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Droplet nucleation and Smoluchowski’s equation with growth and injection of particles
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We show that models for homogeneous and heterogeneous nucleatDrdiofiensional droplets in a
d-dimensional medium are described in the mean field by a modified Smoluchowski equation for the distri-
butionN(s,t) of droplet masses, with additional terms accounting for exogenous growth from vapor absorp-
tion and injection of small droplets when the model allows renucleation. The corresponding collision kernel is
derived in both cases. For a generic collision keiglhe equation describes a clustering process with clusters
of masss growing between collision witis=s? and injection of monomers at a rateGeneral properties of
this equation are studied. The gel criterion is determined. Without injection, exact solutions are found with a
constant kernel, exhibiting unusual scaling behavior. For a general kernel, under the scaling assumption
N(s,t)~Y(t) f(s/S(t)), we determine the asymptotics 8{t) and Y(t) and derive the scaling equation.
Depending orB andK, a great diversity of behaviors is found. For constant injection, there is an asymptotic
steady state witiN(s,t=«)xs™ " and r is determined. The case of a constant mass injection rate is related to
homogeneous nucleation and studied. Finally, we show how these results shed some light on heterogeneous
nucleation withd=D. Ford=D =2 (disks on a plane numerical simulations are performed, in good agree-
ment with the mean-field resultsS1063-651X98)09401-X]

PACS numbe(s): 64.60.Qb, 02.50-r, 82.20.Mj

[. INTRODUCTION superposition of a narrow distribution of large dropletsth
masses of the same order $&)], and a broad distribution
Aggregation models are relevant to describe a great diverof small droplets with a power-law divergence of the scaling
sity of practically important physical phenomena in fieldsfunctionf(x)o<x™ 7 at smallx. 7 is nontrivial and less tha#
ranging from atmosphere sciences to cosmology, including9].
material sciences and chemical engineefihgd]. A remark- A complete theoretical understanding of these results is
able example islropwise condensatioon a substratgs], for  still lacking and the prediction of thgolydispersity exponent
instance, water on a cold window pane, which bears on im+ is a challenge. Most analytical treatments concern hetero-
portant implications in heat transfer engineering and materiajeneous growth and start from the assumption that the dis-
sciences and generates fascinating droplet patterns, alsgbution of masses is narroli,12]. Therefore, a theory for
calledbreath figured6]. Although the underlying physics is the distribution function, describing at least simplified com-
rich (see[5]), simplified aggregation models have been sucputer models, is highly desirable to get free of this assump-
cessfully introduced to simulate the late stage of dropletion in the case of heterogeneous growth and to be able to
growth and coalescen¢8,7—13. These models are of basi- treat homogeneous nucleation.
cally two kinds. On the one hand, imeterogeneous nucle- As far as standard aggregation models, such as diffusion-
ation models, one starts from a fixed number of nucleationlimited cluster cluster aggregatiqi4,15, are concerned, a
sites (in physical situations these might be dust particlesgreat deal of information can be gained from Smoluchow-
substrate defects, etcDroplets grow on these sites through ski's mean-field approackl6]: Neglecting fluctuations and
vapor absorption, and when two neighboring droplets overmultiple collisions, one can write down a rate equation
lap, they coalesce to form a single droplet, thus reducing the
number of droplets. On the other hand, l@mogeneous 1
growth models[8], nucleation can occur anywhere on the (7tN(Sat)=_J N(s;,t)N(s—s;,t)K(S;,5—5;)ds;
substrate: Some very small droplets are randomly deposited, 2
which leads to the growth of existing droplets and the cre-
?ggg of new small droplets if deposition occurs in a free —N(s,t)f N(s;,)K(s,8,)ds; (1.2)
Experiments and numerical simulatiofis,9] show that
the time-dependent droplet mass distributhd(s,t) (s being
the mass of the dropletsexhibits dynamic scaling, i.e., that
for long times N(s,t)=S(t) " f(s/S(t)). S(t) is a typical
droplet massgproportional to{s?)/(s)?) and has a power-law
divergence at long timeS(t)«t*. 6 andz are dynamic ex-
ponents that depend not on the fine details of the model b
only on its main features, such as its conservation laws. In
heterogeneous growth models, the scaling funcfi(x) is
narrow, whereas in homogeneous growth one observes the K(bx,by)=b"K(x,y), (1.2

where the collision kerneK(s;,s,) is the coalescence rate
between droplets of masseg ands,. Smoluchowski’'s ap-
proach is valid above an upper critical dimension, which is
often 2, but is in principle model dependdif’]. van Don-

en and Ernsf18], classified the kernels according to their
omogeneity and asymptotic behavior:
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K(X,y)~Xkyr A (y>X). (1.3)  function f(x) diverges wherx—0. If f(x)—0 (bell-shaped
distribution), it will be monodisperséWhen all clusters have
. ) ) _ exactly the same mass, we shall say that their mass distribu-
Nontrivial polydispersity exponents appear in the cased  jo is strictly monodisperse.
[18-20, whereas foru>0, 7 is equal to 1\ and for u Part of the results concerning the case without injection

<0 the distribution is bell shaped. _ have already appeared in a summarized forrf2it.
However, Eq(1.2) does not describe aggregation models,

such as droplets nucleation models, for which clusters not
only grow through collisiongcoalescendebut also collect Il. DROPLET DEPOSITION, GROWTH, AND
some mass from the “outsidelvapon between collisions. COALESCENCE IN THE MEAN FIELD

Hence an adaptation of Smoluchowski’'s approach to treat

breath figures and related models is required and is the pur- As mentioned in the Introduction, interest in droplet
9 S 1S req . PURucleation computer models was primarily aroused by prac-
pose of the present work. The article is organized as follows,

In Sec. Il we discuss nucleation models introduced by'tical applications in heat transfer engineeriisge references
: ' : . : in [5]). In the past ten years, however, and since the seminal

Family and Meakir{9] and derive the corresponding Smolu- work of Beysens and Knoblds], the focus was set on the
ChOWSk? equation under th_e mear_1-ﬁe|d assumption. In th?’ormation of breath figuregsee ’figures in5]), with com-
generalized SmOIUCh[?WSk' equation, an _addltlonal eXOgI:)uter models aimed to study the kinetics of the droplet mass
enous growth termd(s”N) o_n the left-hand s!d_e of E.qil'l) distribution [8-10,12,%, the asymptotic surfacéor line)
accounts for clusters growing between collisions vé#s”  coverage11], or the time evolution of the “dry” fraction
(exogenous growih while a time-dependent source term (the surface fraction that has never been covered by any
I(t) 6(s—sp) describes renucleation in empty spaces. dropled [13].

