
PHYSICAL REVIEW E JANUARY 1998VOLUME 57, NUMBER 1
Time-frequency analysis of electroencephalogram series. III. Wavelet packets
and information cost function
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Signals obtained during tonic-clonic epileptic seizures are usually neglected for analysis by the physicians
due to the presence of noise caused by muscle contractions. Although noise obscures completely the recording,
some information about the underlying brain activity can be obtained with wavelet transform by filtering those
frequencies associated with muscle activity. One great advantage of this method over traditional filtering is that
the filtered frequencies do not modify the pattern of the remanent ones. An accurate analysis of the different
seizure stages was achieved using the wavelet packet method, and through the information cost function the
brain dynamical behavior can be accessed.@S1063-651X~97!09712-2#
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I. INTRODUCTION

The electroencephalogram~EEG! can be raftly defined as
the mean electrical activity of the brain in different sites
the head. EEG patterns are correlated with functions, d
functions, and diseases of the central nervous system b
on an empirical basis. Then clinical interpretation of EE
records are achieved by associating pathology characteri
~clinical symptomatology! with the visual inspection and pa
tern recognition of the EEG. Although this traditional ana
sis is quite useful, the visual inspection of the EEG is s
jective, and hardly allows any systematization@1–4#. In
order to overcome this, quantitative EEG analysis introdu
objective measures reflecting the characteristics of the b
activity as well as the associated dynamics. However,
must remark that these methods are not developed for rep
ing traditional EEG visual analysis, but rather they comp
ment them as additional tools.

Quantitative EEG analysis as a field includes a wide
riety of techniques. These are frequency decomposi
~spectral analysis!, topographic mapping, compressed sp
tral arrays, significance probability mapping, and other co
plex analytical techniques@1–4#. A new approach to the
problem of the quantification of the EEG series was achie
with nonlinear dynamics@5–11#.

EEG’s are complex signals whose statistical proper
depends on both space and time. Regarding temporal c
acteristics, EEG signals are chaotic@5–11# and highly non-
stationary~nevertheless, they can be analytically subdivid
into short representative epochs where stationarity hyp
esis is accomplished@9–11#!.

*Electronic address: blanco@ulises.ic.fcen.uba.ar
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Recently, we introduced two different techniques that
lowed an analysis of an EEG time series in the tim
frequency domain. The first was based on the Gabor tra
form @10,12–14#, and the second one on the wave
transform@15#. In the present work we present two signifi
cant improvements to the time-frequency analysis of
EEG series using wavelet transform. The first improvem
is the introduction of the wavelet packet analysis@16#. The
second improvement is the introduction of the informati
cost function~ICF!, defined in terms of the wavelet coeffi
cients, and essentially representing a Shannon entropy f
tion @17,18#. We would like to remark that the applicabilit
of these methods are not restricted only to EEG recordin

Until the introduction of long term monitoring, spontan
ous seizure EEG’s were obtained only in those lucky sit
tions in which the patient had a seizure during the few m
utes of the recording. Normally, interictal EEG’s~EEG’s
without seizure activity! were analyzed looking for patho
logical characteristics such as spikes, paroxysms, low
quency activity, etc. During those interictal EEG’s, seizur
were activated with photoestimulation, hyperventilation, a
other clinical methods. However, provoked seizures do
necessarily have the same behavior as spontaneous on
order to overcome this limitation, long term video-EE
monitoring systems were developed. With video-EEG, a
days of recording, clinical and electroencephalographic
formation can be correlated for obtaining an accurate ev
ation of the seizures. Seizure starting, duration, post-seiz
recovering, classification of the seizure, and different sta
are some of the characteristics usually analyzed. Howeve
the case of tonic clonic seizures, muscle activity provoked
violent movements completely obscures the EEG recordin
limiting the analysis only to the starting and the post-seiz
stages. Visual inspection of the EEG, and traditional ma
ematical methods such as Fourier transform are no lon
applicable in these cases, owing to the great amount of n
involved. In consequence, brain activity during this kind
932 © 1998 The American Physical Society
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57 933TIME-FREQUENCY ANALYSIS OF . . . . III. . . .
seizure has been observed only in special cases, for exa
in patients treated with ‘‘curare’’~a drug that inhibits muscle
responses! @19#, or by filtering the signal in the frequenc
range of the muscle activity with standard methods@20#.
However, filtering has several disadvantages, because
impossible to separate brain and muscle activity and, furt
it is well known that filtering high frequencies also affec
the morphology of the low ones.

