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Averaged master equation for a quantum system coupled to a heat bath
with fluctuating energy levels

Elmar G. Petrov
Bogolyubov Institute for Theoretical Physics, Ukrainian National Academy of Science, 14-b Metrologichna Street,

252143 Kiev, Ukraine
~Received 19 December 1996; revised manuscript received 7 August 1997!

A master equation for a quantum system coupled to a heat bath with stochastically fluctuating energy levels
is derived by making use of the ensemble averaging and the averaging with respect to a stochastic process in
the bath. Relaxation terms are determined in the Born approximation with respect to the system-bath interac-
tion and the damping parameters related to a relaxation kernel are specified. In parallel with the spectral
strength of the bath, the damping parameters determine the transient times for the Markovian description
creating the physical origin of the slippage@A. Suarez, R. Sibey, and I. Oppenheim, J. Chem. Phys.97, 5101
~1992!#. The influence of energy fluctuations of the bath is analyzed for a two-level system including the
solution of the corresponding non-Markovian equation for the level population difference. The conditions for
the formation of Boltzmann’s thermal ratio between steady-state populations are evaluated as well.
@S1063-651X~97!12612-5#

PACS number~s!: 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.60.1w
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I. INTRODUCTION

In condensed media, the interaction between a quan
system and its environment is the physical factor respons
for relaxation processes in the system. Basic principles
nonequilibrium statistical mechanics@1–7# state that such
relaxation processes can be provided by the environment
acts as a bath.

There exist two distinct models for the bath. The first o
identifies the bath with a thermal environment, or a h
bath. In this case, the energy levels of the bath are popul
according to the conventional Gibbs distribution. In practi
a heat bath is often simulated by a phonon bath. If the p
ence of a heat bath has been assumed, the ensemble av
ing with respect to bath states is necessary if one der
kinetic equations for the quantum system. Just owing to
ergy exchange between the system and the heat bath
density matrix of the system is driven to Gibbs’s equilibriu
form and the steady-state populations of the energy leve
the system satisfy Boltzmann’s equilibrium ratio~if no addi-
tional time-dependent external fields act on the system!.

In the second model for the bath one provides the e
tence of random fields created by the environment. Ander
@8# and Kubo @9# proposed the simulation of the rando
action of the environment introducing random quantities j
into the Hamiltonian of the considered quantum syste
Later on this idea has been used within the method of
stochastic Liouville equation@5–7,10,11# ~see also the dis
cussion of the Haken-Strobl-Reineker method in the the
of exciton transfer@12# as well as the method of stochast
master equation applied in spectroscopy@13#!. In contrast to
the first model of the bath, the kinetic equations for the qu
tum system are derived via an averaging with respect to
alizations of the random parameters included in the sys
Hamiltonian. Since this averaging procedure differs from
averaging with respect to a thermal ensemble it leads to p
cipally different results with respect to both relaxation ra
571063-651X/98/57~1!/94~6!/$15.00
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and steady-state populations. In particular, the density ma
of the quantum system is not driven to Gibbs’s equilibriu
form, but to a microcanonical equilibrium density matr
@14#. Furthermore, steady-state populations of the ene
levels of the system do not satisfy Boltzmann’s equilibriu
ratio but become equal to each other.

The ensemble averaging reflects a statistical equilibri
in the heat bath~the equilibrium is kept by the fast energ
exchange between the bath and the outside world!, whereas
the averaging with respect to random processes account
an effective dynamic influence of the environment. Bo
types of averaging may be related to a situation in particu
in molecular systems where a widespread set of differ
motions of the environment appears. Fox@15–17# introduced
a combined averaging in the case of a mixed quantu
stochastic bath and derived master equations for the den
matrix of the system on the basis of a combined averag
procedure~which includes the ensemble averaging and
averaging with respect to a stochastic process!. In particular,
he demonstrated in the model of a system coupled stoc
tically to a phonon reservoir how the quantum system
driven to the thermal equilibrium characterized by Gibb
density matrix@17#. Later on the combined action of a he
bath and a stochastic field on relaxation processes in a q
tum system was studied in somewhat different mod
@18,19#. In these studies random processes appeared in
fluctuation of the energy levels of the quantum system c
sidered. This second type of stochastic influence lead
somewhat different conclusions. It has been shown tha
steady state of the system is not always characterized
Gibbs’s density matrix. The result depends on the relat
between the coupling of the system to the heat bath and
characteristics of the random processes. However, it is p
sible to state that the result given in Ref.@17# is definitely
correct if the stochastic influence does not lead to a la
width of the energy levels of the quantum system.