Section Il is ageneral study of the extended Smolu- |n this article we shall consider the specific models intro-
chowski equation corresponding to aggregation witister  qyced by Family and Meakif8,9] for both homogeneous
exogenous growtandinjectionwith agenerichomogeneous  and heterogeneous nucleation. We shall now describe these
kernel FiI’St, we inVeStigate the gelation Criterion, dependingmode|s and derive the Corresponding Sm0|uchowski equa_
on\ defined in Eq(1.2), and show that the system is non- tion. These equations are special cases of a generalized

gelling for maxg,8)<1. Then we focus on the case without smoluchowski equation, which will be studied in Sec. Ill.
injection (1=0). We exhibit some exact solutionK €1,

with 8=0 or 8=1). We study extensively the properties of
the scaling solutions, depending @ A, and x. The com-
petition between collisions and exogenous growth leads to a The deposition and coalescenoeodel[8] consists in the
much richer behavior than for standard Smoluchowski'sfollowing algorithm. Betweern andt+ 5t a small droplet of
equation. We pay special attention to the occurrence of polymasss, is randomly deposited on thé-dimensional sub-
dispersity exponents and show that the methods recently instrate, where it forms a spherical cap with radsi;é@. If it
troduced by the present authd0] can be directly used to gverlaps an existing droplet of massthey coalesce to form
compute nontrivialr exponents when they appear. a new droplet with mass+s, and radius $+s,)*P, cen-
Returning tol >0, we first consider constant injection of tered at the center of mass of the two coalescing droplets. If
monomer. We find that the distribution reaches at an infinitehe new droplet overlaps a surrounding droplet, they coalesce
time a polydisperse steady state with a power-law large-with the same rule, and so on.
decayN.(s)xs™ ", with 7=(3+\)/2 if B<(1+\)/2 and~ Snapshots of droplets configurations obtained by simula-
=2+\—gif B>(1+\)/2. Then we consider the more spe- tion of the deposition and coalescence modelder2 and
cific case, relevant to homogeneous nucleation, of a constam=3 are qualitatively very close to the one obtained in
mass injection ratgwith a self-consistent(t)] andA=28  some experiments of vapor deposition of thin filf83 The
—1. We show that the injection ratét) is vanishing, in  striking feature is the coexistence of two distinct populations
agreement with the droplet model. We also investigate scalbf droplets: a population of big droplets, with essentially the
ing solutions and suggest that including pair correlationssame mass, surrounded by a population of smaller droplets
may be necessary to find a consistent scaling for homogeyith a broad dispersion of masses. At late times, the distri-

A. Homogeneous nucleation

neous growth. bution of droplet masseN(s,t) exhibits dynamic scaling,
In Sec. IV we apply the scaling mean-field results to het-
erogeneous growth witd=D. Droplets radiir =s'® grow N(s,t)~S(t)~’f(s/S(1)), (2.9

asroer® [B=1+(w—1)/D] and a nontrivial polydispersity
exponentr occurs fore=0, while the scaling function van- where the typical mass scaBt) can be defined by
ishes at a small argument far<0. Mean-field polydisper-

sity exponents are computed using the variational method (s?)  [2N(st)

introduced in20]. Numerical results for the scaling function St)=—=—7—7—+. (2.2
are in qualitative agreement with mean-field results and the (s)  JsN(sit)

expected crossover from monodispersity to polydispersity at

=0 is observed. The dynamical exponentsandz can be determined from

Note that throughout the article, we shall use the wordgphysical argument$5,9]. Since the mass injection rate is
“polydisperse” and ‘“monodisperse” in a quite specific constant and the mass is conserved in the coalescence pro-
sense. A mass distribution will eolydispersef the scaling  cess, we must have
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21.0 . w If the scaling function is integrable in zero, it is easily seen
200 | ] that n(t)<S(t)1~?, whereas iff(x)<x~" with 7>1, n(t)
: d=1,D=3 xS(t) 7.
19.0 | ] In [9] excellent scaling was obtained with the theoretical
180 | ] value of ¢ for variousd andD. Measured values af are
’ also fully consistent with the theory. As an illustration, a
= 170 | ] typical scaling function is shown in Fig. 1 from our simula-
g tions ind=1 with D=3. The data collapse is obtained with
% 160 ¢ 1 the theoretical valu#=4/3. The scaling function is clearly
2. 150 | : bimodal. A broad droplet distribution, with a small-argument
- 1a0 | ] divergence of the scaling function associated with an expo-
’ nent = bigger than 1, is well separated from a bell-shaped
13.0 ¢ ] distribution of bigger droplets centered arowsyd S(t). Fol-
120 b ] lowing the definitions given in the Introduction, we shall say
that the scaling function of the population of smétiig)

N e a0 20 30 20 10 o0 1o 20  droplets ispolydispersémonodisperse Most of the droplets

In[s/S(t)] in the system contribute to the small droplets distribution,
which determines, since>1, the behavior ofi(t), whereas
FIG. 1. Scaling of the mass distributidi(s,t) for droplet depo-  the population of bigger droplets contains most of the mass
sition with d=1 andD=3. The picture shows the excellent data and S(t) is the typical mass of big droplets.
collapse, with the theoretical value 4/3 fér of the distribution at In [9] the polydispersity exponent was determined di-
four different times wherS§ has reached the values 6053, 11 116, rectly from the numerical determination of the scaling func-
15539, and 17 112, respectively. The scaling function is composeglon, but with important uncertainty due to statistical limita-
of a polydisperse contribution of small droplets and a monodispersgions, and it may be better to extract from n(t)
contribution of droplets of mass of ordg&(t). «[S(1)]¢7 9. In all cases it is found that<t r< @ [for in-
stance, our simulations iWl=1 vyield r=1.264<3/2 (D
=2), 7=1.18<4/3 (D=3), and 7=1.074<5/4 (D=4)].
The value ofr does not seem to be simply relatedadand
D. Such nontrivial polydispersity exponents are quite fre-
which, from the definition of, implies the scaling lave(2 quent in aggregation models and occur even in the mean
—6)=1. Then we note that the fraction of substrate “area” field through Smoluchowski’'s equation, as mentioned in the

+ oo + o0
tmj sN(s,t)dsocS(t)z"’J xf(x)dx, (2.3
0 0

occupied by the droplets is Introduction. Therefore, it is interesting to derive a Smolu-
chowski equation for this model and check the mean-field
+ . .
d/D 1+d/D — ¢ value of 7, if possible.
fo $TUN(s,HdsxS() 24 Family and Meakin[9] showed from scaling arguments

that the coalescence kernel should have a homogeneity
and cannot diverge or vanish, so titat 1+d/D. From the =2d/D—1, but they did not determine its specific form. We
scaling law, we gez=D/(D —d). proceed now to the derivation of the equation. Neglecting
The scaling behavior of the total number of droplets) multiple collisions, we examine the different events affecting
depends on the smatlbehavior of the scaling functiof(x).  the distributionN(s,t).

Betweent andt+1, a droplet of radius=ks, is created as the outcome of the following processes.
(i) A droplet of masss, falls on a droplet of mass,<s—s,, which occurs with probabilitf),(s¥® +s3P)9, Q, being a
mass-independent geometric factor. The droplet of nsassonsequently reaches a masstsy. Then it coalesces with a

neighboring droplet of mass,=s—s; — Sy provided that they interpenetrate. The number of such events is

1D, 1D [ (s1+50P sy 1D, 1D d—1
Q10,N(sIN(S) (S +50) G(s1,82,r,t)(sp +s; +1)7 ~dr (2.5
0

(Q, is another geometric factpriG(s; ,s,,r,t) is the probability density that a given droplet of mas$as a droplet of mass
s, at distancesi® +s}P+r as the first neighbor.
(i) A droplet of mass, falls on a droplet of mass— s, with which it coalesces and the obtained droplet does not overlap

any other droplet,

(number of events= Q;N(s—sg)[ (s—Sp)*P +s5P1¢

S1/D_(s_so)l/D

X[ 1-Q, 2> N(sp) G(s—50,51,h,1)[(s—s)P+sP+r1d-tdr|. (2.6

s1=K180 0
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(iii) A droplet falls in an empty space between droplets