The aims of this work are to study a tonic clonic seizu
avoiding noise related limitations, by using wavelet tran
form and derived magnitudes in order to help physicians
identify and characterize the dynamical stage of the seiz
as a complement of the video-EEG. The paper is organ
in the following way. In Sec. II the clinical data and th
experimental setup are presented. In Sec. III the tim
frequency method based on wavelet transform is review
The wavelet packets, as well as the information cost fu
tion, are introduced. In Sec. IV the analysis of a scalp E
time series corresponding to an epileptic seizure is p
formed. Finally, in Sec. V a summary is given.

II. EXPERIMENTAL SETUP AND CLINICAL DATA

A scalp EEG signal is a nonstationary time series t
usually presents artifacts due to an electrooculogram,
electromyogram, an electrocardiogram~ECG!, and others
@1–4#. Artifacts make a mathematical analysis of scalp EE
signals difficult. Sometimes, artifacts are presented for a
seconds, and can be obviated because they obscure o
small portion of the total EEG. In other cases, almost
total signal appears noisy and obscured by them, and
little information about the underlying brain activity can b
extracted. An example of this kind of scalp EEG signal is
one corresponding to a tonic-clonic seizure@3#.

A tonic-clonic ‘‘grand mal’’ seizure normally lasts aroun
40–90 s, and is characterized by violent muscle contracti
Initial massive tonic spasms are supplanted some sec
later by a clonic phase, with violent flexor movements a
characteristic rhythmic spasms that last until the ending
the seizure.

Samples of EEG time series corresponding to general
tonic-clonic seizures of epileptic patients were analyz
Scalp and sphenoidal electrodes were applied following
10-20 international system@1,2#. Each signal was digitized a
409.6 Hz through a 12 bit analog to digital converter, a
filtered with an antialiasing eight pole low-pass Bessel fil
with a cutoff frequency of 50 Hz. Then signals were digita
filtered with a 1–50-Hz bandwidth Butterworth filter an
stored, after decimation, at 102.4 Hz in a personal comp
hard drive. Recordings were done under video control
order to have an accurate determination of the differ
stages of the seizure. Analysis of each event included 1
of EEG preseizure activity, and 2 min of the seizure a
post-seizure phases. The different stages of EEG sig
were determined by the physician team.

As an example, in Fig. 1 we present a scalp EEG sig
corresponding to a tonic-clonic epileptic seizure recorded
a central right location~C4 channel!. In this record, the sei-
zure starts at second 10, with a ‘‘discharge’’ of high freque
cies. The tonic phase starts around second 35 with increa
amplitudes of the EEG, and the clonic phase begins aro
ple
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second 50 when the spasms dominates the EEG. The sei
clearly ends at second 85.

III. TIME-FREQUENCY ANALYSIS

A. Wavelet transform

Wavelet analysis gives us a powerful tool to confront ve
diverse problems in applied sciences or pure mathema
@21–27#. The wavelet is a smooth and quickly vanishing os
cillating function with good localization both in frequency
and time. It can be interpreted as single signals, or atoms
short times with oscillating structures.

A wavelet family ca,b is the set of elemental functions
generated by dilations and translations of a unique adm
sible mother waveletc(t),

ca,b~ t !5uau21/2cS t2b

a D , ~1!

wherea,bPR,aÞ0 are the scale and translation paramete
respectively, andt is the time. Asa increases, the wavelet
became more narrow. Thus we have a unique analystic p
tern and its replicas at different scales and with variable l
calization in time.

Given a finite energy signalS(t), the different correla-
tions ^S,ca,b& indicate how precisely the wavelet function
locally fits the signal at every scalea. This correlation op-
eration defines the transformation that synthesizes the
merical information obtained in this way. From a differen
viewpoint, the wavelets of a family play the roles of elemen
tal functions, representing the functions as a superpositio
of wavelets correlated with the function for different scale
~different a’s!. This makes it possible to organize the infor
mation in some particular structure to distinguish, for ex
ample, trends, or the shape associated with long scales of
local details from corresponding short scales.

