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Two complementary descriptions of intermittency
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We describe two complementary formalisms designed for the description of the probability density function
(PDP of the gradients of turbulent fields. The first approach, we call it adiabatic, describes the PDF at the
values much less than dispersion. The second, instanton, approach gives the tails of the PDF at the values of
the gradient much larger than dispersion. Together, both approaches give a satisfactory description of gradient
PDFs, as illustrated here by an example of a passive scalar advected by a one-dimensional compressible
random flow.[S1063-651X98)50602-2

PACS numbes): 47.10+g, 47.27+i, 05.40+j

Probably the most striking feature of developed turbu-function that decays on a scadle the valuey(0)=P is the
lence is its intermittent spatial and temporal behavior. Theflux of #2. The correlation function of the velocity may be
structures that arise in a random flow manifest themselves atefined by two parameters, typical velocityand correlation
high peaks at random places and at random times. The intelengthL, :
vals between them are characterized by a low intensity and a
large size. Rare high peaks are responsible for probability (v(x,t)v(x’,t’)>=[VLU—VL;l(x—x’)z]é(t—t’). (2)
density function(PDF tails, while the regions of low inten-
sity contribute PDF near zero. That physical picture promptsvhen studying a simultaneous statistic, the coordinate-
an attempt to describe intermittency at the level of a singleindependent part drops out. We assume-L.
point PDF by two complementary approaches. The first ap- | et us first implement a simple adiabatic approach ne-
proach was recently introduced to describe rare strong flucglecting the diffusion term. Then, for the single-point PDF

tuations as optimal fluctuations realizing probability extremap(«,t) = (4 6,(x,t)— w]), one obtains a closed Fokker-
[1-5]. Called an instanton approach, this formalism is baseg|anck equation

upon a path-integral representation of conditional probabil-

ity, with optimal fluctuations being saddle points in the inte- JP 92 P

gral. A counterpart to the instanton approach is suggested ZH=(Dw2+T)W+4Dw£+2DP, ©)]
here for the description of the gradient PDF at small values;

the approach is just an adiabatic one when high-order spatial . _ :
derivatives are consistently neglected. Where we denotd = x"(0) andD=VL, " the variances of

The center anomaly and tails of the gradient PDF are twdPx anduy, r_espectively. That equation has an equilibrium
sides of the same coin called intermittency, which is theSteady solution
main target in modern turbulence studies. In this Rapid Com-
munication, we demonstrate how both methods applied to-
gether give a consistent description of the gradient PDF. ] ) ) ]
Note that the intermediate part of the PD#hich is beyond that is_expected to be applicable fas“<P/«. Since
our approachéswhere the matching of the asymptotics oc- T=P/L? and the Pelet number P&=DL?/4« is assumed to
curs is not that interesting because it is nonuniversal, i.ebe large, then Eq(4) has a wide interval of validity. Note
depends on the particular form of the pumping correlatiorfhat /D is a square gradient produced by the pumping dur-
function. The central peak and the tail are robust; their forming the typical stretching tim® ~*. For Pe>1, T/D<P/«.
provides the main information on the probability of both the Limiting solutions obtained ab*>T/D and atw*<T/D by
main body of the events and strong fluctuations. a time-separation proceduf@] coincide with Eq.(4). .

Let us show how such a description can be developed b%/ Let us now describe the tail of the probability density
using, probably, the simplegyet nontrivia) turbulent prob-  function P(w) at w?>P/«. It is clear from Eq.(2) that the
lem of a passive scalat(x,t) advected by one-dimensional correlation functions of the strain field=wv, arex indepen-
random flowv (x,t) that is smooth in space and white in time dent, that isg can be treated as a random function of time

(this is a compressible versidB] of a well-known Kraich- ~ only. To exploit that, it is convenient to pass into the comov-
nan mode[7]): ing reference frame, that is, to the frame moving with the

velocity of a Lagrangian particle of the fluifil,3]. The
20+vV 0=kA O+ . (1)  Martin-Siggia-Rose actioh for the nth order moment of the
gradientd, is [8]
Both the velocityv and the source functiog are supposed
to be homogeneous, Gaussian, aficcorrelated in time:
(d(X,1) p(X" 1)) =x(|x=x%"|)8(t—t"), where xy is some

Plw)x(T+Dw?) ! (4)

z=f dt dx p(?tG—J Edt—g In(6,)? (5)
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i
E=j dxp(—crxﬁxaﬂc(?i@)—i f dx10Xp1x(X12) P2

