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Averaged master equation for a quantum system coupled to a heat bath
with fluctuating energy levels
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A master equation for a quantum system coupled to a heat bath with stochastically fluctuating energy levels
is derived by making use of the ensemble averaging and the averaging with respect to a stochastic process in
the bath. Relaxation terms are determined in the Born approximation with respect to the system-bath interac-
tion and the damping parameters related to a relaxation kernel are specified. In parallel with the spectral
strength of the bath, the damping parameters determine the transient times for the Markovian description
creating the physical origin of the slippaf. Suarez, R. Sibey, and I. Oppenheim, J. Chem. P@ys5101
(1992]. The influence of energy fluctuations of the bath is analyzed for a two-level system including the
solution of the corresponding non-Markovian equation for the level population difference. The conditions for
the formation of Boltzmann's thermal ratio between steady-state populations are evaluated as well.
[S1063-651%97)12612-5

PACS numbeg(s): 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.6Qv

I. INTRODUCTION and steady-state populations. In particular, the density matrix
of the quantum system is not driven to Gibbs’s equilibrium
In condensed media, the interaction between a quanturi@rm, but to a microcanonical equilibrium density matrix
system and its environment is the physical factor responsiblpl4]. Furthermore, steady-state populations of the energy
for relaxation processes in the system. Basic principles ofevels of the system do not satisfy Boltzmann’s equilibrium
nonequilibrium statistical mechanidd—7] state that such ratio but become equal to each other.

relaxation processes can be provided by the environment if it 1he ensemble averaging reflects a statistical equilibrium
acts as a bath. in the heat baththe equilibrium is kept by the fast energy

There exist two distinct models for the bath. The first one€Xchange between the bath and the outside woritiereas
identifies the bath with a thermal environment, or a heafn® averaging with respect to random processes accounts for
A effective dy.nam|c influence of the environment. !Soth
according to the conventional Gibbs distribution. In practice,f[ypes of averaging may be related_to a situation in partlcular
a heat bath is often simulated by a phonon bath. If the pres'p rr_lolecular systems where a widespread ;et of different
motions of the environment appears. F&%—17 introduced
ence .Of a heat bath has been as_sumed, the eqsemble averadzombined averaging in the case of a mixed quantum-
ing with respect to bath states is necessary if one deriveg astic bath and derived master equations for the density
kinetic equations for the quantum system. Just owing to en atrix of the system on the basis of a combined averaging
ergy exchange between the system and the heat bath, tg,cedure(which includes the ensemble averaging and the
density matrix of the system is driven to Gibbs’s equilibrium averaging with respect to a stochastic progessparticular,
form and the steady-state populations of the energy levels afe demonstrated in the model of a system coupled stochas-
the system satisfy Boltzmann’s equilibrium ratibno addi-  tjcally to a phonon reservoir how the quantum system is
tional time-dependent external fields act on the system  driven to the thermal equilibrium characterized by Gibbs’s
In the second model for the bath one provides the exisdensity matrix{17]. Later on the combined action of a heat
tence of random fields created by the environment. Andersobath and a stochastic field on relaxation processes in a quan-
[8] and Kubo[9] proposed the simulation of the random tum system was studied in somewhat different models
action of the environment introducing random quantities jusf18,19. In these studies random processes appeared in the
into the Hamiltonian of the considered quantum systemfluctuation of the energy levels of the quantum system con-
Later on this idea has been used within the method of theidered. This second type of stochastic influence leads to
stochastic Liouville equatioh5-7,10,1] (see also the dis- somewhat different conclusions. It has been shown that a
cussion of the Haken-Strobl-Reineker method in the theorpteady state of the system is not always characterized by
of exciton transfef12] as well as the method of stochastic Gibbs’s density matrix. The result depends on the relation
master equation applied in spectroscdpg]). In contrast to  between the coupling of the system to the heat bath and the
the first model of the bath, the kinetic equations for the quaneharacteristics of the random processes. However, it is pos-
tum system are derived via an averaging with respect to resible to state that the result given in REL7] is definitely
alizations of the random parameters included in the systernorrect if the stochastic influence does not lead to a large
Hamiltonian. Since this averaging procedure differs from thewidth of the energy levels of the quantum system.
averaging with respect to a thermal ensemble it leads to prin- The present study is devoted to the analysis of relaxation
cipally different results with respect to both relaxation ratesprocesses proceeding in a quantum system that is coupled to
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a heat_lk_)r?th, wzlclh in turn is éhetsubje(r:]t of aIStthh?'S“C m;lum Egs. (20 and (3) the Liouville operators Ly(t)

