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Characterizing the dynamics of constrained physical systems
with an unsupervised neural network
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The method of Lagrange multipliers is utilized in the unsupervised training of a three-layer, single-output,
feed-forward neural network for characterizing the dynamics of constrained physical systems. Training aims at
minimizing the energy function that is obtained from the equations of state which are generated using the
method of Lagrange multipliers. The approach is illustrdtedo solve an inverse problem in nuclear reactor
design,(2) to determine how competing biological entities organigeglls in a tissueEucalyptustrees, and
(3) to solve an ill-posed differential equation.
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PACS numbegs): 87.10+e

We demonstrate a new neural netwdNN) approach to tion of F(x;) corresponding to specific values of
characterizing the dynamics of constrained physical systemsg, ,X5,... Xy, Nq1,..., and\,.

The method of Lagrange multipliet®LM ) [1] is utilized in The output y of the hth hidden neuron is:
the unsupervised training of a single-output feed-forwardy= 4, (Winy™) = [sin(\Wy"™) +costMly™],  where
NN. dn(Wy" is its activation functionW.". is the connection

An NN is trained to do a particular task by minimizing a strength between thenth hidden neuron and theth
certain quantity like the sum-of-squares error in supervise%put neuron yin is the output of therth input
v Jr

training, or the energy function i_n u_nsupervis_ed _trairﬁﬂg neuron,h=1,2,...D: andr=1,2,...,M+K+1). The
5]. In other problems such as finding the principal compo-input neurons exhibit a linear response so tHgf"}
nents of an ensemble of images, training is aimed at maxi-_ N .

mizing the projection of the NN weight vector on the _(Xl’x?’_”"x"" ’)‘1",}; ’)ﬁiK ’b'as)_{ﬁil’ﬁk’b'as}' Thehi NhiN
multidimension vector formed by the principal components2UtPUt 1S: Zou= o(Wpyp) = 2nChWyy , where Ugy\_/h Yh

[6]. In any manner, training is always aimed at finding, 'S the a_ct|vat|on function of the output neurdw, is the
within the shortest possible time, the appropriate intercon¢onnection strength between the output neuron anchthe
nection strengths between neurons that make the netwofkdden neuron, an@, is a multiplicative constant.

yield a satisfactory solution to a given problem. The sinusoid combination is utilized fap,(Wiy;") be-

In this paper, an unsupervised NN is trained to describ&ause it permits efficient higher-order polynomial curve fit-
the behavior of a constrained system, by minimizing the enting and faster trainability6—8|. We found, however, that
ergy function whose form is derived from the equations oftraining is not successful if a purelgven cosine function is
state which are generated via MLM. used forg,(WIyM). A linear o(WRy™M) is selected because

The ability of MLM to produce functional relationships Zy is expected to cover a range of possible values. A sig-
between the various dynamical variables, is combined withmoidal output response is most suitable in pattern classifica-
the hyperdimensional fitting capability of Nf2—5] to obtain  tion networks whose outputs operate on thresholdiéig
a description of the dynamics of a constrained system. Given The final values of the interconnection strengths are de-
the set ofK constraints{C(X;,X5,... Xy) =k} wWherek  termined using the gradient-descent backpropagation method
=1,2,...K; the cost functionF(xy,Xs,... Xy)=F(X;) is
optimal when the Lagrange formulation

X1

F & ac,
R - = X
i +k§=)l Ak 7 =0 (1) 2
is satisfied, whera,’s are the Lagrange undetermined mul- XM
tipliers. Equation(1) is used to generate the equations of
state of a constrained system. The NN is trained to reduce the
quantity on the left-hand sidd.HS) of Eq. (1), to a pre-
defined small value near zero. At the start of training the K
LHS value is far from zero, and El) is not satisfied.

Figure 1 shows the architecture of the three-layer, feed- Bias
forward NN that is trained to output an accurate approxima-

M

FIG. 1. Feed-forward NN for characterizing the dynamics of
constrained systems. It haM@ K+ 1) inputs,D hidden neurons,
*Electronic address: csaloma@nip.upd.edu.ph and one output.
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The training set consists df combinations ofx;'s and
\'s values and the initiaW,,;;, values are chosen randomly
between—1 and +1. The NN input number Nl + K+ 1)
depends on the problem at hand while thevalue is deter-

0.0419
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(momentum terrs0) [2-5]. The NN undergoes unsuper- 0087 o |
vised training to reduce the energy functiBfy™™ to a de- ° *
sired value. The strengths are updated accordingVig: *) oor{ t*
=— o[ JEP (yM /oW1 + WP where « is the learning I
rate, andV P is the previous strength value between ithtéa 0oos] o %
neuron in the current layer and timth neuron in the next § ;
layer. P .