(number of evenfs<[1— ¢(t)]5s,soa 2.7

where[1— ¢(t)] is the empty area fraction.
A droplet of radiuss disappears due to the following events: it coalesces with a droplet of radits,, which has grown

1D

1D _
(S50 9 G(s1,s,1,t)(stP+sP+r)d-1dr; (2.9

(number of events= Q;Q,N(s)N(s;)(s¥P + sé’D)dj
0

or it grows
( number of events<N(s)(s*P +sgP)d. (2.9

To describe the long-time scaling regime, we can take the continuous limit of @uafinite) sy, to obtain the continuous
kinetic equation

1 (s
FN(s,t) + g s7°N(s,t)]= EJ N(s;,t)N(s—s;,t)K(s1,5—5;,t)dsy, (2.10
0

—N(s,t)JO+OCN(sl,t)K(s,sl,t)dsl+ I(t)8(s—sp), (2.11)

where the symmetric kernél(x,y,t) is

_ iy [cretPoxtP 1D | \,1D d-1 :
K(x,y,t)=limx“"/e G(X,Y,r ) (X" +y~"* +r)"" *dr+ (symmetric terms (2.12

e—0

The time and mass units were redefined to eliminate multi- +o0
plicative constants in the equatio(t) is consequently 1-¢(t)= 1—95(01”“37”[ x¥P f(x)dx,
renormalized td (t) =c[1— ¢(t) ], wherec is a constant that So/S(
could be easily determined, but is not essential to our discus-
sion. It should be noticed that the distribution function is
zero belows, at anyt.

The mean-field approximation consists in neglecting spa
tial correlations, i.e., in taking(x,y,r,t)=1. We get

(2.19

where(} is a geometric constant factor, which implies, since
#(t)—1 and =1+d/D, that [§*x¥Pf(x)=0Q 1. Since
f(x)cx ™7, we see that * ¢(t)<[so/S(t)]* VP~ if 7>1
and 1— ¢(t)<[s/S(t) 9P if 7<1, which yields 1 ¢(t)

K(X y t):(X(d+1)/D_1+y(d+l)/D_1)(X1/D+y1/D)d_1. 0.14 T T . ; ; .
(2.13

0.12 - ]

This kernel has the homogeneity=2d/D —1 derived from 0.10 | .

scaling arguments by Family and Meakj®]. Equation
(2.10 is not a standard Smoluchowski equation since it in-  0.08 - .
cludes two additional terms: aexogenous growtherm T
a4 s¥P N(s,t)], describing intercollision growth of droplets  ¢.06 [ ]
through absorption of small droplets, and a time-dependen

injection term. Moreover, the injection term isself- 0.04 [ ]
consistentBeing proportional to the free surface fraction, it
is a functional ofN(s,t) (see Sec. Il D. 0.02 L ]

For the numerical model(t) vanishes at long times since

the surface fraction covered by droplets goes to one in ho- 00 , , ‘ , , , ,
mogeneous growth processes, through renucleation in empt 00 10*° 10 10* 10 10* 10** 10°°
spaces(in heterogeneous nucleation models, the coverage n

goes to a valugh<<1). In fact, our numerical simulations in  F|G. 2. Plot of the free substrate area #(t) versus the num-
one dimension show that in the scaling regime @(t) ber of dropletsn(t) for a simulation of homogeneous growth with
«n(t), as illustrated in Fig. 2. This result is easily recoveredd=1 andD=3. At long times(small n), the two quantities are
from the scaling theory, proportional, as understood in the framework of the scaling theory.

10
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10%® . . . ing down and resolving all the resulting coalescence events,
with the same rules as for homogeneous nucleation.
Droplets configurations obtained with this model fibr
<D and various values ab are qualitatively very different
from those obtained with the deposition and coalescence
model: there is now a single population of droplets with a
bell-shaped mass distributid®], as shown on Fig. 3 from
simulations withd=2, D=3, andw= —1. As in deposition
and coalescence, an asymptotic scaling regime is reached at
long times and the theoretical valée=1+d/D can be de-
rived from the fact that the surface coverage tends to a con-
stant¢.
A distinctive feature of heterogeneous growth is that1
(see[7,9] and references if5]) and does not significantly
0.0 depend onw. The value of the asymptotic coverage was
0.0 0.5 ;é(()t) 15 computed by Derridat al.[11] for several simplified models
® of coalescence in one dimension. Vincdif derived ¢
FIG. 3. Typical scaling function for heterogeneous nucleation=0.57 from an approximate log-normal scaling solution to a
with d<D. The figure shows the data collapseNffs,t) in a simu- ~ Smoluchowski mean-field equatiaisee below with four-
lation of growth and coalescence with=—1, d=2, andD=3. body collisions included fod=2, D=3, andw=—2, in
The scaling function is clearly monodisperse and vanishes, at excellent agreement with the numerical vaWeO.SS.
~0.2. The exponent can beheuristically determined from the
fact thatS(t) is the only mass scale in the asymptotic regime,
*n(t). It is not obviousa priori that the dynamics of Eq. which implies that the distance between dropleté scales
(2.10 will also lead to the vanishing df(t) since geometri- asS'P. Then, from a rough evaluation of the total collision
cal constraints are only approximatively included. This pointrate, it is justified in[5] that the growth law of the typical
will be discussed in Sec. Ill. droplet mass in the asymptotic regime is the same as that of
an individual droplet in the absence of collision, except for a
multiplicative constant renormalizing the growth rate

SH*’N(s,Y

B. Heterogeneous nucleation

Heterogeneous nucleatidb] corresponds to the case, .
common for water vapor condensation, when impurities on SxSP, (217
the substrate play a major role in droplet nucleation. A daily
life example would be water condensation on a dusty paneVhich leads to
Nucleation occurs only on some nucleation centers, existing
droplets grow from vapor, and coalesce when coming into 1 D
contact, but no new droplet can nucleate in empty spaces. z= m= 11— (2.18
In the growth and coalescenamodel introduced by Fam-
ily and Meakin[9], one starts from an initial population of These scaling results will be established for the correspond-
droplets of same radius without overlap. In the dynamicsing Smoluchowski equation in Sec. Il
individual droplets grow between collisions with A consequence of Eq2.18) is that the scaling function
. f(x) cannot diverge at smalk since a simple argument
r=Ar® (219 gshows thatf(x) is strictly zero below a finite,>0, as can
be seen in Fig. 3see also Fig. 2 if11]). Consider the
or, equivalently 6=rP), smallest droplets surviving &t These are the descendants of
the droplets in the initial condition that have not experienced
s=DAS, (2.16  any collision sinca=0. As a consequence, the mass of the
smallest surviving dropletsy(t) is, for a strictly monodis-

where8=(w+D—1)/D andA is constant. Equatiofp.15  Perse initial conditiorN(s,0) 5(s—so),

has been known as type-l growth since the important theo-

retical work of Briscoe and Galvifil2] and is relevant to So(t) %[ Se(0)1 A+ (1— B)t]Y1=A) (2.19

physical systems for which mass and/or heat transfer pro-

cesses on the substrate are limited. In the following theoretandsy(t)/S(t) approaches a constant valkg>0, indepen-
ical discussion we shall always s&t 1/D, but in numerical — dent ofsy(0), whent—oo. SinceN(s,t) =0 for s<<sy(t), we
simulationsA was set to L(this just corresponds to a change see thatf(x) =0 for x<x,. Ford=2, D=3, andw=—1,

in the time unil. We must havew=<1 (or, equivalently,3  our numerical results yiel®(t)~16tY1" A with g=1/3,

<1); otherwise the system gels as the mass of an individuavhereassy(t) ~[(1— 8)Dt]Y¥*"#) from Eq. (2.19 (D ap-
droplet growing without collision diverges at finite time. One pears in the formula sincA=1 in the simulatiof which
step of simulation consists in increasing the radii of all drop-leads toxy~0.2. This value ofx, is fully consistent with
lets according to a discretization of H§.15 and then track- Fig. 3.
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If B=1, the growth ofsy(t) is exponential in time and the correct values for the fraction of area covered by the drop-
situation can be different. The collisions renormalize thelets, but the incorrect right-hand side may as well have only
growth of S(t) and we expect at long times minor consequences in his approximate computation.