The present study is devoted to the analysis of relaxa
processes proceeding in a quantum system that is couple
94 © 1998 The American Physical Society
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57 95AVERAGED MASTER EQUATION FOR A QUANTUM . . .
a heat bath, which in turn is the subject of a stochastic in
ence. The model corresponds to a physical situation wh
the system~impurities in a crystal, donor-acceptor pairs, et!
couples to the environment via the nearest surrounding o
which is in thermal and dynamic contact with the remaini
environment.

The thermal contact is realized through fast sma
amplitude vibrations that create the thermal reservoir. Ow
to thermal contact, the phonon system of the surrounding
held in thermal equilibrium and thus appears as a heat
for the given quantum system. The dynamic contact is as
ciated with large-amplitude nuclear motions that create
chastic fields for the surroundings@20#. As an example, we
note that random fields can be created by nonequilibr
degrees of freedom of complex molecular structures~see,
e.g., Refs.@21,18# for a general discussion!. Here we assume
these large-amplitude nuclear motions to be capable of a
nating the random dynamic characteristics of the surrou
ings, in particular, the phonon frequencies of the bath.

The model describing a bath with fluctuating energy le
els introduces one more type of stochastic influence on
bath interacting with the outside environment. Earlier, su
an influence was considered as the random alternation o
system-bath coupling@17#. Therefore, the present work ca
be considered as a further investigation of the influence
quantum-stochastic bath on relaxation processes in a q
tum system. In fact, such investigations were initiated w
the papers by Faid and Fox@14,17#.

II. MODEL AND THEORY

In accordance with the chosen model, we take the Ham
tonian of the whole system~quantum system plus heat bat!
as

H~ t !5H0~ t !1HB~ t !1V, ~1!

whereH0(t) andHB(t) are time-dependent Hamiltonians
the system and the bath, respectively, andV denotes a time-
independent system-bath interaction. In Ref.@17#, the inter-
actionV was assumed to be a stochastic quantity whereas
HamiltoniansH0 and HB are taken as time independent.
contrast, in Ref.@18#, H0 was chosen as a stochastica
modulated quantity. In the present study, the bath Ham
tonianHB(t) will be considered as a stochastic value ope
tor, whereas the quantitiesH0(t) andV are taken as regula
operators.@In H0(t) a time dependence may appear if a reg
lar time-dependent external field is applied.#

Using the projection operator technique@22,23#, we find,
in line with Refs. @18,19#, the following type of stochastic
master equation for the density matrixr(t) of the system:

ṙ~ t !52 i L̂ 0~ t !r~ t !2L̂„r~ t !;t…. ~2!

This equation has been derived within the Born approxim
tion with respect to the interactionV @24#, resulting in the
following type of relaxation part:

L̂„r~ t !;t…5E
0

t

dt8TrBL̂1Ŝ0~ t,t8!ŜB~ t,t8!L̂1rB~HB
0 !r~ t8!.

~3!
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In Eqs. ~2! and ~3! the Liouville operators L̂0(t)
[\21@H0(t), #, L̂1[\21@V, #, and L̂B(t)[\21@HB(t), #
are introduced together with the unitary operators

Ŝ0~ t,t8!5T̂expF2 i E
t8

t

dtL̂0~t!G , ~4!

ŜB~ t,t8!5T̂expF2 i E
t8

t

dtL̂B~t!G ~5!

and the Gibbs equilibrium matrix of the bath,

rB~HB
0 !5exp~2HB

0/kBT!/TrB@exp~2HB
0/kBT!#. ~6!

The symbol TrB in Eqs. ~3! and ~6! denotes the trace with
respect to bath states and the symbolT̂ in Eqs. ~4! and ~5!
implies a time ordering. Note that it has been assumed in
~3! that ^V&[TrB@rB(HB

0)V#50. Otherwise, the substitu
tions of H0 by H01^V& and of V by V2^V& have to be
performed in Eqs.~2! and ~3!.

In deriving the master equation~2! we have assumed tha
the stochastic influence on the bath energy levelsEa is too
weak to result in deviations from the equilibrium dens
matrix ~6!. Such an assumption means that the stocha
influence on relaxation processes within the bath@these pro-
cesses support an equilibrium distribution~6!# is of minor
importance and thus the matrix~6! is determined via a sta
tionary Hamiltonian of the bath,

HB
05(

a
Eaua&^au. ~7!