The continuous wavelet transform of a signalS(t)
PL2(R) is defined as the correlation between the functio
S(t) with the family waveletca,b for eacha @23#,

~WcS!~a, b!5uau21/2E
2`

`

S~ t !c* S t2b

a Ddt5^S,ca,b&;

~2!

FIG. 1. Scalp EEG signal. Seizure starts at second 10, to
phase at second 35, clonic phase at second 50. The seizure en
second 85.
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the asterisk denotes complex conjugation.
For special selections of the function,c and a discrete ne

of parametersaj522 j andbj ,k522 j k, with j ,kPZ and the
scale 22 j , give us the shift parameter. The subfamily

c j ,k~ t !52 j /2c~2 j t2k! j ,kPZ, ~3!

constitutes an orthonormal basis of the Hilbert spaceL2(R)
@21,22#. In this way, we can obtain discrete transformatio
and it is possible to expand the signal in a series of wave
Then we can join the advantages of the wavelet transf
with the atomic decomposition ofS(t).

The discrete wavelet transform associated withc is sim-
ply seen as a restriction of the continuous wavelet transf
at the parameter set$aj ,bj ,k%. In this case, as it is wel
known, the information given by the discrete wavelet tra
form can be organized according a hierarchical scheme
nested subspaces called the multiresolution analysis inL2(R)
@21–24#.

In the present analysis we used a multiresolution sche
based on cubic orthogonal spline functions as the mo
wavelet, with a discretized version of the integral wave
transform given by Eq.~2! @25#. We selected this wavele
due to the fact that it forms a base inL2(R) with a very
convenient characteristic of symmetry and simplicity. Mo
over, the smoothness of its derivatives are very suitable
representing natural phenomena.

In the following we will assume that the EEG signal
given by sampled values$s0(n)%, n51, . . . ,M , which cor-
respond to a uniform time grid with sampling timeDt. With-
out loss of generality, we can suppose that the sampling
is Dt51. We define the representation of the signal by int
polating the sampled data in the form

S~ t !5(
k

s0~k!f~ t2k!, ~4!

wheref(t) is the cubic cardinal spline, verifyingf(n)5dn0
@22#.

For any resolution levelN,0, we can write the decom
position of the signal as

S~ t !5(
k

sN~k!f~2Nt2k!1 (
j 52N

21

(
k

Cj~k!c j ,k~ t !,

~5!

whereCj (k) are the wavelet coefficients, and the seque
$sN(k)% represents the coarser signal data at resolution l
N, whereN5Ln2(M ). The second term is the wavelet e
pansion. The wavelet coefficientsCj (k) can be interpreted a
the local residual errors between successive signal app
mations at scalesj and j 11, and

r j~ t !5(
k

Cj~k!c j ,k~ t ! ~6!

is thedetail signalat scalej . It contains the information of
the signalS(t) corresponding to the frequencies 2jp<uvu
<2 j 11p. If the decomposition is carried out over all resol
tion levels, then the wavelet expansion will be
,
ts.
m

m

-
of

e
er
t

-
or

te
-

e
el

xi-

S~ t !5 (
j 52N

21

(
k

Cj~k!c j ,k~ t !5 (
j 52N

21

r j~ t !. ~7!

Since the family$c j ,k(t)% is an orthonormal basis for
L2(R), the concept of energy is linked with the usual notio
derived from the Fourier theory. Then the wavelet coe
cients are given byCj (k)5^S,c j ,k&, and the total energy by
zuSuz25S j ,0SkuCj (k)u2.

In the wavelet multiresolution framework~described
above! it is possible to evaluate the energy corresponding
each level, and they can be used for the detection of
characteristic epileptic events@15#. Since we are using dy
adic decomposition of the range of frequencies, from a sig
of M samples, we haveM /22 j coefficients at levelj . In
order to obtain an accurate event detection, we distribute
‘‘atoms’’ of energy in each levelj uniformly along 22 j

points. The energy in each resolution levelj 521, . . . ,
2N, will be Ej5SkuCj (k)u2, and the energy at eac
sampled timek will be E(k)5S j 52N

