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Signals obtained during tonic-clonic epileptic seizures are usually neglected for analysis by the physicians
due to the presence of noise caused by muscle contractions. Although noise obscures completely the recording,
some information about the underlying brain activity can be obtained with wavelet transform by filtering those
frequencies associated with muscle activity. One great advantage of this method over traditional filtering is that
the filtered frequencies do not modify the pattern of the remanent ones. An accurate analysis of the different
seizure stages was achieved using the wavelet packet method, and through the information cost function the
brain dynamical behavior can be acces$&d4.063-651X97)09712-2

PACS numbegps): 87.90+y, 02.70.Hm

I. INTRODUCTION Recently, we introduced two different techniques that al-
lowed an analysis of an EEG time series in the time-
The electroencephalogra(BEG) can be raftly defined as frequency domain. The first was based on the Gabor trans-
the mean electrical activity of the brain in different sites ofform [10,12-14, and the second one on the wavelet
the head. EEG patterns are correlated with functions, dystransform[15]. In the present work we present two signifi-
functions, and diseases of the central nervous system basednt improvements to the time-frequency analysis of the
on an empirical basis. Then clinical interpretation of EEGEEG series using wavelet transform. The first improvement
records are achieved by associating pathology characteristi@s the introduction of the wavelet packet analyisi§]. The
(clinical symptomatologywith the visual inspection and pat- second improvement is the introduction of the information
tern recognition of the EEG. Although this traditional analy- cost function(ICF), defined in terms of the wavelet coeffi-
sis is quite useful, the visual inspection of the EEG is sub<cients, and essentially representing a Shannon entropy func-
jective, and hardly allows any systematizatibb—4]. In  tion [17,18. We would like to remark that the applicability
order to overcome this, quantitative EEG analysis introducesf these methods are not restricted only to EEG recordings.
objective measures reflecting the characteristics of the brain Until the introduction of long term monitoring, spontane-
activity as well as the associated dynamics. However, weus seizure EEG’s were obtained only in those lucky situa-
must remark that these methods are not developed for replations in which the patient had a seizure during the few min-
ing traditional EEG visual analysis, but rather they comple-utes of the recording. Normally, interictal EEG(EEG's
ment them as additional tools. without seizure activity were analyzed looking for patho-
Quantitative EEG analysis as a field includes a wide valogical characteristics such as spikes, paroxysms, low fre-
riety of techniques. These are frequency decompositiomuency activity, etc. During those interictal EEG's, seizures
(spectral analys)s topographic mapping, compressed spec-were activated with photoestimulation, hyperventilation, and
tral arrays, significance probability mapping, and other comother clinical methods. However, provoked seizures do not
plex analytical techniquefl—4]. A new approach to the necessarily have the same behavior as spontaneous ones. In
problem of the quantification of the EEG series was achievedrder to overcome this limitation, long term video-EEG
with nonlinear dynamic$5-11]. monitoring systems were developed. With video-EEG, after
EEG’s are complex signals whose statistical propertieslays of recording, clinical and electroencephalographic in-
depends on both space and time. Regarding temporal chaermation can be correlated for obtaining an accurate evalu-
acteristics, EEG signals are chadti-11 and highly non-  ation of the seizures. Seizure starting, duration, post-seizure
stationary(nevertheless, they can be analytically subdividedrecovering, classification of the seizure, and different stages
into short representative epochs where stationarity hypothare some of the characteristics usually analyzed. However, in
esis is accomplishef®—11]). the case of tonic clonic seizures, muscle activity provoked by
violent movements completely obscures the EEG recordings,
limiting the analysis only to the starting and the post-seizure
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seizure has been observed only in special Cases, fOr EXAM o mtymmmt AP M NSryiodpbrmtArsboonslphtshiih