An interesting case arises whes=1+d—D since, as
o noticed by Family and Meakif9], this corresponds to the
S~ 1+, (220 growth exponent of large droplets due to absorption of de-

wheree is strictly positive. Even wher(t) asymptotically ~Posited small droplets in homogeneous growth. In this case,
vanishesS(t) can be much bigger thasy(t), leading tox, Smoluchowski's equation describing homogeneous growth
—0 and a possibly polydisperse distribution. This behaviodifférs from the one describing heterogeneous growth only
will be found in Sec. Il for the corresponding Smolu- Py the injection term. Exponents and z are the same for
chowski equation. We shall see t/gt) is also much bigger Poth models and numerical simulatiof5] show that the
than se(t) in the mean fieldn the cased=D, even forj3 scaling function for large droplets in homogeneous growth is
<1, asS(t)«(tInty*~A), and that polydispersity can occur V€Y similar to the whole scaling function of heterogeneous

in this case. Indeed, Family and Meak#j observed a quali- 9"OWth. o
tatively different, broader mass distribution, with polydisper-  'nuS both growth and coalescence, and deposition and
sity, in numerical simulations fod=D. This case will be coalescence, are described in the mean field by a generalized

further investigated in Sec. IV. Smoluchowski equation, with additional terms accounting

Now we proceed in deriving Smoluchowski's equationfor intercollision exogenous growth of particlédroplets.

for this problem. If we assume that droplets do not coalesce! N€refore, it is interesting to perform a general study of this

we can find the contribution to Smoluchowski’s equation dueequatpn(wﬂh a.generic_ kerngland to see if its scaling
to the growth of individual droplets. The corresponding termPehavior is consistent with the numerical results for droplets
must conserve the number of particle since no new droplet jgucleation.

introduced in the system and the equation is just a continuity

equation for the distribution functioN(s,t), ll. SMOLUCHOWSKI'S EQUATION
WITH GROWTH AND INJECTION
IN(s,t)+ ds(sPN)(s,t) =0. (2.2 We consider the generalized Smoluchowski equation

If we bring coalescence into the picture,.the rate of C0ay N(s,t) + df SPN(s, )]
lescence of two droplets of massesands, is, under the
mean-field assumption, the time derivative of the overlap

probability proportional to $P+s1P)d, which is propor- =§f N(s;,t)N(s—s;,t)K(s;,5—5;)ds;
tional to (1P s, + 3P 1s,) (st +s5P) 41, So eventually
AN(s,t)+ ds(sPN)(s,t) —N(s,t)J N(s1,t)K(s,s)ds+1(t)d(s—1),

1 (s 3.1
= EJ' N(s;,t)N(s—s1,t)K(S1,5—51)ds;
0 K(x,y) being a general homogeneous kernel with exponents
N\ andu defined as in Eq1.2). The equation describes a set

+ o0
—N(s,t)f N(s;,t)K(s,s1)dsy, (2.22 of particles or clusters that collide with a mass-dependent
0 collision rateK and grow between collisions wittsee be-
with low)
K(X,y):(leD +yw/D)(X1/D +y1/D)dfl. (223) .S:SB. (32)

Once again, redefinition of the time and mass unit was useth addition, some small particleGnonomer$ are injected
to set multiplicative constants to one in the equation. with the injection ratel (t), with the possibility that is a
Here we would like to point out a mistake in an early functional ofN(s,t), as found for deposition and coalescence
numerical and theoretical work by Vincet]. Vincent stud- in Sec. Il. A discrete version of this equation without the
ied heterogeneous growth witth=2, D=3, andw=—1, monomer injection term and with@nstant collision kernel
relevant to epitaxial growth. He simulated early stages ohas been investigated for08<1 by Krapivsky and Redner
growth (because he could not reach the long-time asymptoti¢22]. We shall see below that their results are independently
regime and derived a mean-field Smoluchowski equation forrecovered as special cases of our general discussion of the
the radius distributiony(r,t)=Dr* YPN(rP,t). Vincent continuous equation, in the scaling regime where the discrete
found the correct collision kernel, but he erroneously derivedstructure of the equation plays no role.
that the change iny due to growth alone was-r 24, , When the growth and injection terms are absent, the equa-
instead of the correctd,(r ~2#). As a consequence, his tion reduces to Smoluchowski’'s equation and its scaling
equation does not conserve the number of particles when thgroperties have been extensively studig8i—-20, but it is in
collision term is suppressed. This might be one of the reano way trivial. Even in this case, very few analytical solu-
sons why Vincent had to include three- and four-body coations of Smoluchowski's equation are available. For the con-
lescence events in his Smoluchowski equation to recovestant kernelK(x,y)=1, an exact solution is knowfl6],
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with N(s,t) ~4/t?e~ 2%, Other solutions concern the kernels contained in the sol phagee., finite mass clustersnust be
x+vy [23] andxy [24]. Despite its apparently simple struc- finite, which imposesr>2. We conclude that no gelation
ture, Smoluchowski’'s equation is yet another example of accurs for max{,8)<1. In any caseB>1 is forbidden since
highly nontrivial mean-field theory. it leads to explosive growth of individual particles.gf=1,

In the following we study the long-time properties of the Eq.(3.3) yieldsM,(t) =e' and the total mass growth is faster
solutions of Eq.(3.1) and we exhibit a rich diversity of be- than any power oft, which is the telltale of the gelling-

haviors depending on the parametgrécharacteristic of ex-
ogenous growthand\ andu (characteristic of the collision
kerne). We use the classical notatiav ,(t) for the ath
moment of the distributiorf s*N(s,t)ds.

A. Gelation criterion

nongelling boundary.

B. No injection

For a while, we specialize to the caseO0, corresponding
to growth and coalescence. We first exhibit two exact solu-
tions and then we make a complete study of the scaling so-

The first interesting question is the possible occurrence olutions of the general equation.
a gelation transition for such equations. Gelation corresponds

to the formation of an infinite clustext finite time Without a
growth term, nongelling kernels correspond\te 1 [18,19.

How is this modified? In the absence of an infinite cluster,_

the evolution equation for the total mass in the syshén(t)
is obtained by multiplying Smoluchowski equation $wand
integrating over all masses,

M1(t) =M 4(t) +1(t), (3.3

which is physically obvious frors=s”. To discuss gelation,

1. Exact solutions

We can solve Eq(3.1), in the caseK(x,y)=1, for B
0 andB=1. To do this, we consider the Laplace transform
Z(z,t) of N(s,t), Z(z,t)=J5 e *N(s,t)ds. Z(0}) is the
total density of clusters(t).