However, the stochastic influence cannot be ignored in
dynamic matrix~5! with the stochastic HamiltonianHB(t).
~It is well known that the presence of a stochastic part in
Hamiltonian of a system introduces basic changes in the t
evolution of the system@11,25–27#!. To specify the stochas
tic influence of the environment we employ the model of t
diagonal stochastic perturbation represented by the stoch
Hamiltonian of the bath

HB~ t !5(
a

@Ea1«a~ t !#ua&^au. ~8!

Here the conditionuEau@u«a(t)u has to be fulfilled for the
stochastic time-dependent part«a(t).

To derive from Eq.~2! a noise-averaged master equati
it is necessary to specify the type of stochastic process
addition, a relationship between a typical relaxation time
the quantum systemt r and the typical characteristic times o
the stochastic process must be established. To obtain ana
results we restrict ourself to a dichotomic process@11,25–27#
with escape frequenciesn j @20#. These frequencies determin
the realizations of the stochastic part«a(t) in the Hamil-
tonian~8!. Below we suppose fast random realizations of t
«a(t) in comparison to relaxation processes within the s
tem. This means that the inverse escape frequenciesn j

21 of a
given discrete stochastic process satisfy the condi
t r@n j

21 . Such a supposition justifies the decoupling proc
dure
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96 57ELMAR G. PETROV
^^ŜB~ t,t8!L̂1rB~HB
0 !r~ t8!&&5^^ŜB~ t,t8!L̂1rB~HB

0 !&&

3^^r~ t8!&&, ~9!

which will be carried out in the relaxation term~3! as the
result of averaging with respect to the fast stochastic proc
~noise averaging is denoted via^^ &&). More precisely, the
decoupling is valid since the relaxation behavior of the d
sity matrix of the systemr(t) is characterized by the tim
scale of the relaxation process of orderDt;t r , whereas the
characteristic time scale of a random process containe
ŜB(t,t8) is n j

21 .
Introducing the abbreviations(t)[^^r(t)&& and using

Eqs.~2!, ~3!, and~9!, one finds the following noise-average
master equation for the system:

ṡ~ t !52
i

\
@H0~ t !,s~ t !#2

1

\2E0

t

dt8TrB„†V,Ŝ0~ t,t8!

3^^ŜB~ t,t8!&&@V,rB~HB
0 !s~ t8!#‡…. ~10!

To obtain the averaged kernel we rewrite it in a tetra
representation by choosing a complete basisun& of system
states. Then the HamiltonianH0(t) and the interactionV can
be expressed by the transition operatorsĝnm[un&^mu @4,27#,

H0~ t !5(
m,n

Hmn~ t !ĝmn , V5(
m,n

F̂mnĝmn . ~11!

Here Hmn(t)5^muH0(t)un& are the matrix elements of th
system Hamiltonian, whereas the quantitiesF̂mn5^muVun&
are operators resulting from the system-bath coupling. Th
operators act in the basis set given by the Hamiltonian~7!.
Each operatorF̂mn represents a process in which transitio
within the bath are accompanied by the transition of the s
tem from staten to statem. With Eq. ~11! the tetradic rep-
resentation reads

ṡmn~ t !52
i

\(
m8

$Hmm8~ t !sm8n~ t !2Hm8n~ t !smm8~ t !%

2 (
m8,n8

E
0

t

Gmn;m8n8~ t,t8!sm8n8~ t8!dt8. ~12!

The matrix elements

Gmn;m8n8~ t,t8!5
1

\2(
r ,r 8

$Kmr;r 8m8~ t,t8!Srn;r 8n8~ t,t8!

1Krn;n8r 8
* ~ t,t8!Smr;m8r 8~ t,t8!

2Krn;r 8m8~ t,t8!Smr;r 8n8~ t,t8!

2Kmr;n8r 8
* ~ t,t8!Srn;m8r 8~ t,t8!% ~13!

of the relaxation supermatrixG(t,t8) are expressed via th
matrix elements

Smn;m8n8~ t,t8!5^muS0~ t,t8!ĝm8n8un& ~14!

of the dynamic matrix~4! and the correlation functions
ss

-

in

c

se

s-

Kmn;m8n8~ t,t8!5TrB@rB~HB
0 !F̂mn̂ ^ŜB~ t,t8!F̂m8n8&&#,

~15!

which specify the bath response.
To evaluate the correlation functions~15! we additionally

expand the operatorF̂mn with respect to a complete basis s
ua& of the bath Hamiltonian~7!,

F̂mn5(
a,b

^auF̂mnub&ua&^bu. ~16!