ence. The model corresponds to a sical situation where ; - ro_g- P g

the systen{impurities in apcrystal don%r-yacceptor pairs, gtc. = C[Ho(t), 1, Li=A 1V, ], andLg(t)=A “{Ha(t), ]

; o > are introduced together with the unitary operators

couples to the environment via the nearest surrounding only,

which is in thermal and dynamic contact with the remaining . R t

environment. So(t,t'):TeXF{—if,dTLo(T)
The thermal contact is realized through fast small- t

amplitude vibrations that create the thermal reservoir. Owing .

to thermal contact, the phonon system of the surroundings is ASB(t,t’):?ex;{ _if dTEB(T)

held in thermal equilibrium and thus appears as a heat bath t/

for the given quantum system. The dynamic contact is asso-

ciated with large-amplitude nuclear motions that create stoand the Gibbs equilibrium matrix of the bath,

chastic fields for the surroundin&0]. As an example, we 0 0 0

note that random fields can be created by nonequilibrium  Pe(Hg)=exp(—Hg/kgT)/Trg[exp(—Hg/kgT)].  (6)

degrees of freedom of complex molecular structuiese, . :

e.g% Refs[21,18 for a generaﬁ)discussi@nHere we atisume The symbol Tg in Egs.(3) and (6) dfanotes the trace with

these large-amplitude nuclear motions to be capable of altefespect to bath states and the symbdh Egs. (4) and (5)

nating the random dynamic characteristics of the surroundimplies a time ordering. Note that it has been assumed in Eq.

ings, in particular, the phonon frequencies of the bath.  (3) that (V)=Trg[pg(Hg)V]=0. Otherwise, the substitu-
The model describing a bath with fluctuating energy lev-tions of Hy by Ho+(V) and of V by V—(V) have to be

els introduces one more type of stochastic influence on thperformed in Eqs(2) and(3).

bath interacting with the outside environment. Earlier, such In deriving the master equatiq®) we have assumed that

an influence was considered as the random alternation of tiee stochastic influence on the bath energy le#glds too

system-bath couplin§l7]. Therefore, the present work can weak to result in deviations from the equilibrium density

be considered as a further investigation of the influence of aatrix (6). Such an assumption means that the stochastic

quantum-stochastic bath on relaxation processes in a quainfluence on relaxation processes within the Hatiese pro-

tum system. In fact, such investigations were initiated withcesses support an equilibrium distributié®] is of minor

the papers by Faid and F¢%4,17. importance and thus the matrig) is determined via a sta-

tionary Hamiltonian of the bath,

, 4

®)

Il. MODEL AND THEORY

0
In accordance with the chosen model, we take the Hamil- He= é Eala)(al. @)
tonian of the whole systerfguantum system plus heat bath
as However, the stochastic influence cannot be ignored in the
dynamic matrix(5) with the stochastic HamiltoniaH g(t).
H(t)=Ho(t) +Hg(t) +V, (1) (itis well known that the presence of a stochastic part in the
Hamiltonian of a system introduces basic changes in the time
whereH,(t) andHg(t) are time-dependent Hamiltonians of evolution of the systerfil1,25—-217). To specify the stochas-
the system and the bath, respectively, &hdenotes a time- tjc influence of the environment we employ the model of the

independent system-bath interaction. In Héf7], the inter-  diagonal stochastic perturbation represented by the stochastic
actionV was assumed to be a stochastic quantity whereas the@amiltonian of the bath