in patients treated with “curareta drug that inhibits muscle . . ‘
responses[19], or by filtering the signal in the frequency o 10 20 30
range of the muscle activity with standard methd@s].
However, filtering has several disadvantages, because it
impossible to separate brain and muscle activity and, furthe:
it is well known that filtering high frequencies also affects
the morphology of the low ones. 30 10 50 60
The aims of this work are to study a tonic clonic seizure,
avoiding noise related limitations, by using wavelet trans-
form and derived magnitudes in order to help physicians tc Lkl N
identify and characterize the dynamical stage of the seizur TR
as a complement of the video-EEG. The paper is organize g =0 50 %0
in the following way. In Sec. Il the clinical data and the Time [ sec ]
experimental setup are presented. In Sec. Il the time-
frequency method based on wavelet transform is reviewed. i 1. Scalp EEG signal. Seizure starts at second 10, tonic
The wavelet packets, as well as the information cost funCppase at second 35, clonic phase at second 50. The seizure ends at
tion, are introduced. In Sec. IV the analysis of a scalp EEGsecond 85.

time series corresponding to an epileptic seizure is per- _ )
formed. Finally, in SecV a summary is given. second 50 when the spasms dominates the EEG. The seizure

clearly ends at second 85.

Il. EXPERIMENTAL SETUP AND CLINICAL DATA . TIME-FREQUENCY ANALYSIS

A scalp EEG signal is a nonstationary time series that A. Wavelet transform

usually presents artifacts due to an electrooculogram, an \yavelet analysis gives us a powerful tool to confront very
electromyogram, an electrocardiograCG), and others  giverse problems in applied sciences or pure mathematics
[1-4]. Artifacts make a mathematical analysis of scalp EEG21-27. The wavelet is a smooth and quickly vanishing os-
signals difficult. Sometimes, artifacts are presented for afeV&iIIating function with good localization both in frequency
seconds, and can be obviated because they obscure onlyaq time. It can be interpreted as single signals, or atoms, of
small portion of the total EEG. In other cases, almost theshort times with oscillating structures.

total signal appears noisy and obscured by them, and very A wavelet family ¢, ,, is the set of elemental functions

little information about the underlying brain activity can be generated by dilations and translations of a unique admis-
extracted. An example of this kind of scalp EEG signal is thegjple mother wavelei(t),

one corresponding to a tonic-clonic seiz(igg.

A tonic-clonic “grand mal” seizure normally lasts around 1
40-90 s, and is characterized by violent muscle contractions. Pap(t)=[al 4y
Initial massive tonic spasms are supplanted some seconds
later by a clonic phase, with violent flexor movements andwherea,b e R,a#0 are the scale and translation parameters
characteristic rhythmic spasms that last until the ending ofespectively, and is the time. Asa increases, the wavelet
the seizure. became more narrow. Thus we have a unique analystic pat-

Samples of EEG time series corresponding to generalizetérn and its replicas at different scales and with variable lo-
tonic-clonic seizures of epileptic patients were analyzedcalization in time.

Scalp and sphenoidal electrodes were applied following the Given a finite energy signas(t), the different correla-
10-20 international systefil,2]. Each signal was digitized at tions (S, ¢, ;) indicate how precisely the wavelet function
409.6 Hz through a 12 bit analog to digital converter, andocally fits the signal at every scale This correlation op-
filtered with an antialiasing eight pole low-pass Bessel filtereration defines the transformation that synthesizes the nu-
with a cutoff frequency of 50 Hz. Then signals were digitally merical information obtained in this way. From a different
filtered with a 1-50-Hz bandwidth Butterworth filter and viewpoint, the wavelets of a family play the roles of elemen-
stored, after decimation, at 102.4 Hz in a personal computeial functions, representing the functions as a superpositions
hard drive. Recordings were done under video control imof wavelets correlated with the function for different scales
order to have an accurate determination of the differentdifferenta’s). This makes it possible to organize the infor-
stages of the seizure. Analysis of each event included 1 mimation in some particular structure to distinguish, for ex-
of EEG preseizure activity, and 2 min of the seizure andample, trends, or the shape associated with long scales of the
post-seizure phases. The different stages of EEG signalecal details from corresponding short scales.

were determined by the physician team. The continuous wavelet transform of a sign&(t)

As an example, in Fig. 1 we present a scalp EEG signale L2(R) is defined as the correlation between the function
corresponding to a tonic-clonic epileptic seizure recorded irg(t) with the family wavelety, ,, for eacha [23],

a central right locatiofC4 channeé). In this record, the sei- ) t—b
zure starts at second 10, with a “discharge” of high frequen- _al-12]” o i P )
cies. The tonic phase starts around second 35 with increasing(w‘/’s)(a’ b)=al f_wS(t)lp ( a )dt (Sa);
amplitudes of the EEG, and the clonic phase begins around 2