Then, using Eqs.~6!–~8! and ~16!, one finds

Kmn;m8n8~ t,t8!

5
1

Z(
a,b

exp@2Eb /kBT#^buF̂mnua&^auF̂m8n8ub&

3Xab~ t,t8!exp@ i ~Ea2Eb!~ t2t8!/\#, ~17!

whereZ5(aexp@2Ea /kBT# is the bath state sum. The sto
chastic properties of the environment are contained in
quantity

Xab~ t,t8!5Xba* ~ t,t8!5K K expF i

\Et

t8
@«a~t!2«b~t!#dtG L L ,

~18!

which depends on the type of the bath fluctuations«a(t) and
on the specificity of matrix elements^buF̂mnua& for each pair
of system states (mn).

In the case of a dichotomic random process the averag
can be performed exactly. We illustrate this fact by analyz
a typical model of the bath defined as the set of quant
harmonic oscillators with frequenciesvl(t)5vl1Dvl(t),
whereDvl(t) is a stochastic contribution to the frequen
vl . The operatorF̂mn initiates transitions between bat
states ua&5u$nl%& and ub&5u$nl8%& with definite sets of
population numbers$nl% and $nl8%. The energy differences
in Eqs.~17! and ~18! read, respectively,

Ea2Eb5\(
l

~nl2nl8 !vl ,

«a~ t !2«b~ t !5\(
l

~nl2nl8 !Dvl~ t !. ~19!

Any frequency fluctuationDvl(t) in a dichotomous pro-
cess has only two realizationsDvl1 andDvl2 characterized
by two escape frequenciesnl1 andnl2. Utilizing the method
of Brissaud and Frish@26# and following Ref.@18# one gets

Xab~ t,t8!5Xab~ t2t8!5)
l

X~nl ,nl8 ;t2t8!,

X~nl ,nl8 ;t!5e2 iDVlt
1

ṽ1l2ṽ2l

3@ṽ1le2ṽ2lt2ṽ2le2 i ṽ1lt#. ~20!
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57 97AVERAGED MASTER EQUATION FOR A QUANTUM . . .
The averaged frequency contributionsDVl are originated by
the stochastic process, together with the complex frequen
ṽ j l[V j l2 ig j l . These quantities read

DVl5
nl1Dvl21nl2Dvl1

nl11nl2
~nl2nl8 !; ~21!

V j l5
1

2Fa1l2a2l2~21! jjlsin
wl

2 G ,
g j l5

1

2Fnl2~21! jjlcos
wl

2 G , ~22!

where

jl5$@nl
22~a1l1a2l!2#214nl

2~a1l2a2l!2%1/4,

nl5
1

2
~nl11nl2!, ~23!

tanwl5
2nl~a1l2a2l!

unl
22~a1l1a2l!2u

,

a j l[2~21! j@Dvl j~nl2nl8 !2DVl#. ~24!

Equations ~22! are valid if nl
2>(a1l1a2l)2 and

p/2>wl>0. If nl
2<(a1l1a2l)2 one has to substitutewl

by p2wl .

III. APPLICATION TO A TWO-LEVEL SYSTEM

The exact expressions~21!–~24! clearly show the appear
ance of a particular damping mechanism in the relaxa
supermatrixG(t,t8) in addition to the damping resultin
from the spectral strength for the bathJ(v). This spectral
strength is determined by the correlator related to the c
pling of the system to the bath~see examples in Refs
@7,5,6,18,29#!. To compare both mechanisms we conside
two-level system by choosing the spin-boson model@30#. In
the basis setu6& that diagonalizes the two-level Hamiltonia
H0 and leads to a transformation in the system-bath inte
tion V, Eqs. ~11! reduce to the formH052(\D/2)ŝz and
V5F̂ŝx . Here ŝz5ĝ112ĝ22 and ŝx5ĝ121ĝ21 are
Pauli-matrices, whereas 2\D/25H1152H22 and
F̂[F̂125F̂21 are the eigenvalues of the system Ham
tonian and the coupling operatorF̂, respectively. Below we
take the operatorF̂ in the standard form of a linear couplin
between the bath and the system,

F̂5\(
l

kl~bl1bl
†!. ~25!