<3 °  id

}:

668000 © of 0%

mined by trial and error, and is chosen to yield the fastest 0%
decrease in the average enefg))(y") with increasing it-
eration numbep. 0:0277 T 5
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The functional form 01E(yir”) depends on the problem at
hand, and is derived from Eql). We found that the

Zou{yr) plot accurately approximates tRgx;) profile when FIG. 2. CNR design. Plots d{?)(R=H/1.847H) vs iteration
EP(y" is reduced to a value at least in the order of40 numberp for different D values («=10"° C,=m). Choosing
The NN approach is used to determ”ﬁk): the cost func- Cy=m for all hidden neurons, results in faster decreas&g@f.
tion that is minimized when designing a cylindrical nuclearNote thatES)=238.24 forD=10, E{)=431.98 forD=5, E{)
reactor(CNR), (2) the nearest-neighbor distributiodND) = 501.37 forD= 1?[)') OtherD values 0 =8,20,30) were also tested
of biological systems with competing constituefaicalyp- Ut the resulting=g,” plots were not promising.
tustrees, contiguous cells in a tisguand(3) the solution of
an ill-posed second-order differential equati®E) that de- In Fig. 3 is the Zy(R,H) plot produced by a
scribes the dynamics of heart vibrations. The problems artrained NN with E{})=0.0251, (p=400, D=10). The
chosen to highlight the various advantages of the NN apZ,{R,H) plot has a normalized mean-squared
proach. error (NMSE)= (2 | FT(M) — Zou(m) |/ (Em|F 2 =2.08
A CNR design must satisfy a constraint imposed by thex 104,  where Z,,{(m)=Z,«(Rm,Hm), and FT(m)
neutron diffusion theory [1]: C;(R,H)=(2.4048R)? =V(R,,Hy), andm=1,2,...1600[10]. The plot illus-
+(w/H)?=6?, whereH is the reactor heightR is the ra- trates the ability of a trained NN to interpolate accurately
dius, andd is a constant. The forward problem concerns theF(R,,,H,,) values corresponding #&,,— H,, pairs that were
determination of th&k andH values that minimize the CNR not part of the training set.

Iteration Number p

volume V(R,H)=7R?H. The cost functionF(R,H) is We next analyze how competing biological species dis-
given by V(R,H) and MLM shows thatV(R,H) is mini- tributes spatially in the presence of other species. In particu-
mized only ifH=1.84R. lar, we considef1) Eucalyptusirees in Queensland, Austra-

We solve the inverse problem of determining the form oflia and(2) contiguous cells in an insect tissue. Receptly],
F(R,H) knowing that it is a minimum wheid =1.84TR, the principle of maximum entrop$PME) has been used to
and thatC,(R,H)= 6. Note that it is difficult to obtain model explicitly their NND’s:0®(R;)=0, whereR; is the
F(R,H) by directly solving the coupled DE's:df/dH) nearest-neighbor distance of thigh individual, and i
+N\1(dC1/9H)=0, and PF/R)+N,(dC,/0R)=0, where =1,2,...,P=total number of individuals in the system.
F(R,H) is minimum whenH =1.841R. Equation(1) yields
(0F/dR)IC,/9H — (9F19H)9C,/dR=0, or [—2(2.408%/

R3])oF/ R+ (— 2m?/H%)9F/dH=Q(R=H/1.847H) =0. §

The NN approach exploits the fact th&t(R,H) is a LR
solution to Q(R=H/1.847H)=0. The energy function i%
to be minimized is: E(R,H)=Q% R=H/1.847H) NN
= [(—2(2.408% 1 R3)(0Zoy! IR) — 212/ H3(9Zoyl IH) 12 3
Thus, Z,,(R,H) becomes equal t&(R,H) if E(R,H) is %
reduced to zero for aR—H pairs[9]. §