For 8=0, the Laplace transform of E¢3.1) with K=1
reads

1
HZ+z2Z= EzZ—Z(o,t)z. (3.9

we have to be more cautious. Adapting the argument for the

standard Smoluchowski equati$¢®5,26,18,19 let us con-
sider the mass flux from clusters of massssL towards
clusters of masses>L,

J (1)

L L.
——J s&tN(s,t)ds+f sN(s,t)ds+1. (3.4
0 0

From Eq.(3.1) we get

JL(t):L1+BN(L,t)+ JdexN(x,t)fmdyK(x,y)N(y,t),
0 L—x
(3.9

where the first term is the mass flux througfa L due to the

growth of individual particles, while the second term is the

mass flux due to collisions. If there is no gelatigyr(t) must
vanish whenL—o and Eq.(3.3) holds at any time. If there
is gelation at=t,, there is an infinite cluster, or gel, in the
system fort>t, andJ, (t) is nonvanishing fot>tg. At the
gel point, J..(t)=lim __,J, (t) may be infinite, but not for

t>ty. The postgel distribution must have a slowly decaying

larges tail in order thatJ.(t) be finite. If we make the
ansatzN(s,t=ty)~A(t)s™ " at larges,

LY AN(L,t)~A(t) LI AT, (3.6)
L +oo
f dxx N(x,t)f dyK(x,y)N(y,t)
0 L—x
~A(t)2L3”’ZTfldxf+xdyx K(X,y)(xy) ™.
0 1-x
3.7

We see that if gelation occurs; must be equal to
max 1+ B,(3+7\)/2]. In the postgel regime, the total mass

With n(0)=1 and Z(z,0)=Zy(z), we find that Z(0,)
efzt
ezt’

=n(t)=2/(t+2) and
2 1 _ 1t /)
(t+2) (420(2) fo(t’+2)2dt

2
For a strictly monodisperse initial conditioN(s,t)= &(s
—1), the total mass in the systemN§,(t)=—9,Z(z=0,)
=1+2In(t+3) and in the scaling limit— o,

Z(z,t)= . (39

N(S,t)"’ 2 e s/(tn t).

(3.10
t2Int
For =1, the equation foZ is
1
hZ—29,2= EzZ—Z(o,t)z (3.11

and once agaim(t)=Z(0t)=2/(t+2). If we choose the
variableu=z#€, the equation reduces to a first-order differ-
ential equation in time and the solution is

2Z4(z€)

t+2 [1-7,(z)](t+2)+2Z4(z€)
(3.12

With a strictly monodisperse initial distributionZq(z)
=e % Z(z,t) has a pole azy(t)=—e 'In(1+2/t), and we
can explicitly computeN(s,t),

Z(z,t)=

N(s,t) exd —se 'In(1+21)], (3.13

(t+2)%!
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which leads in the long-time limit to actually occur. This leads us to a slightly more general scal-
ing assumption than the one we made for droplets coales-
4 ; cence models,
N(s,t)~ 5~ e >, (3.14
t%e! s
N(S,t)NY(t)_lf<%). (315)
Thus both solutions exhibit dynamic scaling. The corre-
sponding solutions for the discrete Smoluchowski equatiorwe do nota priori assume thay (t)«<S(t)? since we know
have been derived independently by Krapivsky and Rednefrom exact solutions that it is not always true.
[22] and coincide with the solutions above in the scaling Notice that the scaling functiof(x) is not uniquely de-
limit. This coincidence was to be expected since, in the scalfined by Eq.(3.15 unless we give a precise definition of
ing regime, the divergence @(t) leads to the oblivion of  S(t) andY(t). If we know a scaling functioriy(x) for given
the discrete structure of the equation. The scaling function igefinitions ofY andS, any other scaling functiofi(x) cor-
the same as for the exact solution Kf=1 without exog-  responding to other definitions is relatedftoby
enous growth, but instead of the usual scaling relation of Eq. F) = xf
(2.1, we have N(s,t)~Y(t)"H(s/S(t)), where Y(t) (%)= rfs(£x), (3.16

2 .
=S ()/My(t) is not a power of(t). x and & being two constants. The most usual definition of

&(t) (and the one actually used in numerical simulatjdas
B=0 is that in contrast to the generic case in Sec. xBis O ( y )

fqual tﬁ ze_ro(.j.TQe {easo_n||s thﬁ(rt]) lnbth|s cas;a g:lqus From the picture above, it is obvious that the physical
aster than individual particles in the absence of colliSons ¢ i o the mass(t) below whichN(s.t) is strictly

Hences(t)/S(t) = 1/Int goes to zero. This point will be fully zero, scales aSy(t). This is just the translation, in terms of

discussed in the case of a general kernel under the dynamig,, |, chowski's equation, of the discussion we had for drop-

scaling assumption. F@=1, the scenario discussed in Sec. : :
B ocgcurs an&(t)%?corresponds to a slowly vanishing Ler:dg;m(/\t/;hhzci iﬁ:legz(;ﬁgcseéaﬁ:]nset)zso(t), eltherS(t) .
: g g and the scaling function

€(t) in Eq. (2.20. f(x) is zero below a certain argumen,>0 or S(t)
>S5y(t), Xo is equal to zero, and may have a smalk di-
vergencef (x)ocx ™7, with a polydispersity exponent=0.

In the general case, E3.1) can be neither solved ana-  The scaling of the moments of the distributidifs,t) is
lytically nor easily simulated. However, some very interest-altered by the existence of a polydispersity exponent
ing information can be obtained by making use of the scaling o 1t o
assumption. Note that, although it is quite clear from their Ma:f s*N(s,t)ds~ f xf(x)dx.
homogeneity that Smoluchowski-like equations admit scal- so(t) Y Jsyisin
ing solutions, it has never been mathematically proved that (3.17
these solutions are approached at long times, except in t . . . .
few cases for which V\E)epcan obtain thegexact solutionp. Howr].? there is no polyo-lls.per.sny exponent or #<1+a, the
ever, scaling is commonly observed experimentally and nul_ntegral tends to a finite limit wheti— and
merically for aggregation models, as well as in numerical Glte
solutions of Smoluchowski’s equatidi27] when possible, M(t)or ——. (3.18
making this assumption very reasonable.

Some simple arguments may give a qualitative underif r>1+ «, the integral diverges and
standing of the different regimes to be expected for(Bd). .
Indeed, if we suppress the collision tefire., the right-hand M () is (H)ire=r (3.19
side), we are left with a continuity equation that describes a * Yy ™0 ' '
set of particles that grow in time with= s and is associated
with the mass scalgg(t)«ct*=A),

Conversely, if we suppress the exogenous growth term stte  g(t)
ds(sPN) on the left-hand side, we have again a standard M () Y Inm. (320
Smoluchowski equation describing clustering with mass con-
servation. The scaling properties of this equation are well Under the general scaling assumption, we get the follow-
known [18-20. The typical mass in the scaling regime is ing scaling for the different terms of Smoluchowski's equa-
S(t) =t and g=2. tion:

Thus, when both exogenous growth and collisions are ac- - :
tive, we expect to observe a “competition” between the two aN(s,t)~— E(Xf(XH §xf’(x)), (3.21)
dynamical mass scal& andS;. If B>\, Sy(t)>S(t) and Y\Y S
in the scaling regime we expe&(t)xSy(t) and z=1/(1 1
—B). If B<\, on the contrary, the typical mass of particles AL sPN(s,t)]~
increases essentially due to collisions, he¢g) oct¥(1—2)
and z=1/(1—\). In the marginal case.= g, logarithmic SRR
corrections taS(t) may be observed. In fact, we know from (collision term ~ (). (3.23
the exact solution oK=1, 8=0=N\ that such corrections Y2

2. Scaling theory

Finally, if 7=1+ «,

(XPF)' (x), (3.22
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TABLE |. Results of the scaling theory.