-b
— @
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the asterisk denotes complex conjugation. -1 -1
For special selections of the functiapand a discrete net St)= 2 X Cikg (= 2 ri(b). 7
of parameters;=2"1 andb; ,=2"'k, with j,keZ and the I==N "k I=-N
scale 2!, give us the shift parameter. The subfamily
¥, (D) =202y(2it—k)  jkeZ, (3 Since the family{; (t)} is an orthonormal basis for

L?(R), the concept of energy is linked with the usual notions
constitutes an orthonormal basis of the Hilbert spatgl)  derived from the Fourier theory. Then the wavelet coeffi-
[21,22. In this way, we can obtain discrete transformations cients are given byZ;(k) =(S, #; x), and the total energy by
and it is possible to expand the signal in a series of wavelet§S||?=3,;_=,|C;(k)|%.

Then we can join the advantages of the wavelet transform In the wavelet multiresolution frameworkdescribed
with the atomic decomposition &(t). above it is possible to evaluate the energy corresponding to
The discrete wavelet transform associated witls sim-  each level, and they can be used for the detection of the
ply seen as a restriction of the continuous wavelet transforngharacteristic epileptic evenfd5]. Since we are using dy-
at the parameter sef; b }. In this case, as it is well adic decomposition of the range of frequencies, from a signal
known, the information given by the discrete wavelet transof M samples, we havél/2~1 coefficients at levejj. In
form can be organized according a hierarchical scheme Qjrder to obtain an accurate event detection, we distribute the
nested subspaces called the multiresolution analy4i$(iR) “atoms” of energy in each levej uniformly along 2}

[21-24. . . . points. The energy in each resolution levek—1, ...,
In the present analysis we used a multiresolution scheme. will be Ej=2k|C,~(k)|2, and the energy at each

based on pubic qrthogonal splirje function§ as the mOtheéampled timek will be E(k)=2-’=l,N|C-(k)|2.

wavelet, with a discretized version of the integral wavelet Ngaqral time series are usu:etlly combination of stochastic
transform given by Eq(2) [25]. We selected this wavelet (5iqy) and chaotic behaviors. Many applications, like non-

due to the fact that it forms a base if(R) with a very |ineqy dynamics, require the separation of signal and noise

convenient characteristic of symmetry and simplicity. More-rog 5g “Otherwise, when nonlinear invariants are evaluated
over, the smoothness of its derivatives are very suitable fO(i.e. characteristic dimensions or Lyapunov exponetite

representing natural phenomena. _ . contaminating noise can give spurious results, and the ob-
_In the following we will assume that the EEG signal is (4ined values will underestimati noise has strong periodic
given by sampled valuegy(n)}, n=1,... M, which cor- 5 4jmost periodic componentsr overestimateif noise is

respond to a uniform time grid with sampling timé. With- - yapresentative of a deterministic high dimensional or sto-

out loss of generality, we can suppose that the sampling ratgnastic procegsthe real complexity of the system under
is At=1. We define the representation of the signal by '”ter'study. When noise is present only in specific frequency

polating the sampled data in the form bands, a filtering process can be implemented. However,
from the point of view of nonlinear dynamics, filtering could
_ _ be suitable only in some cases depending on the system un-
t)=2, so(k)p(t—k), 4 . ; .
() zk: oK) ) @ der study. It is important to emphasize that a poorly designed

filtering of the signal can give spurious resuli®., filtering
where¢(t) is the cubic cardinal spline, verifying(n)=6,,  frequencies that determine the real dynamics of the signal

[22]. Thus in these cases a filtering based on wavelet transform
For any resolution leveN<0, we can write the decom- can be implemented in order to obtain a more accurate signal
position of the signal as of the process under interest. Supposing, as in the case of
tonic-clonic seizures, that we are interested in eliminating
-1 high frequency noise, using E7) at level j, the residual
S(t):Zk sN(k)¢(2Nt—k)+2N g Ci(K) ¢ (1), will be a smoothed version of the original signal, having
=