21 uCj (k)u2.
Natural time series are usually combination of stocha

~noisy! and chaotic behaviors. Many applications, like no
linear dynamics, require the separation of signal and no
@28,29#. Otherwise, when nonlinear invariants are evalua
~i.e., characteristic dimensions or Lyapunov exponents! the
contaminating noise can give spurious results, and the
tained values will underestimate~if noise has strong periodic
or almost periodic components! or overestimate~if noise is
representative of a deterministic high dimensional or s
chastic process! the real complexity of the system unde
study. When noise is present only in specific frequen
bands, a filtering process can be implemented. Howe
from the point of view of nonlinear dynamics, filtering cou
be suitable only in some cases depending on the system
der study. It is important to emphasize that a poorly desig
filtering of the signal can give spurious results~i.e., filtering
frequencies that determine the real dynamics of the sign!.

Thus in these cases a filtering based on wavelet transf
can be implemented in order to obtain a more accurate si
of the process under interest. Supposing, as in the cas
tonic-clonic seizures, that we are interested in eliminat
high frequency noise, using Eq.~7! at level j , the residual
will be a smoothed version of the original signal, havin
fewer high frequencies in comparison to levelj 11. This
new signal will have half the data of the previous lev
therefore, an interpolation with spline functions is applied
order to obtain the remaining data. On the other hand, in
polation by the cubic spline gives an efficient and very go
approximation of the underlying physical signal given
samples@30#. Then this method can be accurately used
separation of noise, and the cleaned signal can be obtaine
a sum of the interpolated residual components correspon
to the interesting frequency bands.

In summary, this method allows the elimination of no
desired frequency bands that hide other more interestin
unknown effects. Due to the orthogonality of the wave
functions employed, we can be assured that only the
wanted and previously selected frequency bands were
tracted, without needing to assume that linearity is neces
for making the traditional Fourier-based digital filtering.
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B. Wavelet packets

As it is well known, wavelet analysis provides atime-
scaledescription of any finite energy signal. Essentially, it
a successive decomposition of the signal in different sca
At each step, the corresponding details are separated, pr
ing useful information for detecting and characterizing sh
time phenomena or abrupt changes of energy.

However, since wavelets do not possess a well defi
average in frequency, they are not well suited to describe
characterize stationary phenomena or to detect ti
frequency structures. This is an important limitation, beca
significant events often involve joint variations of time a
frequency@24#. To overcome this problem, wavelet pack
analysis appears as a natural extension of wavelet anal
Moreover, this technique allows a time-scale-frequency
scription of the signals.

A family of wavelet packets is a collection of element
signals obtained from appropriate linear combination
wavelets. They look like locally oscillating wave forms r
sembling modulated sines or cosines. Moreover, they ca
organized on an orthonormal basis of the space of finite
ergy signals. The main advantage of using wavelet packe
that standard wavelet analysis can be extended with a
ible strategy. Thus, the description of the given signal can
well adapted according to the significant structures. Sev
families of wavelet packets have been proposed in the lit
ture @16,24,27#. Here we will apply trigonometric spline
wavelet packets@16#. First let us briefly review the propose
technique.

Given a finite energy signals0(t), using spline wavelet
analysis we can successively decompose them with the
cursive scheme

sj 11~ t !5sj~ t ! % r j~ t ! ~8!

for each scalej 50,21, . . . ,2N. As already mentioned, th
componentssj 11(t) andsj (t) add to the information of the
signal corresponding to the frequency bands22 j 11p<v
<2 j 11p and22 jp<v<2 jp, respectively. This means tha
the decomposition at levelj consists of filtering the compo
nents sj 11(t), giving the details corresponding to the r
maining frequencies 2jp<uvu<2 j 11p. The component
r j (t) adds to this information, and we can describe the sig
S(t) in term of detail signals as

S~ t !5(
j ,0

r j~ t !. ~9!

On the other hand, the detail components can be describ
terms of wavelet atoms

r j~ t !(
k

Cj~k!c j ,k~ t !. ~10!

Since each waveletc j ,k(t)52 j /2c(2 j t2k) is well local-
ized in the interval 22 j k<t<22 j (k11), the corresponding
coefficientCj (k) adds to the local information of the deta
However, as we mentioned above, these coefficients ave
all the involved frequencies 2jp<uvu<2 j 11p, and we will
not gain explicit information about stationary structures.
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Now we are interested in how to improve the frequen
precision. The main idea is to decompose the compon
r j (t) in portions, each one covering a longer interval. Th
we will locally implement an appropriate frequency tec
nique.