Parameters M (t) S(t) Y(t)
1>B>\ M, SP~H S(t) ect? Yo S?
1 0=2+\-p
Z:_
1-8
1>A>p M ,—const 1 0=2
Z1oN
1>\=8 Int if u=<0 S(t) = (tM)* Vo i
M, . 1 M,
Intin(int) if u>0 — 1
(Indin(nt) if p 2=1-3
p=1 M, =M (0)e' S(t) et/ YorSe
0<a<1 1=
y M1=My(0)¢ S(t) <t Yots
A=1> ,
=0 B M, — const S(t)oceP Yo St
A=1>
=0 B M, —const S(t) bt Yo S?
A=pB8=1 t _
u<0 M;=M(0)e! S(t)cebe Yo SPet
A=pB=1 I _
,LL§OB M1=M1(O)e‘ S(t)oceb\'et Y152e t/2

Another important equation is E¢3.3) for the evolution of i.e., the same scaling equation as for the standard Smolu-
the total mass in the system, which, in the absence of injeazhowski equation without cluster exogenous growth, which
tion, reduces to makes it possible to use all the corresponding results or tech-
nigues[18-20. For breath figures, this case corresponds to
M1=MB. (3.249  d>D, but as further discussed in Sec. IV, heterogeneous
growth is always gelling in this case and the mean-field ap-
Now it is possible to find the asymptotics bf;, Y, and ~ proximation breaks down.
S, depending on the values bfand3, under the sole scaling ~ For A=, we find thatS(t) is no longer a pure power
assumption. In fact, although the line followed in the dem-law, but incorporates logarithmic corrections. The total mass
onstration is quite simple, details are rather intricate due tdn the system increases logarithmicallj,(t)<Int and
the multiple cases to be examined. A full length discussion i$5(t) ~[tM (1) ]¥*~#). Once agairs(t)>s,(t) and the scal-
given in the Appendix and results are summarized in Table ling function is Eq.(3.25. Thus there is a polydispersity ex-
Here we shall only comment on some interesting points. ponent if the kernel hag.=0 (see below and there is an
The scaling theory is consistent with the qualitative dis-addition In(Irt) correction foru>0 kernels. For heteroge-
cussion above based on the idea of competing dynamicaleous growth) = 3 corresponds td=D and the mean-field
scales. It is found that foh<B<1, S(t) scales assy(t) theory accounts for the qualitative difference betwderD
~tYA=B) y(t)«S(t)~?, with =2+ — B, and the scaling andd<D observed in numericésee[9] and below. This
function is zero below a finite,. If we return to droplets point will be fully discussed in Sec. IV. This also recovers
models, this\ <8 condition just corresponds <D and the scaling behavior of the exact solution #6=1 and g
we find #=1+d/D. Hence the scaling results of the mean-=0.
field theory are in full agreement with the discussion and For 8=1, the scaling of the exact solutidh—=1, =1 is
results in Sec. Il B. recovered. FOh=0, the scaling equation is once again Eq.
For \> 8, S(t) scales ag”/(~™ and the mass is asymp- (3.25. Other results in Table | show the great diversity of
totically conserved withd=2. The scaling function may scaling regimes depending ¢ A, and .

have a polydispersity exponent, since n8)>sy(t), and For a constant kernel and>13>0, we recover the result
the scaling equation is, of Krapivsky and Rednd22], who assumed that the scaling
function has essentially the same shape as in the gas@&
+o0 or the pure aggregation case. From our analysis, we know
b[Xf'(X)+2f(X)]=f(X)f f(xp) K(X,x1)dXg that this assumption is actually not verified. However, it can
0 be seen that the key point of their demonstration is tla}f
1 (x has no smalk divergence, which is indeed true.
- Efo f(xp) F(X=X1)K (X, X=X1)dXy, The fact that the scaling results of the<D growth and
coalescence are recovered by the Smoluchowski equation ap-
(3.29  proach gives a firm basis to the heuristic arguments used to
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find a posteriorithe exponents from the obtained numerics.which corresponds, for instance, to Brownian coalescgince
Moreover, the kinetic equation approach is predictive anda (d-+2)-dimensional spadewith mass-independent diffu-

provides a synthesized classification of the aggregation modsion constant, very few values efwere known.
els, depending on a limited number of relevant parameters, This difficulty appears to be overcome byvariational

provided the approximation is justified.

3. Polydispersity exponents

An interesting corollary of the scaling theory of the gen-
eralized Smoluchowski equation with growth is that in the

casespB=\ and B=1, the scaling equation is exactly the
same as for the standard Smoluchowski equati®25),

whereb is called the separation constant, which we set td

one by absorbing it in the scaling functigwhich corre-
sponds to a redefinition of). Note that iff is a solution of
Eq. (3.29, c**M(cs) is also a solution, which corresponds
to different possible definitions db(t) [remember the dis-
cussion above Eq3.16)].

Thus all the results known for the scaling function of the

method which we have introduced in a recent pafi20]. A
systematic computation of can now be performed in a
simple way at a very low numerical cost. We report such a
computation for the kernng in [20]. Analytical results
combined with exact inequalities obtained from E4}7) are
used to check the variational results, which are also in excel-
lent agreement with the few values ef available in the
iterature.

From the discussion above, we see that the variational
method can also be used to determinr Smoluchowski's
equation with exogenous growth of particles, when polydis-
persity occurs, i.e., whem=8 or S=1. An interesting
physical application of these resultshisterogeneous growth
with d=D, which is in the clas@=\. For this problemg is

standard Smoluchowski equation also hold for the generafdual o H (0—1)/D and the kernel is

ized equation. For instance, the scaling functfgr) of the

K=1, 8=1 case can be derived from the exact result for the

standard Smoluchowski equation witk=1, for which
fo(X) =€ *is a scaling function. For a given definition 8f
andY, the corresponding scaling function fir=1, 3=1 is
obtained using ;=f, in Eq. (3.16). If we use Eq.(2.2) as a
definition of S(t), £ is constrained to the valug=2; if we
defineY(t) by M,(t)=S%Y, we getk=4, which leads to

4¢t
N(S,t)OC §8—2S/S,

(3.2

with S(t)=tet in agreement with the exact result £8.14).
We can also find the exact scaling function @+ 1 and
K(x,y)=x+y (which corresponds ta.=1). For the stan-
dard Smoluchowski equation, a scaling functionfigx)
=x"%%e7% Itis also a scaling function for E43.1) and we
obtain the exact result=3/2.
The scaling equatioii3.25 for a general kernel was ex-

tensively studied in the literature. van Dongen and Ernst
[18,19 showed that the qualitative shape of the scaling func-
tion f(x) at smallx depends on two parameters: the homo-

geneity degree of the kernkland the exponeni defined by
Eq. (1.2.