5 fewer high frequencies in comparison to leyet 1. This
5 new signal will have half the data of the previous level;

whereC;(k) are the wavelet coefficients, and the sequencéheremre’ an interpolation with spline functions is applied in

{sn(K)} represents the coarser signal data at resolution lev rder_ o obtain the _rema_lmng_data. on t_h_e other hand, inter-
N, whereN=Ln,(M). The second term is the wavelet ex olation by the cubic spline gives an efficient and very good
’ - 2 . -

. - . approximation of the underlying physical signal given by
pansion. Thg wavelet coefficier@j(k) can b? |ntgrpreted as sampleq 30]. Then this method can be accurately used for
the local residual errors between successive signal appro

. ) . Xé'eparation of noise, and the cleaned signal can be obtained as
mations at scalep andj +1, and a sum of the interpolated residual components corresponding
to the interesting frequency bands.

rj(t)=2 C;(K) iy (1) (6) In summary, this method allows the elimination of non-
K ’ desired frequency bands that hide other more interesting or
unknown effects. Due to the orthogonality of the wavelet
is the detail signalat scalej. It contains the information of functions employed, we can be assured that only the un-
the signalS(t) corresponding to the frequencie$nas<|w| wanted and previously selected frequency bands were ex-
<2/*17. If the decomposition is carried out over all resolu- tracted, without needing to assume that linearity is necessary
tion levels, then the wavelet expansion will be for making the traditional Fourier-based digital filtering.
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B. Wavelet packets Now we are interested in how to improve the frequency
As it is well known, wavelet analysis providestime-  Precision. The main idea is to decompose the components

scaledescription of any finite energy signal. Essentially, it is "i(t) in portions, each one covering a longer interval. Then
a successive decomposition of the signal in different scaledV® Will locally implement an appropriate frequency tech-
At each step, the corresponding details are separated, provig!due. _ _
ing useful information for detecting and characterizing short e define any portion or local signal as
time phenomena or abrulpt chdanges of energy. | defined 14om_1

However, since wavelets do not possess a well define mil) ey _
average in frequency, they are not Weﬁl suited to describe and = .Zﬁ Citk) (V). (19
characterize stationary phenomena or to detect time-
frequency structures. This is an important limitation, becausavhere the parameter and | are chosen in order that
significant events often involve joint variations of time andr{™"(t) covers the full time interval 2/l<t<2"i(1+2™m),
frequency[24]. To overcome this problem, wavelet packet which is a relatively long interval of length™ 1. Note that
analysis appears as a natural extension of wavelet analysige defined the local wavelet packet with of basic func-

Moreover, this technique allows a time-scale-frequency detions ¢; (t) for k=1, ... |+2™—1.

scription of the signals. Now, we define the set of fundamental frequencies
A family of wavelet packets is a collection of elemental

signals obtained from appropriate linear combination of Omp= 7+ 2h7/27, 12

wavelets. They look like locally oscillating wave forms re- S i . ()
sembling modulated sines or cosines. Moreover, they can b&ith 0<h<2""", and associated the Fourier mathk
organized on an orthonormal basis of the space of finite er@iven by
ergy signals. The main advantage of using wavelet packets is : o
that standard wavelet analysis can be extended with a flex- sin[w(k+1/2)] i n=1

ible strategy. Thus, the description of the given signal canbe = 2Y2co§ wmn(k+1/2)] if n is even
well adapted according to the significant structures. Several Mpk =2 2Y%5in[w(k+1/2)] if n is odd
families of wavelet packets have been proposed in the litera- mh

ture [16,24,27. Here we will apply trigonometric spline cos[2m(k+1/2)] if n=2"
wavelet packetfl6]. First let us briefly review the proposed 13
technique. with 1<n<2™ 0<k<2™ andh=[[n/2]], where[[ ]] de-