We define any portion or local signal as

r j
~m,l !~ t !5 (

k5 l

112m21

Cj~k!c j ,k~ t !, ~11!

where the parametersm and l are chosen in order tha
r j

(m,l )(t) covers the full time interval 22 j l<t<22 j ( l 12m),
which is a relatively long interval of length 2m2 j . Note that
we defined the local wavelet packet with of 2m basic func-
tions c j ,k(t) for k5 l , . . . ,l 12m21.

Now, we define the set of fundamental frequencies

vmh5p12hp/2m, ~12!

with 0<h<2m21, and associated the Fourier matrixM (m)

given by

Mnk
~m!522m/25

sin @p~k11/2!# if n51

21/2cos@vmh~k11/2!# if n is even

21/2sin @vmh~k11/2!# if n is odd

cos @2p~k11/2!# if n52m,
~13!

with 1<n<2m, 0<k,2m and h5†@n/2#‡, where†@ #‡ de-
notes the integer part. It can be demonstrated thatM (m) is a
2m32m dimensional orthogonal matrix@16#.

Then we can define the new set of elemental functions
order to expandr j

(m,l )(t) as a 2m dimensional vector obtained
from

u j ,n
~m,l !~ t !5 (

k5 l

112m21

Mnk
~m!c j ,k~ t ! ~14!

for 1<n<2m.
Clearly, these functions constitute a new local orthon

mal basis covering the interval under analysis, 22 j l<t
<22 j ( l 12m). Therefore we can give a second descripti
of the local signal as

r j
~m,l !~ t !5 (

n51

2m

D j
~m,l !~n!u j ,n

~m,l !~ t !. ~15!

The corresponding coefficients are easily computed as

D j
~m,l !~n!5 (

k5 l

l 12m21

Mnk
~m!Cj~k!, ~16!

where 1<n<2m.
The trigonometric wavelet packetsu j ,n

(m,l )(t) have zero
mean, oscillate on the interval 22 j l<t<22 j ( l 12m), and
decay with exponential ratio. Moreover, their wave form
resemble modulate sines or cosines. In fact, it can be d
onstrated that each Fourier transformû j ,n

(m,l )(v) is centered at
the fundamental frequencyvmh , when n52h or n52h
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11. Moreover,û j ,n
(m,l )(v)50 on the other fundamental fre

quencies, and it has a fast decay outside the rangejp
<uvu<2 j 11p.

In other words, the coefficients$D j
(m,l )(n)% can be con-

sidered as the discrete Fourier spectrum for the local sig
r j

(m,l )(t). Summing up, in the double set of coefficien
$Cj (k),D j

(m,l )(n)% we add to the time-scale-frequency info
mation of the local signalr j

(m,l )(t).
Finally, to analyze the complete functionr j (t), that is, the

details at levelj , we choose some partition in local comp
nentsr j

(mi ,l i )(t), according the structure of the signal,

r j~ t !5(
mi

r j
~mi ,l i !~ t !, ~17!

where the sequence of indexl i verifies l i 115 l i12mi. Then
we implement the time-scale-frequency technique for e
local signal, referred to above.

C. Information cost function

Assuming that the given data seriesS5$s0(n)% has a fi-
nite energy, i.e.,

(
k

us0~k!u,` ~18!

andDt51, we can approximate the energy of its spline re
resentation in the form

zuSuz2>(
k

us0~k!u2, ~19!

then the values

p0~n!5us0~n!u2Y (
n

us0~n!u2. ~20!

give the probability distribution of the signal’s energy in th
time domain.

Furthermore, in the wavelet multiresolution analysis
the time series$s0(n)%, the energy in each resolution levelj
( j ,0) is the energy of the detail signal

Ej5ir j i25(
k

uCj~k!u2; ~21!

as a consequence, the total energy can be obtained by

Etot5iSi25(
j ,0

Ej . ~22!