For x<0, the scaling function vanishes as Expx*
+0(x*)] at smallx and there is no polydispersity exponent.
For kernels withu>0, there is a polydispersity exponent
=1+A\. For u=0, there is also polydispersity, but with a
nontrivial exponentr<<1+\,

r=2— fﬂcx"f(x)dx. (3.27
0

The determination ofr for =0 has long been a chal-
lenge because solving numerically Smoluchowski’s equatio

proved rather difficult and often unsuccessful. Even for the

most studiedu=0 kernel

KB(x,y)=(x"P+y*®),

(3.28

K(X,y) — (Xw/D+yw/D)(X1/D+yllD)D—l.

(3.29

This kernel is formally similar to the one describing
diffusion-limited cluster-cluster aggregati¢t4,15,28, but
the meaning of the parameters is different. We have

0
" | w/D

if 0=0

if w<O.

" (3.30

The scaling theory yield$(t) «(tInt)?, with z=D/(1— w),

and predicts a transition from a polydisperse scaling function
with a nontrivial 7 exponent forw=0 to a smallx vanishing
scaling function fore<0.

Consequently, it is interesting to determine the mean-field
polydispersity exponent for this kernel using the varia-
tional approximation. This will be done in Sec. IV, in which
we also present comparisons of scaling results from the
Smoluchowski equation approach with direct numerical
simulations of heterogeneous growth witkD.

C. Constant injection

We now move to the case of a constant injection rate.
Interest in aggregation models with injection was originally
aroused from applications in chemical engineeficgagula-
tion in stirred tank reactoysand atmosphere sciencgz9—

37]. In these contexts, injection was often associated with a
sink term. The emergence of the concept of self-organized
criticality [38,39 resulted in a renewal of interest in aggre-
gation models with constant injectidd0—42 since these
systems commonly evolve to a steady-state asymptotic
power-law distribution and therefore provide examples of
self-organized critical systems. This behavior is assessed by
numerical simulations and exact solutions in one dimension
[41,42.

Hayakawd 37] studied Smoluchowski’'s equation with in-

Ij]ec:tion of a monomer. He showed that for nongelling sys-

tems, with A<1 [18], the asymptotic steady state had a
power-law larges decay with an exponent=(3+\)/2.

Here we shall investigate the steady state in the presence of a
growth term with exponenB. We assume for convenience
that the coagulation kern®#(x,y) is equal tox*y”+x"y*.
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A=u+v is the homogeneity degree of the kernel. The re-point of view, it becomes clear that the total mass injection

sults are true, however, for any kernel. ratel must exactly be compensated by the mass dissipation
We are interested in the asymptotic steady state reachdw collisions. Thus the total mass flux due to collisions must

by the system at long times. We shall see that it has a largdse finite. This just means that the steady state isgai @oint

s power-law decay with an exponemtthat we are able to and the argument of Sec. Ill A can be readily adapted to

compute in terms ok andB. To achieve this program, let us obtainT=(3+\)/2. Furthermore, as the total mass is infinite

call Z,(z,t) the Laplace transform a“N(s,t) defined by in the steady state, we do not have the restriction2,

which determines the gel criterion for gelation at a finite
+ oo . ey . .. .
- time. Here the transition occurs at an infinite time, when the
Z,(z,t)= s*N(s,t)e *ds, 3.3 . ” - ’
o(Z:) f (s (3.31 system has self-organized to the critical point of a gel tran-
sition.

for which we get If we introduce the exogenous growth term into the pic-

ture, we can also find the exponents from the same argument.
hZ1+225=2,2,~Z,M,~ZM,+1e"% (3.3  Now the mass injection rate ist M. If M is finite, we
still find 7=(3+\)/2. If B=(1+1\)/2, M; is diverging with
such a value ofr. Consequently,MZ is infinite and the
zz(gz(zi— Mz)(zjj— M2)+1(e">—1). (3.33 steady-state condition is now

Now we consider the equation for the steady state,

The larges behavior of the steady-state distribution is re- : f - 8 _ _
flected in the smalk behavior in Laplace space, |+L“an< 0 $N=(8)ds=C(L) | =0, (3.39
Z,(2)—Mg~c,z" (3.39  whereC(L) is the integral in Eq(3.5). The vanishing of the

e e e e . e divergence imposesd 38— =3+ \—27 and we recovet
if M, is finite. If M, is infinite, it does not appear on the =2+4\-gB.

left-hand side. Note thaM7 is certainly infinite because
there is constant injection of monomers and no dissipation of

mass(at finite timg. As a consequence,<0r,<1 for all a ' o
<1.If 7, is not an integer then fos— o, Now we would like to return to the initial problem of

homogeneous nucleation and the corresponding Smolu-

D. Constant mass injection

N C, 1 chowski equation. The corresponding collision kernel has
SIN(s,t=0)~ 5 I'(1+7,)s™ . (335  —2d/D-1=28-1, just on the borderline of the two re-
gimes found for constant injection. The point we make is that
As a consequence;— 1= r,=7,+ « and injection of small droplets occurs at a vanishing rate propor-
tional to 1— ¢(t), as seen in Sec. 11 B from a geometrical
Z(Mg+ 14271 By (2277270, (3.36 interpretation. In fact, forgetting geometri(t) is imposed

. . by the fact that the mass injection rate is a constéuyt
hence if 7—1—p>0, then }02_27_—2_—_)\, e, 7=(3  gefinition of the modal say, M;=1. Indeed, fromM,
+\)/2, whereas |fr—1<,8_, Mg is infinite and does not =M g+, this is equivalent td (t)=1—M 4(t). For droplet
appear on the left-hand side of E@.36 and thent—B  geposition and with this choice of constanks 5(t) = $(t)
=27-2-N\, i.e, 7=2—B+\. To summarize, we find and the geometrical argument is recovered.

(3+N)/2 if B<(1+0)/2 Accordingly, we now discuss the casef28—-1 and

= constant mass injection 1,i.e.,
TTl2+a=B if B>(1+N)/2. (3.37 : W

_ [(t)=1—Mg(t), (3.39

Thus we see that the exogenous growth term introduces the
following feature: Above a critical growth paramet@.  for 8<1. Once again, we make the scaling assumption of
=(1+X\)/2, the power-law exponent of the asymptotic stateEq. (3.15. As in homogeneous nucleatiad,,(t) <t leads to
depends continuously g, whereas if8 is less thar3,, the  Y(t)«S?/t. A very interesting result is thatl ; must tend to
exponent is unaffected by the growth term. 1 at long times. First, it is easily seen thélt;(t) cannot

The caseB=(1+\)/2 requires some additional care. In- diverge. The reason is that the injection rate of “area” into
terpolation of the two regimes above would lead#e1l  existing particles is equal t8M,;_; and is always domi-
+p and it is possible to show that there is a logarithmicnated byM4(t) in the scaling regime. More precisely, the
correctionN(s, + )« 1/(st*#Ins). evolution equation for the occupied area fractidn, is ob-