: 2
a5~ D)% (6)
Assumingn>1, we shall calculate the moment in the

saddle-point approximatiotdy)=expey.); see[1-5] for
the details. HereZ., is to be calculated on the flow con-
figuration (optimal fluctuation or instantgrthat has to sat-
isfy extremum equations for the action:

at9+oxaxa—f<a§0=—ifdx’p(t,X’)x(x—X’), (7

aPp+ Ty (XP)+ kIZp=—y (1) (x), (8)

a—D=2in dxpxdy0. 9)

Here y=—in/6,(0,0). For calculations, it is more conve-
nient to use this auxiliary parameter insteaddpf0,0). The
boundary conditions aré(x,—)=0 andp(x,+0)=0 [1].
The solution of Eqs(7) and(8) can be sought in the follow-
ing form:

o="f(7(t),xyw(t)), p=yw(t)g(r(t),xyw(t)), (10)
7(0)=0.

(11)

hw=—20w, dr=—-w, w(0)=1,

The functionsf andg satisfy the following equations:

9,9— kdzg=yd(1)8'(§), (12)
(?Tf+Kﬁ§f=Vﬁjicdf’g(T,§’)X (jv;(_i))) (13

The solution can be found in the Fourier representation

g(7,k) =ikye <7 (14)
f(Tk)=_kyfT i X(k\/W(T’))eKkz“’Z”
, 70 VW(T") ,
(15
-D=-2D 2JT dr’ foc %
7 AN W
X k2(1—2xk27) y(Kyw(r ))e 247 (16)

Here 74 is the maximal value for, which is determined by
the moment when the following integral diverges:

In the following we will work in the dimensionless units.
We putD=1, P=yx(0)=1, andL=1. Thenx=1/(4 Pé),

dr
w(Tr)’

7
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where Pe is the Fdet number. We believe Pel. Calculat-
ing 9,6(0,0) from Eg.(15 we obtain the following self-
consistency condition foy:

n _fTO dr ( T ) 18

W o w2 PP (18
= dk k2x

¢>(><)=Lo Ek x(K)ex -5 (19

The function¢(x) has the following asymptoteg)(x) —1
asx—0 and¢(x)~x" 32 asx—x if y(k=0)#0. Note that
x(K)=0; henceg¢(x) is a monotonic decreasing function.
One may keep in mind some particular form pfx), say,
exp(—x2L?/2). Then,¢(x)=(1+x) %2

Now we derive a closed equation that describes the evo-
lution of w, which is the square root of the solution inverse
width. One can do that directly from E@L6), substituting
there c=w'(7)/2, which is the consequence of E{.1).
One obtains an integral equation that is equivalent to some
third-order ordinary differential equations. The order can
then be reduced by 1 due to the conservation (&wHow-
ever, it is more instructive to derive the same equatiomon
in a different manner: since we are looking for the extremum
of the action(5), we can substitute there all the fields as the
functionals ofw and then make a variation with respectito
We have

'Z—nl nJTo dr T
12=5% |y Wi ?\ peéw(n
lfTo dr (1, | 2 20
"2y w2V T 20
Varying with respect tav, we obtain
, w2 2 gly? T 4|y|27-, T 0
Wi ow T w2 Pl eaw) pent? | pew) 0
(21)

Equation(21) can be rewritten as a Hamiltonian system with
the momentun?=w’/w and the Hamiltonian

S -
~ 2w Apen) Tw @
Initial conditions for Eqg. (21) are w(0)=1 and

w’(0)=—2(2n—1). The latter is readily derived from Eqs.
(16) and (18). We should also satisfy a final condition. In-
deed, Eqs(17) and(20) requirew’ — 2 as7— 7y; otherwise,
the integral contribution to the action is infinite. Our aim is
to find such a value of that the solution of Eq21) satisfies
the relation(18). In other words, we can divide the task into
two parts: first, to find the solution of E¢R1) with arbitrary

y and the given boundary conditions; second, givento
solve the algebraic equatid8), which determiney. Note
that finite positive value oW’ at 7— 7y implies 7o= .