Given a finite energy signay(t), using spline wavelet
analysis we can successively decompose them with the r
cursive scheme

notes the integer part. It can be demonstrated M@ is a
Gm 2m dimensional orthogonal matri.6].
g
Then we can define the new set of elemental functions in
s (D =s,(D@r(1) ®) ]E)rder to expand{™"(t) as a 2" dimensional vector obtained
rom

for each scal¢=0,—1,...,—N. As already mentioned, the
componentss; , ;(t) ands;(t) add to the information of the

signal corresponding to the frequency bandg "lr<w

<2"17 and— 2l r<w=<2l 7, respectively. This means that

the decomposition at levgl consists of filtering the compo- for 1sn<=2"
nentss; (), giving the details corresponding to the re-  Clearly, these functions constitute a new local orthonor-
maining frequencies 'zr<|w|<2!*'m. The component mal basis covering the interval under analysis,’I2<t
ri(t) adds to this information, and we can describe the signa&2~!(1+2™). Therefore we can give a second description

1+2M-1
o= 2 MRy (14

S(t) in term of detail signals as of the local signal as
2m
S(t)=j§O ri(t). 9 r}m")(t)=n§=:l D{™Y(n) gm(t). (15)

On the other hand, the detail components can be described fhe corresponding coefficients are easily computed as

terms of wavelet atoms o g

D{™(n)= k2| M{P'C;(k), (16)
(02 Ci(k) 9 (). (10 i
where I=n<2™

Since each wavelap, (t) = 2/2(2/t— k) is well local- The trigonometric wavelet pie\_cketel(ﬂ"j(t) have zero
ized in the interval 2/k<t<2"I(k-+1), the corresponding Mean, oscillate on the interval A<t<2"'(I+27), and
coefficientC;(k) adds to the local information of the detail. decay with exponential ratio. Moreover, their wave forms
However, as we mentioned above, these coefficients averag@Semble modulate sines or cosines. In fact, it can be dem-
all the involved frequencies'z<|w|<2/*1x, and we will ~ onstrated that each Fourier transfoéff;"(w) is centered at
not gain explicit information about stationary structures.  the fundamental frequencw,,,, when n=2h or n=2h
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+1. Moreover,#™"(w)=0 on the other fundamental fre- and the pair of distributions{fo(n);,{p;}) can be consid-

guencies, and it has a fast decay outside the rarige 2 ered as a time-scale density. They give a suitable tool for
<|w|<2i"t7. detecting and characterizing specific phenomena. The Shan-

In other words, the coefficienE{SDj(m")(n)} can be con- non entropy giyes_a usefgl criteria for analyzing f'ind compar-
sidered as the discrete Fourier spectrum for the local signdi'd these distributions, since as is well known, it provides a
ré™(t). Summing up, in the double set of coefficients me\;a\/seuEjeef(i)rzéhtiénifr?f:)r?rit;t)igr?fcigglfﬂﬁct:?ig;t;oféq as
{Ci(k),D{™(n)} we add to the time-scale-frequency infor- :
mation of the local signalfm")(t).

Finally, to analyze the complete functiof(t), that is, the Ci=— 2 Po(MLny[pg(n)] (25)
details at levelj, we choose some patrtition in local compo- "
nentsrfmi "i)(t), according the structure of the signal, and
_ (m; 1)
=2 1™, a7 €=~ 3 piLndp)] (26

where the sequence of indéxverifiesl; ;=1;+2™. Then
we implement the time-scale-frequency technique for eac
local signal, referred to above.

The first function shows how redundant the time series is. In
Bther words, it leads us to inquire whether the patterns are
periodic phenomena. On the other hand, the second function
shows the correlation between oscillating structures corre-

C. Information cost function sponding to different scales. In particular with this function
Assuming that the given data seriBs {so(n)} has a fi-  self-similar processes can be detected. .
nite energy, i.e., It has become quite common in analyses of experimental