Then the normalized values

pj5Ej /Etot , ~23!

for j 521,22, . . . ,2N, define by scales the probability dis
tribution of the energy. Clearly,

(
j ,0

pj5(
n

p0~n!51 ~24!
al

h

-

f

and the pair of distributions ($p0(n)%,$pj%) can be consid-
ered as a time-scale density. They give a suitable tool
detecting and characterizing specific phenomena. The S
non entropy gives a useful criteria for analyzing and comp
ing these distributions, since as is well known, it provide
measure of the information of any distribution.

We define the information cost function@17,18# as

Ct52(
n

p0~n!Ln2@p0~n!# ~25!

and

Cv52(
j ,0

pjLn2@pj #. ~26!

The first function shows how redundant the time series is
other words, it leads us to inquire whether the patterns
periodic phenomena. On the other hand, the second func
shows the correlation between oscillating structures co
sponding to different scales. In particular with this functio
self-similar processes can be detected.

It has become quite common in analyses of experime
time series with nonlinear systems to make a time delay
construction of the phase space in which the dynamic can
observed. The phase space portrait can be analyzed m
ematically to demonstrate the existence of an attractor~the
region of the phase space of lower dimension where the
nal is confined in its future evolution! and its dimension
@28,29#. A useful way to describe the dynamic behavior is
use Lyapunov exponents. These exponents measure the
at which nearby points on an attractor diverge or conve
along nearby trajectories@28,29#. We must emphasize tha
these metric parameters~dimensions, Lyapunov exponen
etc.! are defined only for stationary systems. In previo
works, we confirmed, from a nonlinear dynamical analysis
epileptic EEG time series@10–12#, the validity of the basic
assumption that, at the seizure onset, a transition takes p
in the dynamical behavior of the neural network from a co
plex behavior to a simpler one@6,8#. That means that, during
an epileptic seizure the dimension of the attractor and
larger Lyapunov exponent present lower values compa
with those evaluated at preseizure and post-seizure sta
Also the reconstructed attractor in phase space looks m
simple and ordered.

The information cost function gives a measure of the
der or disorder of the system in time. Thus, the ICF is a go
parameter in order to detect dynamical changes in the sys
behavior, as well as a form of quantifying it@17,18#. The
analysis of the ICF as a function of the different frequen
bands and time shows in which bands the system has a
dency to order, or to a less chaotic behavior, during an e
leptic seizure. In addition, the ICF has the following adva
tages over the following parameters:~i! over the entropy,
because it is capable of detecting changes in a nonstatio
signal due to the localization characteristics of the wave
transform; ~ii ! over dimensions and Lyapunov exponen
~which are only defined for stationary behaviors!, because
the computational time is significantly lower, since the alg
rithm involves the use of fast wavelet transforms in a mu
resolution framework.
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IV. RESULT AND DISCUSSION

Orthogonal wavelet transform was used to analyze
scalp EEG signal corresponding to a tonic-clonic~TC! epi-
leptic seizure. In Fig. 1 we show the signal. The seizure st
at second 10 with a discharge of slow waves superimpo
by fast ones with lower amplitude. The tonic phase sta
around second 35 with increasing amplitudes, and the clo
phase starts around second 50. The seizure finishes at se
85.

EEG spectral analysis is traditionally performed by stud
ing different frequency bands, whose boundaries are w
defined but could have some small variations according
the particular experiment being considered@1–3#. Absolute
and relative intensities of these bands are analyzed and
related with different pathologies. In this work, we cho
seven frequency bands associated with resolution levels
propriate to the wavelet analysis in the scheme of multire
lution proposed. We denoted these band-resolution level
Bj (u j u51, . . .,7), and their frequency limits, as well as
their correspondence to traditional EEG frequency bands
given in Table I.

TABLE I. Frequency boundaries~in Hz! associated with the
different resolution wavelet levels according with sample freque
vs5102.4 Hz. The traditional EEG frequency bands correspon
the following frequencies:d ~0.5–3.5 Hz!; u ~3.5–7.5 Hz!; a ~7.5–
12.5 Hz!; b ~12.5–30 Hz!; g ~greater than 30 Hz!.