Let us start the first part of our program, which is solving
Eqg. (21). Since Eq.(22) explicitly depends onr, thenH is
not conserved and E¢R1) cannot be solved explicitly for an
arbitrary ¢. In the limit n<Pé, it is possible, nevertheless,
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to describe the solution with enough detail to recover its 8|y|? Ty
dependence on the parametarand Pe. Y1=4+How— —¢(m)
The evolution ofw can be divided into three parts. During
the initial stage, whem is close to zerow is of order unity. 8ly|? r
Therefore, Pavs>r and we can substituté in Eq. (22) by o=4— W d)( Péw)

its asymptotic value 1. Thus, during that stadeis a con-
stant, which we denote asH,. One finds
Ho=H(0)=2(2n—1)?—2+4|y|?. Sincen>1 and, as we
shall see belowy<1, we haveH,~8n?2. The equation fow

Now we can continue with the second task, that is, solv-
ing Eq. (18). We introduce alsav, =w(,) at the moment
of reflection. Since at= 7, the derivative ofw is zero, then

can then be readily derived from E@®2), we find from Eq.(25)
W' =— 4+ 2H,w—8|y|?/w. (23 w
ly|?= . (26)
Now let us consider the final stage. Singé—2 ast— o, 2¢(ﬁ>
we can writew~2r. It gives7/(Péw)~1/(2 P&)<1. Thus, *
as for the first stage, we can replagdy 1, and therefore the  Now Eq. (18) can be rewritten in the following form:
energy is a constant. It follows from E(2) that during that
stageHw< 1. Hencew satisfies the following equation: 2n T 1 dw T,
B o T i
P& 2 Pew
w’=4—8|y[?/w. (24) W W W WV (W)
® dw
Sincew’ is negative during the first stage and positive +f 5 ¢(P§w)' (27
during the third one, then it has to turn into zero at some Wy WY (W)

reflection timer, . Around that time, there should exist an S I : . .
intermediate part of evolution, which matches the two above Estlmat}ng gontrlbutlons Into the integrals from the first
asymptotes. We will see beiow that this stage makes th(f_gmd third time intervals, one can find that alone, they are too
main contribution to Eq(18). During that stage one has Small o satisfy Eq(27). On the other hand, it is easy to see

7/(P€w)=1, so thatH is not conserved but decreases fromthat’ if the derivative ofisy , at the pointw, is not small .
8nZ to 0. It will be important for us thaH is a decreasing enough, the second stage also does not contribute to the in-

monotonic function ofr, which becomes obvious after one tegrals in Eq.(27). The only way to have a sglutlon IS to
differentiates Eq(22). make the derivatives small. Thenjy ~ 7 (w,)(w

2 . . . . .

Let us make estimations of the parameters during thaf W«)/2 in @ wide interval, and both integrals in E@7)
intermediate stage. From E€@3) it is easy to find thaw Ioganth_mlcally_ d|\_/erge,_ with a cutoff on the nonzero _value
diminishes from 1 to a substantially smaller value during the®f the first derivative. Since we can make(w,) arbitrarily
time 7, =1/n. To haver/(Péw) of order unity by the be- small by a _small change of, , the _solutlon eX|s_ts. Equating
ginning of the second stage, there shouldvbe 1/(n P€). the derivative ofw. to zero, one finds thatv, is c]ose tq
Looking at Eq.(22), we observe that, sindé is a decreasing ¢7* /P€, wherea is some number of the order unity, which
function of 7, the left-hand side of Eq(22) is less than depends on the form o that is of the pumpingy. The
Ho~8n2. On the other hand, the termw2bn the right-hand deviation of the first derivative from zerdis determined by
side can be estimated asPé. If n<P&, we can disregard EJ: (27):

the left-hand side. We assume in addition that the duration of 5 1
the second stage is much less thgn Then, we can substi- nw, = /”_ In=. (28)
tute 7 by 7, in the argument ofp and obtain the equation (W) 8

- One finds I 1«n. The smallness o justifies our assump-

_*) (25) tion on a short intermediate stage. Thus, we have shown that
solution of Eq.(18) exists, andy?|~1/(n P€), which cor-

responds ta,(0,0)~n*?Pe. This makes the main contribu-

We do not take the square root, sineéchanges sign during tjon to ( g7)«n3"2Pe", since the integral term in the actidn

that part of the evolution, so that both branches of %) s —n on our instanton solution. Such moments can be as-

are pertinent. Actually, Eq25) is valid for all 7> 7, , since  gempled into the following tail of the PDF o§= 6, :
atws 7, /P€ it turns into Eq.(24). If our assumption about

the duration of the second stage is correct, the transition IN[P(w)]% — (kw? P)*3. (29
region is described correctly too. On the other hand, if we

add to Eq.(25) the termHgw, which is small in the transi- The correspondence between the ta8) and then result
tion region, the equation thus obtained will correctly describecan be easily established by direct calculation of the integral