time series with nonlinear systems to make a time delay re-
E Isq(K)| <0 (18 construction of the phase space in vyhich the dynamic can be
i observed. The phase space portrait can be analyzed math-
ematically to demonstrate the existence of an attragttor
andAt=1, we can approximate the energy of its spline rep-region of the phase space of lower dimension where the sig-
resentation in the form nal is confined in its future evolutignand its dimension
[28,29. A useful way to describe the dynamic behavior is to
ISIP= [sy(K)|2 (19 use Lyapunov exponents. These exponents measure the rate
T 10 ' at which nearby points on an attractor diverge or converge
along nearby trajectorief28,29. We must emphasize that
then the values these metric parametefglimensions, Lyapunov exponent,
etc) are defined only for stationary systems. In previous
_ 2 2 works, we confirmed, from a nonlinear dynamical analysis of
Po(n) =|so(M)| / zn: [so(m)I*. (20 epileptic EEG time seriegl0—17, the val};dity of the bgsic
assumption that, at the seizure onset, a transition takes place
give the probability distribution of the signal’s energy in the in the dynamical behavior of the neural network from a com-
time domain. plex behavior to a simpler orié,8]. That means that, during
Furthermore, in the wavelet multiresolution analysis ofan epileptic seizure the dimension of the attractor and the
the time serie$sy(n)}, the energy in each resolution levjel larger Lyapunov exponent present lower values compared
(j<0) is the energy of the detail signal with those evaluated at preseizure and post-seizure stages.
Also the reconstructed attractor in phase space looks more
] simple and ordered.
Ei:HrJ’HzZ; 1€l @D The information cost function gives a measure of the or-
der or disorder of the system in time. Thus, the ICF is a good
as a consequence, the total energy can be obtained by  parameter in order to detect dynamical changes in the system
behavior, as well as a form of quantifying[it7,18. The
analysis of the ICF as a function of the different frequency

Etot:HSHZZEO E;. (22 pands and time shows in which bands the system has a ten-
dency to order, or to a less chaotic behavior, during an epi-
Then the normalized values leptic seizure. In addition, the ICF has the following advan-
tages over the following parameter§) over the entropy,
P;=E;/Et, (23 because it is capable of detecting changes in a nonstationary
signal due to the localization characteristics of the wavelet
forj=—-1,-2,...,—N, define by scales the probability dis- transform; (i) over dimensions and Lyapunov exponents
tribution of the energy. Clearly, (which are only defined for stationary behaviprbecause

the computational time is significantly lower, since the algo-
E p:E po(n)=1 (24) rithm involves the use of fast wavelet transforms in a multi-
s e e resolution framework.
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TABLE I. Frequency boundarieén Hz) associated with the st et AN A SN AN AN
different resolution wavelet levels according with sample frequency
ws=102.4 Hz. The traditional EEG frequency bands correspond to o " =0 %o
the following frequenciess (0.5-3.5 Hz; 6 (3.5-7.5 HZ; a (7.5—
12.5 H2; B (12.5-30 Hz; y (greater than 30 Bz

Resolution
Notation ®min ®max level EEG band 99 0 =5 0
B, 25.6 51.2 -1 v B
B, 12.8 25.6 -2 B
Bs 6.4 12.8 -3 a, 0
B, 3.2 6.4 -4 0 ‘ ‘ ‘ >
_ 60 70 80 90
Bg 1.6 3.2 5 é Time [ sec ]
Bg 0.8 1.6 -6 6
B, 0.4 0.8 -7 é

FIG. 2. Noise-free EEG signal. Same as Fig. 1, but without the
fast frequencie$B, andB, bands.

IV. RESULT AND DISCUSSION . . .
Applying wavelet transform, we can filter the signal by

Orthogonal wavelet transform was used to analyze theubtracting the different bands. Figure 2 shows the smoothed
scalp EEG signal corresponding to a tonic-clofii€) epi-  time series corresponding to the signal of Fig. 1, where os-
leptic seizure. In Fig. 1 we show the signal. The seizure startsillations associated with the frequencies corresponding to
at second 10 with a discharge of slow waves superimposed; andB, bands, with wavelet resolution levgr: —1 and
by fast ones with lower amplitude. The tonic phase starts-2 respectively, were subtracted. For recovering the origi-
around second 35 with increasing amplitudes, and the cloninal sampling rate, this residual smoothed signal was interpo-
phase starts around second 50. The seizure finishes at secdatkd with cubic splines. Owing to the fact that one of the
85. goals of this work is to analyze middle and low frequency