Notation vmin vmax

Resolution
level EEG band

B1 25.6 51.2 21 g, b
B2 12.8 25.6 22 b
B3 6.4 12.8 23 a, u
B4 3.2 6.4 24 u
B5 1.6 3.2 25 d
B6 0.8 1.6 26 d
B7 0.4 0.8 27 d
e

ts
ed
ts
ic
ond

-
ll

to

or-

p-
-

by

re

Applying wavelet transform, we can filter the signal b
subtracting the different bands. Figure 2 shows the smooth
time series corresponding to the signal of Fig. 1, where o
cillations associated with the frequencies corresponding
B1 andB2 bands, with wavelet resolution levelj 521 and
22 respectively, were subtracted. For recovering the orig
nal sampling rate, this residual smoothed signal was interp
lated with cubic splines. Owing to the fact that one of th
goals of this work is to analyze middle and low frequenc
brain activity during an epileptic seizure, we eliminatedB1
and B2 bands, both containing high frequency artifacts th
obscure the EEG. Although high frequency brain activit
will also be eliminated, it is well accepted that the compo
nents are not important in the study of an epileptic seizu
@14,19,20#.

We chose the frequency bandsB3 andB4 for performing
an analysis with wavelets packets, as was described in S
III. We selected these frequency bands because they ca
the brain activity that is traditionally analyzed during an ep
leptic seizure. The series ofCj (k) for j 523 was segmented
with a sliding windows ofl 532 samples corresponding to

FIG. 2. Noise-free EEG signal. Same as Fig. 1, but without th
fast frequencies~B1 andB2 bands!.

y
to
t
d
-

-

FIG. 3. Relevant wave packe
intensities for the frequency ban
B3 corresponding to the EEG sig
nal displayed in Fig. 1. The wave
packets are centered at the follow
ing frequencies:~a! 7.2 Hz,~b! 7.6
Hz, ~c! 8.0 Hz,~d!, 8.4 Hz,~e! 9.2
Hz, and~f! 10.8 Hz.
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FIG. 4. Wave packet intensi
ties for the frequency bandB4

corresponding to the EEG signa
displayed in Fig. 1. The wave
packets are centered at the follow
ing frequencies:~a! 3.2 Hz,~b! 3.6
Hz, ~c! 4.0 Hz,~d! 4.4 Hz,~e! 4.8
Hz, and~f! 5.2 Hz,~g! 5.6 Hz,~h!
6.0 Hz, and~i! 6.4 Hz.
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time intervals ofDt52.5 s. Discrete sets of 11 l /2 different
frequencies between 6.4 and 12.8 Hz, with intervals of
Hz, were obtained.

Figure 3 shows wave packets of relevant amplitud
They are centered at the frequencies~a! 7.2, ~b! 7.6, ~c! 8.0,
~d! 8.4, ~e! 9.2, and~f! 10.8 Hz. An important peak at secon
35 can be identified in agreement with the starting of
tonic phase of the seizure, as was established by the ph
cian team. It can be observed, mainly in the wave pack
~b!, ~c!, and~d!, which means that its frequency structure c
be decomposed mostly in these ranges. At 50 another p
indicates the starting of the clonic phase. It involves wa
packets~d!, ~e!, and ~f!. We can observe that the highe
amplitudes in this band correspond to frequencies around
Hz, in agreement with previous works@14,19,20#.

The same analysis for theB4 band was achieved usingl
516 samples corresponding to time intervals ofDt52.5 s
and discrete sets of frequencies between 3.2 and 6.4 Hz
intervals of 0.4 Hz. Note that thej 524 level has half the
dispersion in frequency compared with thej 523 level ~see
Table I!, and for this reason we used a window of 16 samp
in order to obtain the same definition. These packets ha
dispersion of60.2 Hz. Figure 4 shows the amplitudes
wave packets centered in~a! 3.2, ~b! 3.6, ~c! 4.0, ~d! 4.4, ~e!
4.8, ~f! 5.2, ~g! 5.6, ~h! 6, and~i! 6.4 Hz. The amplitudes o
the corresponding wave packets show a peak around se
70, mainly in frequencies~b! and~c!. This peak correspond
to a significant change in the morphology of the signal
ward the end of the clonic phase of the seizure. This fact i
agreement with the low frequencies observed at the en
4
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the seizure, and also mentioned in previous wo
@14,19,20#.