In Fig. 2 are plots ofE®(R,,H,) vs p where E) R

=(1MEP(R,,H,), R=H{/1.847,t=1,2,...T=100.
Iteration numbelp represents the number of times that the
entire set has been fully utilized in the training. The pertinent
NN has only three input®2=H/1.847H,bias=1.0; because
Q(R,H) is independent oi ;. The training set consists of
100 Ry—H; pairs with H; equally sampled within: &H

=< 1. We also found that the NN still learns the correct input-
output mapping even if a pure sine function is used for FIG. 3. CNR design. A 1600 datapoidt,(R,H) plot of NN
dr(Why!). with E{)=0.0251 0 =10).
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FIG. 5. NND of cells in a tissueZ, (R;) plot (squaresof NN
, B < - % with E,~1.6x10 2. Also shown are best-fit cun@pye(R;), and
NN with E3/~1.6x10 “ (Cy=1, E;/~7552. Also shown the experimental datd 02 points, circleswhereR; (in microng is

are best-fit curvedpyp(R;), and the experimental data pll  \eaqured between cell centers. The curves correspond=th2,
points, circley. Distance R; is measured between the outer Ay=1.5, and\,=0.012

diameters of the trunks. The treéaverage height17 m, crown

cover ranges from 6.8—10.2)mgrow in a 1000 hectare study area

with another tree species, about 20 shrub species, grasses and hef3ppe(R;) — Zou{Ri)| are small(relative NMSE=0.323).

A data point represents the NN distribution over a cer®imange  |n the range 0.198R;<5, the trained NN performs an
[10]. extrapolation and the|@pye(Ri) —Zou(R;)| values are

We used the NN approach to determine the form ofarger. Note thall) Zo,(R;)=0 atR;=0.196,(2) the data

@(R) using the assumption that each system behave@Md Zou(Ri) plots have the same peak positions, G
in a manner that maximizes its  entropy Z,«(R;) values coordinate more closely with data within 7
T=—-kZ;[0(R;)]log ®(R)], wherek is the Boltzmann con- SRi<_8- ) - ) -
stant. The dynamics are subject to the following constraints: 10 illustrate its versatility, the same trained NN is utilized
(1) average spatia|-c0mpetition pressure is Constant,(ahd to determine the NND of ContigUOUS cells in a tissue of an
average nearest-neighbor area is constant. adult insec{11-12. Figure 5 shows the,,(R;) plot ob-
Constraint 1 implies that the average-competition pressurtained whenw=12, A;=1.5, and\,=0.012. Note that the
of a pattern is given byU,==;0(R;)U(R,)=C,;=const.  peak ofZ,(R;) plot is located nearer to the one exhibited by
Constraint 2 implies thatA,=73;R?@(R;)=C,=const. the data. The results illustrate that a trained NN can be im-
QuantitiesU, and A, represent the repulsive interaction mediately employed to determine the NND’s of other bio-
between individuals, and their tendency to aggregate, respelogical entities whose dynamics are described by the same
tively. The pressurdJ(R;) between interacting species is energy function.
U(R;) = exp(—R¥/4w?)/[ 1— exp(—R/4w?)] wherew is the Our last problem emphasizes the ability of the NN ap-
effective size of the species. Equati@l) yields the follow-  proach to solve DE’s. In particular, we examine the opera-
ing equation of state[dT/d®]+N[dUqy/dO]+N,[ A/ tion of a cardiograph that converts the heart vibrations into
d0®]=0. Multiplier \; represents the combined effect of mechanical displacements. The patient rests on a horizontal
environmental factorébiological species, temperature, avail- tabletop which can vibrate only horizontallalong thex
abl'lty of resources, et):and o is the number density. aX|5) and in response to the pumpmg of his heart.
The pertinent NN has five input®; ,w,\1,1;,bias=0)  The table displacementx(t) satisfies: Md?x/dt?
and D=15. The energy function to be mini- 4 gdy/dt+yx=F=mdy/dt?, whereM is the combined
mized is E(R;,W,\1,No)=[(9T"/0Zow) + N 1(Uo/dZow)  mass of systertpatient plus moving tabletopF is the force
+N2(9AG0Zou) 1?, Where T' = —kZ;Zo(R)I0GZou{R)],  on the system due to the pumping action of the hearts
Ug=2iZou RDU(R), andAj= m=RFZo(R;). The train-  the mass of blood pumped out of the heart during each vi-
ing set consists of 10°R;—w—X\;—\, combinations bration,y is the instantaneous location of the center of mass
where 5<R;<10, 0.5<w<4, 0.1<\;<1, and 0.K\,<1. of m, andgB andy are proportionality constants. We assume
Figure 4 shows the, (R;) plot produced by a trained that the system also experiences a velocity-dependent damp-
NN with Eg’\’,)wl.Gx 1072 (p=1.2x10%. Also plotted is the  ing force, and a position-sensitive restoring force.
best-fit curve® pye(R;) that is obtained by analytically solv- In general [13], the heart vibrates in a complicated
ing the equation of state and then finding the valuesvpf manner so that(t)=ZX.c,, sin(2mmfyt), where c,,’s are
N1, and\, (w=0.5m, A\;=0.01, and\,=0.03 that fit best the Fourier series coefficients, arig is the fundamental
the experimental datdl 1]. frequency. If y(t) =cqsin(2rft)+c, sin(4afqt), then the
Within the training range &R;<10, the differences steady-statéparticulay solution is