3n/2

the evolution ofw at all timesr<<rt, . Jdwo"P(w) in the limit n>1. Note that the tail does not
Therefore, we have found that under the assumption of depend on the strain amplitudi.
short transition region it is possible to reduce E2{l) to the Let us describe the above instanton solution in more

equationsw’ = — /i, (w) at 7<7, and w'=+/i,(w) at  physical terms. The instanton corresponds to some optimal
7, , Where process making the main contribution (). It produces a
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large gradient, which compensates for the small probabilityuted in[8] to the fluctuations of the diffusion scale. One may
of such a process. Looking €10,15, we can distinguish the explain the 2/3 stretched exponent in the following simple
three stages ob evolution. During the first one, starting at abbreviated way, clarifying the physics of the phenomena:
t=—oo, the strainc~D stretches small-scale initial pertur- Due to diffusion, the local gradient can be thought of as the
bation up to the width of order and the force prepares some product of a scalar fluctuation and inverse diffusion scale.
profile of 6, which has the amplitude of orderP/D. The  The former has an exponential PDF t8], while the latter
second stage starts whenis close tow, . Theno<D; we s proportional to the local stretching rate, which is Gaussian.
can disregard both the advective and diffusive terms. Thererperefore, (@™ ~(6%)™2n"r ;"2 which corresponds to
fore, the width ofé does not change during that stage, whilegq (29) Also, instanton formalism provides an instructive

the amplitude grows due to the force. Of all realizations Ofiiont into the relation between the scalar and its gradient

]Ehet fotrce, thtﬁ (?;Stam one IS pre{er_ﬁd, sm_c;a]tlt fglvesh th%n the optimal fluctuation: comparing the second and third
astest growth. Thery increases agt. The weight of suc terms in Eq.(7), one gets for the current dissipative scale,

a process is exp{¢’t—t/2). The second term in the expo- —— o . — .
nent is the probability of having smadt during the timet. rdoc3,2K/9D’ subst|tut|ng. that' Intog, = 6/rq, we obtain b
« 9>, so that exponential tail fof has to correspond to the

Then we can find thatp~1 andtxn (note that the second
b ( 2/3 stretched exponential for the gradient.

stage is long in terms df yet it was short in terms of). By o o
the end of this stag#),n. And finally, during the last stage 12_0 conclude, the gradient's PDF is given by E4) for
&o’/P<1 and by Eq.(29 for 1<kw?/P<P€, which

we can disregard the force. The profile having the amplitud - ) - )
n and widthL by the beginning of the stage is compressea[agrees with the results found by a time-separation formalism

by the large negatives, which can be estimated as 8]. Speaking about generalizations, it is likely that the one-
o~ —Dn. The duration of, that stag@nd the final widthis dimensional instanton described here may be relevant for a

determined by diffusioncrx(?X¢9~K<9§0 at the end. Then, the multidimensional case, both compressible and incompress-

) . . . . ible, due to the universality of a locally flat ramp-and-cliff
width of 8(x) is V«/Dn, while the amplitude isnP/D; - )
therefore tile) final ;nswer i) is ocn3f52( P/x)™2, which structure discussed i®—11]. Note that the stretched expo-
X )

d Eq29) T . h imal f nential tail is what one expects for the steady gradient’s dis-
corresponds to Eq29). To summarize, the optimal fluctua- i tion (which is possible only when diffusion is presgnt

tion that makes the main contribution ;) starts from an 5] " contrary to unsteady log-normal distribution which
infinitesimal fluctuation that is initially stretched; then it has 5yeg place without diffusiofi7].

a long stage of suppressed advection when the amplitude of
0(x,t) grows even when its spatial scale does not decrease, We are indebted to M. Vergassola for numerous useful
and then it contracts quickly. explanations and helpful remarks. We are grateful to V. Leb-
Let us stress that the instanton describes a very specialdev for a valuable remark made upon reading the first draft
configuration of the fields. For any other solution that doesof the paper. We thank M. Chertkov and I. Kolokolov for
not satisfy the correct self-consistency condition, there is naseful discussions. We thank U. Frisch and L. Biferale for
such long intermediate stage of growth. If the parametersrganizing an inspiring workshop at Nice where this work
were not fitted to guarantee the existence of this long stageyas started. G.F. thanks K. Gawedzki for kind hospitality
either larges- would bring a singularity in the solution @&,  and a very stimulating scientific atmosphere at Bures-sur-
would not be large enough &t 0. Yvette, where this work was continued. The work was sup-
Note that the scalar itself has an exponential PDF tail; thgported by the Israel Science Foundation and the Minerva
fact that the gradient PDF is less steep was correctly attrib€enter for Nonlinear Physics at the Weizmann Institute.
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