EEG spectral analysis is traditionally performed by study-brain activity during an epileptic seizure, we eliminat@¢
ing different frequency bands, whose boundaries are weknd B, bands, both containing high frequency artifacts that
defined but could have some small variations according t@bscure the EEG. Although high frequency brain activity
the particular experiment being considefdd-3]. Absolute  will also be eliminated, it is well accepted that the compo-
and relative intensities of these bands are analyzed and canents are not important in the study of an epileptic seizure
related with different pathologies. In this work, we chose[14,19,2Q.
seven frequency bands associated with resolution levels ap- We chose the frequency banBg andB, for performing
propriate to the wavelet analysis in the scheme of multiresoan analysis with wavelets packets, as was described in Sec.
lution proposed. We denoted these band-resolution levels biyl. We selected these frequency bands because they carry

B; (lj|=1,...,7), andtheir frequency limits, as well as the brain activity that is traditionally analyzed during an epi-
their correspondence to traditional EEG frequency bands, areptic seizure. The series @f(k) for j = —3 was segmented
given in Table I. with a sliding windows ofl =32 samples corresponding to

3.0 N N M 3 3.0 F 3o0F T

a) b) c)

3.5 { a5} 25}

2.0 290 2.0

1.5 1.5 1.5

1.0 1.0 1.0

05 1 ost 05 ] FIG. 3. Relevant wave packet
oo oo oo intensities for 'Fhe frequency ba_nd
10 20 30 40 50 60 70 80 90 0 10 20 30 40 80 60 70 80 90 ‘ 0 10 20 30 40 50 60 70 80 90 B3 Correspondlng to the EEG SIg-
3.0 ——— 3.0 8.0 —— nal displayed in Fig. 1. The wave
d) e) f) packets are centered at the follow-
1 7 ] ing frequencies(a) 7.2 Hz,(b) 7.6
Hz, (c) 8.0 Hz,(d), 8.4 Hz,(e) 9.2
Hz, and(f) 10.8 Hz.

Intensity

0 10 20 30 40 50 60 70 B8O 80 0 10 20 30 40 50 60 70 B8O 90 0 10 20 30 40 50 80 70 80 890

Time [ sec |
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18 b)

a)
8 q 3
[:3d 9 8
4F 4
2F 1 2
0 [¢]

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 BO 90 0 10 20 30 40 50 &0 70 80 9O

20 20 20 ™
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time intervals ofAt=2.5 s. Discrete sets ofll/2 different the seizure, and also mentioned in previous works

frequencies between 6.4 and 12.8 Hz, with intervals of 0.414,19,20.

Hz, were obtained. The normalized energy as a function of time for the fre-
Figure 3 shows wave packets of relevant amplitudesguency band8,—B; is shown in Fig. 5. An increase of the

They are centered at the frequendias7.2, (b) 7.6,(c) 8.0,  energy can be observed at the start of the seicl@ey, and

(d) 8.4,(e) 9.2, and(f) 10.8 Hz. An important peak at second at the beginning of the tonic phas85 9, and largest in-

35 can be identified in agreement with the starting of thecrease appears around second 50 with the start of the clonic

tonic phase of the seizure, as was established by the physitage. The largest increase of energy corresponds to the high

cian team. It can be observed, mainly in the wave packet§equencies concentrated in tBg andB, bands. The energy

(b), (c), and(d), which means that its frequency structure can

be decomposed mostly in these ranges. At 50 another pe: 0.5 : : : : : :
indicates the starting of the clonic phase. It involves wave
packets(d), (e), and (f). We can observe that the higher 0.4 r
amplitudes in this band correspond to frequencies around 1 &
Hz, in agreement with previous work$4,19,2Q. é 03}
The same analysis for th&, band was achieved usirg 2
=16 samples corresponding to time intervalsAdf=2.5s % 02}
and discrete sets of frequencies between 3.2 and 6.4 Hz wil E
intervals of 0.4 Hz. Note that the=—4 level has half the 2 o1l
dispersion in frequency compared with tfve — 3 level (see
Table l), and for this reason we used a window of 16 samples 0.0 £,
in order to obtain the same definition. These packets have o 1o
dispersion of+0.2 Hz. Figure 4 shows the amplitudes of Time [ sec ]

wave packets centered {g) 3.2, (b) 3.6,(c) 4.0, (d) 4.4, (e)