HamiltoniansH, andHg are taken as time independent. In

contrast, in Ref[18], H, was chosen as a stochastically

modulated quantity. In the present study, the bath Hamil- HB(t):é [Eatea(t)][a)(al. ®
tonianHg(t) will be considered as a stochastic value opera-

tor, whereas the quantitid$y(t) andV are taken as regular Here the conditior E,|>|e,(t)| has to be fulfilled for the
operators[ln Ho(t) a time dependence may appear if a regu-stochastic time-dependent pati(t).

lar time-dependent external field is applied. . To derive from Eq(2) a noise-averaged master equation

~ Using the projection operator techniql#2,23, we find,  jt js necessary to specify the type of stochastic process. In
in line with Refs.[18,19], the following type of stochastic addition, a relationship between a typical relaxation time in

master equation for the density matgit) of the system:  the quantum system and the typical characteristic times of
) R R the stochastic process must be established. To obtain analytic
p(t)=—iLo(t)p(t) —L(p(t);1). (2)  results we restrict ourself to a dichotomic procgkk 25-27

with escape frequencieg [20]. These frequencies determine
This equation has been derived within the Born approximathe realizations of the stochastic parf(t) in the Hamil-
tion with respect to the interactiodf [24], resulting in the  tonian(8). Below we suppose fast random realizations of the

following type of relaxation part: e4(t) in comparison to relaxation processes within the sys-
tem. This means that the inverse escape frequem(jﬁés)f a
t . . . . s
Cot):)= | dt’Tral,So(t,t")Sa(t,t" )L HOY o(t!). given discrete stochasy_c process satisfy the_ condition
(p(1):t) Jo sbaSo(tt)Se(tt)Lape(He)p(t) T, > vj_l. Such a supposition justifies the decoupling proce-

3 dure
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(Se(t,t)L1ps(HR)p(t)))=((Sa(t,t ) L1pa(HD))) Ko (68)=Tral pa(HS) F el (Se(t,t ) F 1)1,

1
(o)), © 49
which specify the bath response.

which will be carried out in the relaxation ter(8) as the To evaluate the correlation functiofis5) we additionally
result of averaging with respect to the fast stochastic Process .d the operatd... with respect to a complete basis set
(noise averaging is denoted W& ))). More precisely, the P b mn P P

decoupling is valid since the relaxation behavior of the den-|a> of the bath Hamiltoniar?),

sity matrix of the systenp(t) is characterized by the time

scale of the relaxation process of order~ 7, , whereas the Fron= > (a|FmibY|a)(b. (16
characteristic time scale of a random process contained in ab

c AN -1

Sg(t,t’) is vy = Then, using Eqs(6)—(8) and(16), one finds

Introducing the abbreviatiorr(t)=({p(t))) and using
Egs.(2), (3), and(9), one finds the following noise-averaged Konm e (6,
master equation for the system: '

. _1 3 R R
&(t): _ %[Ho(t)vg(t)]_ %f;dt’TrB([V,ASO(t,t’) _Zaz,b eXF[ Eb/kBT]<b|an|a><a|Fm’n’|b>

X Xap(t,t")expi(Ea—Ep) (t—t")/A], 17

X((Se(t,t MIV.pe(HB) o (t)]D. (10 |
whereZ=3 _ exd —E,/kgT] is the bath state sum. The sto-
To obtain the averaged kernel we rewrite it in a tetradicchastic properties of the environment are contained in the
representation by choosing a complete basjsof system  quantity
states. Then the Hamiltonidthy(t) and the interactio¥ can
o ~ _ | ’

be expressed by the transition operatggs=|n){(m| [4,27), Xop(t,t) = ’ga(t,t’)=< <ex%%ﬁt [e.(7)—ey()]dr >>

Ho(t):% Hmn(t)fymnv V:% IA:mn?)’mn- (11 (18)

' ' which depends on the type of the bath fluctuatiep&) and

Here Hpy () =(m[Ho(t)[n) are the matrix elements of the on the specificity of matrix elemen¢b|F ,|a) for each pair
system Hamiltonian, whereas the quantittes,=(m|V|n)  of system statesn(n).

