias50! and D515 (Ch51). The training set consists o
1.53105 t-w-M -b-g combinations where: 0,t,3, 0.5
,w,4, 0.01,M,0.05, 0.5,b,2.5 and 0.01,g,0.05.
During training, a was occasionally varied between 1022

and 1025, to forceEav
(p) to decrease rapidly. Training starte

with Eav
(1)'1663, and was stopped atEav

(3000)'1024.
Shown in Fig. 6 are plots ofZout(t) for f 050.5, 1, 2, 3,

and 4 ~M50.1, b52, Ch51, Ch51, and g50.01!. The
NMSE’s of the plots relative to the corresponding analy
solutions, are all in the order of 1022. The results indicate
that the trained NN generalizes very well and provides
accurate approximation ofxa(t) for all t values. This particu-
lar example shows the suitability of the NN approach
problems that require the value of the solution in real tim

This paper is about an NN approach to characterizing
dynamics of constrained systems. Three widely different
amples of constrained physics are investigated to illust
the applicability of the approach. In all cases,Zout provides a
good fit either of the analytic solution or the real data, on
the correspondingEav

(p) is reduced to a value that is at least
the order of 1022.

The efficacy of the NN approach to describing the dyna
ics of a given physical phenomenon, presupposes that
pertinent cost function and its constraints have been corre
g
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n

.
e
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te

e

-
he
tly

identified so that the expression in the left-hand side of
~1! is formulated correctly. An accurate description of t
system dynamics will be impossible to obtain if the NN
trained using an erroneous energy function.

In general, any cost functionF(xi) that satisfies Eq.~1!,
can be approximated accurately byZout if training succeeds
in reducing the associatedEav to a sufficiently small value
below 1022. A faster rate of reduction is achieved if the N
has the correct number of hidden neurons and the approp
a andCh values are used. Getting the rightD andCh values
is done by trial and error and could be laborious especi
when the values of (M1K11) andD are large—experience
in NN design is often crucial. In the CNR problem,we us
Ch5p, although puttingCh51, still achieves the same or
der of reduction forEav but at a largerp value.

Solving DE’s by a trained NN has the following distinc
advantages:~1! A compact form of the solution is derivabl
since finite differences are not utilized,~2! speed, and~3!
solution search is direct and easy because coordinate tr
formations are not needed, unlike in traditional metho
@15#.

FIG. 6. Heart vibrations.Zout(t) plots for different f 0 values
~404 data points!.
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