In Eq. ~25!, kl is the coupling to thelth bath mode andbl

(bl
†) is the annihilation~creation! operator of this mode

With Eq. ~25! one finds the nonvanishing correlation fun
tions ~17!
ies

n

u-

a

c-

K12;12~ t,t8!5K21;21~ t,t8!5K12;21~ t,t8!

5K21;12~ t,t8![K~ t2t8!

5(
l

kl
2$n~vl!Xl2~ t2t8!eivl~ t2t8!

1@11n~vl!#Xl1

3~ t2t8!e2 ivl~ t2t8!%, ~26!

where the abbreviationXl6(t)[X(nl ,nl61;t) has been
introduced. In contrast to these rather complex express
the matrix elements~14! are given by simple expressions

S11;11~ t,t8!5S22;22~ t,t8!51,

S12;12~ t,t8!5S21;21* ~ t,t8!5e2 iD~ t2t8!. ~27!

In the framework of the spin-boson model the quant
Xl6(t) is independent of population numbersnl . There-
fore, a kinetic equation for the Bloch vector with comp
nentsz(t)5s11(t)2s22(t), x(t)5s12(t)1s21(t), and
y(t)5 i @s12(t)2s21(t)# can be easily derived from th
generalized master equation~12!. For instance, the kinetic
equation for the population difference reads

ṡz~ t !52E
0

t

@G1~t!1G2~t!#sz~ t2t!dt

1E
0

t

@G2~t!2G1~t!#dt, ~28!

where the kernels

G1~t!5K~t!eiDt1K~2t!e2 iDt,

G2~t!5K~t!e2 iDt1K~2t!eiDt ~29!

specify the relaxation properties of the bath.
According to the mentioned conditionuEau@u«a(t)u of a

weak stochastic modulation of the bath energy levels,
correlation function~26! can be expressed via the spect
strength of the bath

J~v!52p(
l

kl
2d~v2vl! ~v>0!, ~30!

as

K~t!5K0~t!5
1

2pE0

`

$n~v!eivt

1@11n~v!#e2 ivt%J~v!dv.
~31!

Choosing an appropriate model forJ(v), one can estimate
the damping properties of the kernels in Eq.~29!. In the case
of the Debye bath the spectral strength has the form@29#

J~v!5h~v3/vc
2!exp@2~v/vc!#, ~32!
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98 57ELMAR G. PETROV
where h is a dimensionless friction constant andvc is a
cutoff frequency. Expression~32! shows that attvc@1 the
asymptotic behavior ofK(t) is proportional tot24. Hence a
nonexponentional decrease of the kernels~29! on the time
scaleDt;vc

21 appears. To obtain an exponential decreas
particular type ofJ(v) with complex poles has to be con
structed. Such a type is beyond the standard spin-bo
model.

However, an exponentional decay of the kernels~29! fol-
lows from the present alternation of the spin-boson mo
since a stochastic modulation of the bath levels has b
assumed. It is precisely the functionsXl6(t) that reflect the
exponential decay of the kernels via the damping parame
g j l @Eq. ~22!#. At large Kubo numbers@11,25# K j l

[a j l
21n j l@1 the averaged quantitiesXl6(t) take a simple

form

Xl6~t!5e6 iDVlte2glutu. ~33!

The stochastic field-induced quantities

DVl5
nl1Dvl21nl2Dvl1

nl11nl2
,

gl5
a1la2l

nl
5

2nl1nl2

~nl11nl2!3
~Dvl12Dvl2!2 ~34!

are responsible for the specific contribution in the correlat
functions ~33! and ~26!. Due to our basic assumptio
th

-

a

on

l
en

rs

n

vl@uDvl j u, one can omit the frequency renormalizatio
DVl in comparison tovl . Of course, the damping param
etersgl have to be considered since they ensure an expo
tial decrease of the kernels~29!.

If a weak dependence of the damping parametersgl on l
is provided, the correlation functions~26! can be approxi-
mated as

K~t!5e2gutuK0~t!, ~35!

whereK0(t) is determined via the spectral strength of t
bath @see Eqs.~30! and ~31!#. Now a single quantityg'gl

characterizes the influence of the stochastic processes
ated by the environment.