are operators resulting from the system-bath coupling. These In the case of a dichotomic random process the averaging
operators act in the basis set given by the Hamiltorfidn  can be performed exactly. We illustrate this fact by analyzing
Each operatoF ,,, represents a process in which transitions@ typical model of the bath defined as the set of quantum
within the bath are accompanied by the transition of the sysharmonic oscillators with frequencies, (t) = w, + Aw,(t),

tem from staten to statem. With Eq. (11) the tetradic rep- WhereAw,(t) is a stochastic contribution to the frequency

resentation reads w, . The operatorF,,, initiates transitions between bath
_ states|a)=|{n,}) and |b)=|{n;}) with definite sets of
. I . 7 .
= — — Ho (Do (1) —Hor (t (t population numbergn,} and{n,}. The energy differences
Tmn(t) ﬁ% {Hmm (D m () = Hm (D oma (D} in Egs.(17) and(18) read, respectively,

t
- 2 Ormn;m'n’(tvt/)Um’n’(t,)dt’- (12 Ea—EbIﬁE (ny—ny)wy,
m’,n’ \

The matrix elements
sa<t>—sb<t>=h§ (M —n)Aw,(1). (19

1
an;m’n’(t’t’): _22 {Kmr;r’m’(trt,)srn;r’n’(tit,)
hor Any frequency fluctuatiom\ w, (t) in a dichotomous pro-
LK (LS, (tt) cess has only two realizatiosw, ; andA w, , characterized
rnin’rrin nmoriAt by two escape frequencieg, andwv,,. Utilizing the method
Koo (11 Spep e (1,1) of Brissaud and Frish26] and following Ref.[18] one gets

_K’r;r;n'r'(t’tl)srn;m’r’(t’tl)} (13

of the relaxation supermatrik(t,t’) are expressed via the
matrix elements

Xab<t,t'>=xab<t—t’)=K[ X(ny,nyt=t'),

— 1
: - X(ny,ny ;)= AT ————
Smn;m’n'(tat ):<m|50(tat’)7m’n’|n> (14 W)\~ W)\

of the dynamic matriX4) and the correlation functions X[Z)Me‘Z’ZV—ZZXe“ZN]. (20
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The averaged frequency contributioh€), are originated by Koo (tt)=K_4._(t,t")=K,o_._,(t,t")

the stochastic process, together with the complex frequencies K =Kt

0 =0, —ivj,. These quantities read =Kt (L) =K )

iAoyt rAwyg = 2 K}Z\{n(wh)x)\,(t—t’)e“*’x“’t')
)

AQ, = n,—n;); 21
\ . (Mm@
+[1+n(w)) X+
1 P\ . ,
ijzi ap—ay—(—1) gxsmf X (t—t")e text=t (26)
1 where the abbreviatioX, .- (7)=X(n, ,n,*£1;7) has been
yin== V)\—(_l)jf)\COSﬂ (22) introduced. In contrast to these rather complex expressions
2 2] the matrix element§l4) are given by simple expressions
where Sip+(tLt)=S__.__(t,t")=1,
EH={[v}— (an+ )P+ 405 (ag, — az) ™, Sy .y (Lt)=S' . (tt)=e B (27
1 In the framework of the spin-boson model the quantity
n=5 (M1t o), (23) X, (7) is independent of population numbemg. There-
fore, a kinetic equation for the Bloch vector with compo-
nentsz(t)=o, . (t)—o__(t), x(t)=0c, _(t)+0o_,(t), and
tano. — 2v\(ap—az) y(t)=i[o,_(t)—o_.(t)] can be easily derived from the
an‘Pk_| 2 (apt an)?’ generalized master equatigh?). For instance, the kinetic
> equation for the population difference reads
ap=—(-D[Ao\(m-n)-A0,]. (24