The normalized energy as a function of time for the fr
quency bandsB1–B7 is shown in Fig. 5. An increase of th
energy can be observed at the start of the seizure~10 s!, and
at the beginning of the tonic phase~35 s!, and largest in-
crease appears around second 50 with the start of the c
stage. The largest increase of energy corresponds to the
frequencies concentrated in theB1 andB2 bands. The energy

FIG. 5. Energy per band normalized to the total energy co
sponding to the EEG signal displayed in Fig. 1, as a function
time. B1 band~triple dot-dashed line!, B2 band~long dashed line!,
B3 band ~solid line!, B4 band ~dotted line!, B5 band ~dot-dashed
line!, andB6 band~short dashed line!. TheB7 band is not displayed
because its values are almost zero for the considered interval.
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of the B3 band presents increasing values starting aro
seconds 35 and 50, in agreement with the beginning of
tonic and clonic phases, respectively. The energy of theB4
band presents an increase in its values around secon
~clonic phase!. At this time a morphological change can b
observed in the signal~see Fig. 1!. The energy in the othe
frequency bands is low except inB5 , which presents an in
crement at the end of the seizure. In Fig. 6 we show
relative energy distribution among the frequency ban
B3–B7 , where the contribution of the frequency bandB1
andB2 were removed from the total energy. We can obse
in this figure that during an epileptic tonic-clonic seizure t
dominant brain activity is concentrated in theB3 and B4
bands.

In summary, the above analysis shows that the energ
accumulated mainly in the fast frequencies during the to
phase, and, when the seizure is ending, the slow and med
frequencies are the ones that become more relevant in
other stages. In conclusion, wavelet packets allow an ide
fication of the dominant frequencies in each phase of
seizure, as well as a determination of the starting of e
phase.

In Fig. 7 we display the total information cost functio
and the ICF without the contributions of frequency bandsB1
and B2 , as a function of time. It is interesting to note th
there is a remarkable decrease of the values at around se
35, corresponding to the beginning of the tonic phase,
then an increase around second 70, when the clonic pha
the seizure reaches its end. The observed decreasing v
in the total ICF during the seizure could be associated wi
more rhythmic behavior induced by the muscle activity, b
looking at the ICF without this kind of activity~B1 andB2
bands!, we confirmed that the medium and low frequenc
are also responsible for the signal order. This result confi
that the brain dynamical behavior during an epileptic seiz
is more ordered than the preseizure and post-seizure sta

V. CONCLUSIONS

With wavelet transform and derived methods, it is po
sible to clean an EEG signal in order to obtain dynami

FIG. 6. Relative frequency band energy respect to the total
ergy, without the contribution ofB1 andB2 bands.B3 band~solid
line!, B4 band ~dotted line!, B5 band ~dot-dashed line!, B6 band
~short-dashed line!, andB7 band~triple-dot-dashed line!.
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parameters and hidden frequency information. These no
EEG signals are usually neglected by physicians.

The analysis carried out in a tonic-clonic epileptic seizu
using wavelet transform and wave packets has shown t
during an epileptic seizure, the relevant brain activity pr
sents frequencies around 10 Hz, and when the seizure n
completely the brain activity become slower, with freque
cies around 4 Hz. High frequency muscle activity obscu
the signal. These high frequencies are the ones that accu
late energy during the tonic phase of the seizure.

The peaks observed while performing wave packet ana
ses inB3 andB4 bands establish with accurate precision t
starting and the ending of the different phases of the
seizure. They also mark changes in the signal morpholo
that could be correlated with the clinical symptomatolog
The analysis of the total energy, relative energy, and ICF
functions of time shed light on the dynamical process
tendency to order during the seizure. These changes only
be actually observed through the video-EEG.

Several numerical methods were developed for describ
the EEG signal in the time-frequency domain. Orthogon
wavelet transform appears to be very convenient, due to
capability for separating different frequency bands witho
modifying the remanent ones. It is specially straightforwa
for analyzing brain activity information. Moreover, thi
method is suitable for studying the energy accumulation a
its exchange among the different frequency bands at differ
stages of the seizure. The dynamic of the seizure can als
accessed by performing an analysis based on the informa
cost function, showing at which stage and in which fr
quency band a less chaotic behavior is involved.
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n- FIG. 7. Information cost function ICF~Shannon entropy! for the
signal displayed in Fig. 1. The solid line represents the total IC
and the dotted line is the same without the contribution ofB1 and
B2 bands.
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