4.8,(f) 5.2,(g) 5.6, (h) 6, and(i) 6.4 Hz. The amplitudes of FIG. 5. Energy per band normalized to the total energy corre-
the corresponding wave packets show a peak around secoBgonding to the EEG signal displayed in Fig. 1, as a function of
70, mainly in frequencieb) and(c). This peak corresponds  time. B, banditriple dot-dashed linge B, band(long dashed ling

to a significant change in the morphology of the signal to-B, band (solid line), B, band (dotted lind, Bs band (dot-dashed
ward the end of the clonic phase of the seizure. This fact is ifine), andBg band(short dashed line The B; band is not displayed
agreement with the low frequencies observed at the end dfecause its values are almost zero for the considered interval.
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FIG. 6. Relative frequency band energy respect to the total en- FIG. 7. Information cost function ICEShannon entropyfor the
ergy, without the contribution (Bl and BZ bands_B3 band(soﬁd Slgnal dlsplayed n Flg 1. The solid line represents the total ICF,
line), B, band (dotted ling, Bs band (dot-dashed ling Bg band and the dotted line is the same without the contributiom pfand
(short-dashed line and B, band (triple-dot-dashed line B, bands.

of the B; band presents increasing values starting aroungarameters and hidden frequency information. These noisy
seconds 35 and 50, in agreement with the beginning of thEEG signals are usually neglected by physicians.
tonic and clonic phases, respectively. The energy ofBhe The analysis carried out in a tonic-clonic epileptic seizure
band presents an increase in its values around second @sing wavelet transform and wave packets has shown that,
(clonic phasg At this time a morphological change can be during an epileptic seizure, the relevant brain activity pre-
observed in the signdkee Fig. 1 The energy in the other sents frequencies around 10 Hz, and when the seizure nears
frequency bands is low except By, which presents an in- completely the brain activity become slower, with frequen-
crement at the end of the seizure. In Fig. 6 we show the&ies around 4 Hz. High frequency muscle activity obscures
relative energy distribution among the frequency bandghe signal. These high frequencies are the ones that accumu-
B;—B,, where the contribution of the frequency baBq late energy during the tonic phase of the seizure.
andB, were removed from the total energy. We can observe The peaks observed while performing wave packet analy-
in this figure that during an epileptic tonic-clonic seizure theses inBz andB, bands establish with accurate precision the
dominant brain activity is concentrated in ti and B, starting and the ending of the different phases of the TC
bands. seizure. They also mark changes in the signal morphology
In summary, the above analysis shows that the energy iat could be correlated with the clinical symptomatology.
accumulated mainly in the fast frequencies during the tonid he analysis of the total energy, relative energy, and ICF as
phase, and, when the seizure is ending, the slow and mediufdnctions of time shed light on the dynamical process or
frequencies are the ones that become more relevant in tigndency to order during the seizure. These changes only can
other stages. In conclusion, wavelet packets allow an identie actually observed through the video-EEG.
fication of the dominant frequencies in each phase of the Several numerical methods were developed for describing
seizure, as well as a determination of the starting of eacthe EEG signal in the time-frequency domain. Orthogonal
phase. wavelet transform appears to be very convenient, due to its
In Fig. 7 we display the total information cost function, capability for separating different frequency bands without
and the ICF without the contributions of frequency baBgs modifying the remanent ones. It is specially straightforward
andB,, as a function of time. It is interesting to note that for analyzing brain activity information. Moreover, this
there is a remarkable decrease of the values at around secofgthod is suitable for studying the energy accumulation and
35, corresponding to the beginning of the tonic phase, anés €xchange among the different frequency bands at different
then an increase around second 70, when the clonic phase $#gges of the seizure. The dynamic of the seizure can also be
the seizure reaches its end. The observed decreasing vallRgcessed by performing an analysis based on the information
in the total ICF during the seizure could be associated with £0st function, showing at which stage and in which fre-
more rhythmic behavior induced by the muscle activity, but,duency band a less chaotic behavior is involved.
looking at the ICF without this kind of activityB; andB,
bands, we confirmed that the medium and low frequencies
are also responsible for the signal order. This result confirms ACKNOWLEDGMENTS
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