. t
r=- | T+ ot 7107
Equations (22) are valid if »2=(a;,+a)? and

2=, =0. If v2<(ap+ az)? has to substitut t
T _qDA vy=<(agt+ @) one has to substitute, +f [T(r)—T'y(r)]dr, (29)
by m— ¢, . 0
IIl. APPLICATION TO A TWO-LEVEL SYSTEM where the kernels
The exact expressiori21)—(24) clearly show the appear- (r)=K(7)e2™+K(—r)e 147,
ance of a particular damping mechanism in the relaxation
supermatrixI'(t,t") in addition to the damping resulting Iy(7)=K(7r)e "7+ K(—r)e?" (29

from the spectral strength for the balkw). This spectral

strength is determined by the correlator related to the couspecify the relaxation properties of the bath.

pling of the system to the batksee examples in Refs.  According to the mentioned conditidi,|>|e,(t)| of a
[7,5,6,18,29. To compare both mechanisms we consider aveak stochastic modulation of the bath energy levels, the
two-level system by choosing the spin-boson md@&€l. In  correlation function(26) can be expressed via the spectral
the basis sdt+ ) that diagonalizes the two-level Hamiltonian strength of the bath

H, and leads to a transformation in the system-bath interac-

tion V, Egs. (11) reduce to the forrrHo— —(ﬁA/Z)aZ and Hw)=27> k28(w—w,) (©=0) (30)
A = ’

V=Fo,. Here o,=y,.,—y__ and oy,=7y,_+7y_, are

Pauli-matrices, whereas —#AA/2=H,,=—H__ and

F=F, =F_, are the eigenvalues of the system Hamil- 2%
tonian and the coupling operatbr, respectively. Below we

take the operatof in the standard form of a linear coupling K(7)=Ko(7)= —f {n(w)e'“"
between the bath and the system,

+[1+n(w)]e * N (w)do.
F=#%2, x(b,+b]). (25) (31
A

Choosing an appropriate model fd¢w), one can estimate
In Eq. (25), «, is the coupling to the\th bath mode ant, the damping properties of the kernels in E20). In the case
(b]) is the annihilation(creation operator of this mode. Of the Debye bath the spectral strength has the fiizej

With Eg. (25) one finds the nonvanishing correlation func- 3 2
tions (17) J(w)=n(w’log)exd —(w/we)], (32
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where 7 is a dimensionless friction constant ang is a  ®,>|Aw,;|, one can omit the frequency renormalization
cutoff frequency. Expressiof82) shows that atrw >1 the  AQ, in comparison toaw, . Of course, the damping param-
asymptotic behavior dk(7) is proportional tor *. Hence a  etersy, have to be considered since they ensure an exponen-
nonexponentional decrease of the kern@9) on the time tial decrease of the kerne(89).
scaleA r~ wc_l appears. To obtain an exponential decrease a If a weak dependence of the damping paramejgren A
particular type of]J(w) with complex poles has to be con- is provided, the correlation function®6) can be approxi-
structed. Such a type is beyond the standard spin-bosamated as
model.

However, an exponentional decay of the kerr(@ fol- K(r)=e ""Ky(7), (35)
lows from the present alternation of the spin-boson model

since a stochastic modulation of the bath levels has beegherek (1) is determined via the spectral strength of the
assumed.. It is precisely the functh)‘{§i(7-) that_ reflect the patn [see Egqs(30) and (31)]. Now a single quantityy~ y,
exponential decay of the kernels via the damping parameteggaracterizes the influence of the stochastic processes initi-
¥ix [Eq. (22)]. At large Kubo numbers[11,2§ K,  ted by the environment.

=a;,'vj,>1 the averaged quantities, .. (7) take a simple Expression(35) manifests the appearance of a damping
form parametery in the correlation function related to the bath
AT, e ] response. In particular, the presenceygfistifies a Markov-
Xyz(7)=€ ve L (33) ian approximation in the kinetic equatid@g) if this param-

eter far exceeds the reverse relaxation timmef the system

The stochastic field-induced quantities 1 2 o
wherer, ~~V*. To justify this statement we present an exact

—  nadeptrden solution of the integro-differential kinetic equatiof28).
A= N ' This will be done for the Laplace-transforn,(p)
= [pexp(—pt)o,(t)dt and in the case of a single bath mode
s 20 v with frequencyw,. Therefore, we set
n=— = (Awyy—Awyp)? (39)
Px (va1t+vy2)®