FIG. 4. NND of Eucalyptustrees.Z,,(R;) plot (squarey of
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Xa(t)=[4mm?f3c, [(AM 723 — )2+ 4 B%mf3]
X[(AM 73— y)sin(27fot) + 2Bf, cog2mfgt)]
+[16mm?fic, /(16M 72f3— v)2+ 1682 72f3]
X[ (16M 72f2— y)sin(4mfot) + 4B7f cog4mfgt)].

We examine if the NN approach is also capable of finding
the steady-state solution in the case wher0 where
the transient(homogeneoys solution is negligible. The
energy function to be minimized isE(t,fq,M,8,7)
=[Md?Z o, /dt?+ Bd Zy i/ dt+ yZo— mdPy/dt?])?, with ¢,
=c,=1. Note that the problem is ill-posed because two con-
straints are not available to provide a unique solution to the
second-order DE. Traditional numerical methods can not o o5 1 15 2 25 3 85 a4
handle ill-posed DE'$14]. t

The pertinent NN has six inputé,w=2=fy,M,8,7v,
bias=0) and D=15 (C,=1). The training set consists of FIG. 6. H'eart vibrationsZ,(t) plots for differentf, values
1.5x10° t-w-M-B-y combinations where: @t<3, 0.5 (404 data points
<w<4, 0.0xM<0.05, 0.5<8<2.5 and 0.0¥ y<0.05.
During training, « was occasionally varied between 70 identified so that the expression in the left-hand side of Eq.
and 10, to forceEgE’,) to decrease rapidly. Training started (1) is formulated correctly. An accurate description of the

Network Output

with E{)~ 1663, and was stopped B °V~10*. system dynamics will be impossible to obtain if the NN is
Shown in Fig. 6 are plots af,,(t) for f;=0.5, 1, 2, 3, trained using an erroneous energy function.
and 4(M=0.1, B=2, C,=1, C,=1, and y=0.01). The In general, any cost functioR(x;) that satisfies Eq(l),

NMSE'’s of the plots relative to the corresponding analyticcan be approximated accurately By, if training succeeds
solutions, are all in the order of 16. The results indicate in reducing the associatefl,, to a sufficiently small value
that the trained NN generalizes very well and provides arbelow 10 2. A faster rate of reduction is achieved if the NN
accurate approximation a,(t) for all t values. This particu- has the correct number of hidden neurons and the appropriate
lar example shows the suitability of the NN approach toa andC,, values are used. Getting the rightandC,, values
problems that require the value of the solution in real time.is done by trial and error and could be laborious especially

This paper is about an NN approach to characterizing thevhen the values ofNl +K+ 1) andD are large—experience
dynamics of constrained systems. Three widely different exin NN design is often crucial. In the CNR problem,we used
amples of constrained physics are investigated to illustrat€,= =, although puttingCy =1, still achieves the same or-
the applicability of the approach. In all cas&s,; provides a  der of reduction folE,, but at a largep value.
good fit either of the analytic solution or the real data, once Solving DE’s by a trained NN has the following distinct
the corresponding(?) is reduced to a value that is at least in advantagest1) A compact form of the solution is derivable
the order of 102. since finite differences are not utilize®) speed, and?3)

The efficacy of the NN approach to describing the dynam-solution search is direct and easy because coordinate trans-
ics of a given physical phenomenon, presupposes that tHermations are not needed, unlike in traditional methods
pertinent cost function and its constraints have been correctljl5].
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