Expression~35! manifests the appearance of a dampi
parameterg in the correlation function related to the ba
response. In particular, the presence ofg justifies a Markov-
ian approximation in the kinetic equation~28! if this param-
eter far exceeds the reverse relaxation timet r of the system
wheret r

21;V2. To justify this statement we present an exa
solution of the integro-differential kinetic equation~28!.
This will be done for the Laplace-transforms̃z(p)
5*0

`exp(2pt)sz(t)dt and in the case of a single bath mod
with frequencyv0. Therefore, we set

J~v!52pk0
2d~v2v0! ~36!

and obtain the solution
s̃z~p!5
sz~0!p$@~p1g!21D21v0

2#224D2v0
2%28k0

2Dv0~p1g!

p„p$@~p1g!21D21v0
2#224D2v0

2%14k0
2@2n~v0!11#@~p1g!21D21v0

2#~p1g!…
. ~37!
if-

stic
t
n
-

ns
is
us

in
dred

at
we
Returning to the time domain, this expression leads to
following asymptotic behavior ofsz(t):

sz~ t !5@sz~0!2sz~`!#exp~2t/t r !1sz~`!. ~38!

Here the rate constant

k[t r
2152k0

2@2n~v0!11#

3F g

g21~D2v0!2
1

g

g21~D1v0!2G ~39!

and the steady-state population difference

sz~`!5 lim
p→0

ps̃z~p!52
2Dv0

@2n~v0!11#~g21D21v0
2!

~40!

correspond to a Markovian approximation that follows im
mediately from Eq.~28! if one setssz(t2t)'sz(t) and
shifts the upper integral limit tò . The Markovian approxi-
mation also follows from an exact solution of Eq.~37! if the
single damping parameterg is kept in the termp1g. At
eupu!g, the quantitys̃z(p) has only two poles,p50 and
p52t r

21 , and thus the conditiongt r@1 for the applicabil-
ity of a Markovian approximation is justified.

The rate constant~39! and the steady-state population d
ference ~40! depend on dynamic (D and v0), statistical
„n(v0)5@exp(\v0 /kBT)21#21

…, and stochastic (g) charac-
teristics of the system and the bath. At a minor stocha
influence, i.e., ifg!D,v0, the maximum of the rate constan
is reached atD'v0. For the same condition, the Boltzman
ratio exp(2\D/kBT)'exp(2\v0 /kBT) between steady popu
lations N15(1/2)@11sz(`)# and N25(1/2)@12sz(`)# is
fulfilled. In the opposite limit whereg@D,v0, the rate~39!
is proportional tok0

2/g, whereas the steady-state populatio
are equal to one another. However, this limiting case
hardly met in physical systems, which becomes obvio
from the following estimations. Vibrational frequencies
condensed-matter systems do not exceed several hun
cm21 and hence we may setv0;101221013 s21. The es-
cape frequenciesn j of the stochastic field can be chosen
the same order of magnitude. To get large Kubo numbers
take the frequency modulation of Eq.~19! as
Dvl(t);101121012 s21. With g'gl , given in Eq.~34!,
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one findsg;101021011 s21, i.e., g is far below the single
frequencyv0.

IV. CONCLUDING REMARKS

The results of the present study demonstrate the partic
properties of a damping process in a quantum system th
in contact with a heat bath formed by the nearest struct
groups of the environment. The remaining part of the en
ronment serves as a macroscopic thermal reservoir and
ditionally, as a source of stochastic fields. Just these ran
fields are assumed to be responsible for stochastic fluc
tions in the bath. Due to the stochastically fluctuating ene
levels of the bath, a specific damping process appears in
master equation for the quantum system. Despite the fact
the corresponding damping parametersg j l , given in Eq.
~22!, are independent of the system-bath interactionV, the
appearance of these parameters in the relaxation kernels~13!,
~17!, and ~18! @or more simple kernels~29!, ~35!# can sig-
nificantly modify the solution of the averaged master eq
tion ~12! @or the kinetic equation~28! for a two-level sys-
tem#. In particular, one can reduce the non-Markovian mas
equation to a Markovian equation of the Redfield type@28#.
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With respect to the results of Oppenheimet al. @7,29#, such a
reduction is valid only after some transient time of the ord
of the relaxation time within the bath. Our study shows th
the quantitiesg j l

21 can serve as the above-mentioned tra
sient times. Additionally, the presence of damping para
etersg j l in the relaxation term of the master equation
parallel to the spectral strength~30! of the bath creates a
particular foundation for the slippage~modification of the
initial conditions upon which the generator for the Marko
ian evolution acts@29#!. It should be mentioned here that th
necessary conditions for a slippage can be found also in
model of a stochastic system-bath coupling@17# since the
corresponding autocorrelations exhibit an exponentional
cay in time.
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