J0)=27KE5(0— wg) (36)
are responsible for the specific contribution in the correlation
functions (33) and (26). Due to our basic assumption and obtain the solution

~ a0)p{[(p+7)?+ A%+ 5]’ — 4A%w5} — 8KkgA wo(P+ 7)
 p(P{L(p+ )2+ A2+ 3P~ 40202} + 4K3[2n(wo) + LI[(p+ )2+ A2+ 03] (p+ 7))

op)

(37

Returning to the time domain, this expression leads to thep| <y, the quantitys,(p) has only two polesp=0 and
following asymptotic behavior ofr,(t): p=—r 1, and thus the conditioyr,>1 for the applicabil-

t)= 0)— —t/r)+ . 38 ity of a Markovian approximation is justified.
A =L02(0) ~ (=) lexp—tim) + (). (38) The rate constanB9) and the steady-state population dif-

Here the rate constant ference (40) depend on dynamicA and wg), statistical
(N(wo) =[expliwy/kgT)—1]"Y), and stochastic f) charac-
k=7, '=2k§[2n(wo) +1] teristics of the system and the bath. At a minor stochastic
influence, i.e., ify<A,wq, the maximum of the rate constant
v Y Y (39 is reached al ~ w,. For the same condition, the Boltzmann
Y2+ (A—wg)?  Y?+(A+wg)? ratio exp7%A/kgT)~exp(—fwy/kgT) between steady popu-
lations Ny = (1/2)[ 1+ 0,(0) ] and N,=(1/2)[1— 0 ,()] is
and the steady-state population difference fulfilled. In the opposite limit wherey> A, w,, the rate(39)
is proportional tOKS/y, whereas the steady-state populations
2Awg are equal to one another. However, this limiting case is

UZ(w):l'inop"Z(p):_[Zn(wo)+1](y2+A2+wS) hardly met in physical systems, which becomes obvious

(400  from the following estimations. Vibrational frequencies in
condensed-matter systems do not exceed several hundred
correspond to a Markovian approximation that follows im-cm™! and hence we may seiy~10'?—10' s™1. The es-
mediately from EQ.(28) if one setso,(t—7)~0o,(t) and cape frequencies; of the stochastic field can be chosen at
shifts the upper integral limit tee. The Markovian approxi- the same order of magnitude. To get large Kubo numbers we
mation also follows from an exact solution of E§7) if the  take the frequency modulation of Eqg.(19 as
single damping parametey is kept in the termp+y. At  Aw,(t)~10"—10" s 1. With y=~1,, given in Eq.(34),
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one findsy~10°— 10 s71, i.e., y is far below the single With respect to the results of Oppenheétnal.[7,29)], such a
frequencyw,. reduction is valid only after some transient time of the order
of the relaxation time within the bath. Our study shows that
IV. CONCLUDING REMARKS the quantitiesyj_xl can serve as the above-mentioned tran-
sient times. Additionally, the presence of damping param-
The results of the present study demonstrate the particulgters ¥, in the relaxation term of the master equation in
properties of a damping process in a quantum system that |Sarallel to the spectral streng(80) of the bath creates a
in contact with a heat bath formed by the nearest Structur%articu|ar foundation for the S|ippa§enodiﬁcation of the
groups of the environment. The remaining part of the envijnitial conditions upon which the generator for the Markov-
ronment serves as a macroscopic thermal reservoir and, agim evolution act$29]). It should be mentioned here that the
ditionally, as a source of stochastic fields. Just these randOIﬁbcessary conditions for a S|ippage can be found also in the
fields are assumed to be responsible for stochastic fluctugnodel of a stochastic system-bath couplirig] since the
tions in the bath. Due to the stochastically fluctuating energy.orresponding autocorrelations exhibit an exponentional de-
levels of the bath, a specific damping process appears in they in time.
master equation for the quantum system. Despite the fact that
the corresponding damping parameterg, given in Eq.
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