For B<1+N\, 7 has the value found by Hayakay@7] in  tained from Eq.(3.1) and since collisions cannot increase
the absence of exogenous growth from the same Lapladd ; (8<1), we have the inequality
transform arguments. It is also interesting to derivieom a
more physical argument. For convenience, let us first forget MBsBMZB_1+ 1—=Mpg(1). (3.40
the exogenous growth terfthe argument is the samand
consider the steady-state conditidh,(s) is a stationary dis- Then, since8<1 implies 28—1<p, it is possible to show
tribution in the sense that if we start fromi(s,t=0) that for any value of a possible polydispersity exponent, we
=N..(s), then the distribution does not evolve. From this have in the scaling regiméMz— M z_1) ~CcMy, wherec
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is a strictly positive constant. In facM s>M,;_; andc is concerned, we can straightforwardly generalize the results
=1 if 7<1+p, while MgxMys_; andc=1/(7—1-B)  of van Dongen and Erngt.8,19. The kernelK has\ =2
—Bl(r—2B) if >1+ B. This result, combined with Eq. +N—28 andm=1+u— B, and we find that the function

40, | i P \ for u i
(3.40, leads to vanishes at smah for £<0, 7'=1+X\ for x>0, and7’ is

Mﬁgl_CMﬁ(t), c>0, (3.41) nontrivial, with
which shows thatM 5 cannot diverge. It is also clear that S =14 J<+OC§D(X)XIdX<1+X (3.44)
there is no way thaM ; could become negative, since the 0

smallerM is, the largeri (t) is. Therefore, if we rule out

any pathological oscillatory behavidvl ; tends to a constant  for ;,=0. Therefore, foru<B—1, we have no polydisper-
¢, which may possibly be zero. Now, B#1, then the sity, while for u>B8—1 we haver=2+\— 8 and for u
injection is asymptotically constant and, from Sec. llIC,=8-1
there is a critical steady state, witk(s)~1/(s**”Ins) at

larges, andM 4 diverges, which is contradictofyn addition,

if ¢>1, the distribution is negative near1). Thus¢=1,
a nontrivial result that was a necessary condition for the
mean field to correctly describe droplets models. Now, for \=28—1, we find thatr=1+ 8 if u>p-1,

Now let us discuss the scaling properties of the equationwhile 7 is nontrivial and strictly less than-48 for u=p
Since the injection term is vanishing, we expect the scaling-1. Hence, foru<g—1 the scaling theory is consistent,
equation(which describes large clustgt® be the same as in  while for u>B—1 there is a contradiction withr<<1+ S.
the case without injection. However, because of the fact thalhe latter case precisely corresponds to droplets deposition
the cutoffs, is constant and therefore negligible compared tosee Eq.(2.13]. However, a consistent scaling with a non-
S(t) we must select a solution different from the one ob-trivial polydispersity exponent could be obtained if we in-
tained without injection. clude pair correlations in the collision kernel and if the re-

To be more precise, we know th¥t S/t and thatM,;  sulting kernel hagt=8—1.
has a finite limit. If we assume that there is polydispersity This scenario is to be related to an early numerical work
with 7=1+ B, these two conditions lead t5(t)>tY(*"#)  of Tanaka[43]. Tanaka solved a set of coupled differential
and we find that the scaling equation is once again Egequations describing growth and coalescence with renucle-
(3.295, which yields <1+ X<1+ B, in contradiction with  ation ford=2, D=3. Dynamical pair correlations due to an
our assumption. Thus<1+ g and MﬁoctS(t)ﬁ‘l, leading  excluded volume were included in an approximate form and
to Tanaka found a bimodal droplet mass distribution with a

nontrivial polydispersity exponent, in agreement with the re-
sults described in Sec. Il. It seems quite clear that his set of
(3.42 . . . .
equations becomes equivalent to a Smoluchowski equation
very similar to ours in the long-time limit, but with a colli-
which correspond to the results previously obtained for dropsion kernel modified by correlations. It would be interesting
lets deposition and coalescen@éth S=d/D). The scaling to try to determine the kernel from his equation, although
equation is Eq(A22), with positivea andb. This equation is  this seems to be quite a difficult task.
nonlinear and is likely to admit several classes of solutions.
We have seen that when there is no injection, a solution is
selected that vanishes below a fimig>0. However, in the
presence of injection the scaling function has no lower cutoff
(Xxo=0) and we can have a polydispersity exponent. In Sec. Ill we found from a mean-field approach that the

To investigate the smaK-behavior off, we introduce the kinetics of heterogeneous growth with=D (for instance,

auxiliary functiong(x)=x#"1f(x), which leads to a scaling disks on a plane or spheres in three dimensiemould be

T=,8+f+mf(x)x”+l‘ﬁdx<2+)\—,8. (3.49
0

0=1+p, ZZE,

IV. HETEROGENEOUS GROWTH
WITH POLYDISPERSITY

equation qualitatively different from its counterpart witth<D. From
. . the scaling theory of the generalized Smoluchowski equa-
2x1Po(x) + X2 Po’ (X) = X' (X) — @(X) tion, we found that there should be a transition from a mono-
o disperse scaling function fes<<0 to a polydisperse function
:(p(x)f o(x)K(x,x7)dX; with a nontrivial polydispersity exponent for ®=0. This

mean-field result is actually very interesting since it corrobo-
1 fx-e rates numerical simulations performed by Family and
— EJ o(X1) @(X— X1 K(X1,X—X1)dXq, (3.43 Meakin [9,5], who found that polydispersity occurs far

& =D=2 andw=0.5.

_ Thus our Smoluchowski equation approach sheds light on
whereK(x,y) =x*"Py'"PK(x,y) (e is included to regular- heterogeneous growth with=D, which was not studied
ize the collision terms that are separately diverging in themuch due to the fact that interest was primarily focused on
e—0 limit [18]). We remark that the most diverging term for g=2 D=3 relevant to breath figures and also to the fact that
x—0 on the left-hand side is Xx¢'(X) — ¢(x), so that, as far numerical simulations are much more difficult in this case
as the determination of the asymptotic behawi¢k)ocx ™" (see below In this section, first we discuss in detail what
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should be expected from the mean-field theory and compute TABLE Il. Exact upper and lower bounds.
the polydispersity exponents fap=0. Then we present
some numerical simulations id=2 and discuss the rel- ® Tm ™
evance of the mean-field theory. 0.02 1020 1510
0.2 1.339 1.588
A. Mean-field theory 03 1.472 1.594
In Sec. II B it was found that the collision kernel corre- 0.4 1.514 1.601
sponding to heterogeneous growth wites D was 0.5 1.540 1.608
0.6 1.572 1.614
K(x,y)=(x“/P+y®P)(x1P+yP)P-1, 4.7) 0.8 1.623 1.800
0.9 1.633 1.900

with A=1+(w—1)/D= 8. The corresponding generalized

Smoluchowski equation was found to be nongelling éor

=1 and in the following we shall take<1. _ which, combined with Eq(3.27), implies 7= 1, in contradic-
The reason why growth witd=D is different in the {5y with our assumption.

mean field fromd<<D is rather subtle. As discussed in Sec.  ope can also find better exact bounds. Combining Egs.

lll, the competing dynamical mass scales corresponding t03.27) and(4.3), one obtains

exogenous growth and growth by collisidy,(t) andS(t),

respectively, are of the same order at long timesderD, JIog(x,y)dx dy
which leads to a marginal enhancement of the growth of the r=2—(1—a)”m x.y)A(XIy)dx dy’ 4.7
typical massS(t) and to logarithmic mass growth 090Gy AY y
H — ay N\ Ay a — «
et In A=« M, () ~In t. 4.2 with g(x,y)=f(x)f(y)(x“y*+x*y*) and A(u)=[1+u
S( )OC( n ) 1( ) n ( ) —(1+U)a]K(1,U)/(Ua+U)\)-
This implies that the cutofky=Ilimsy(t)/S(t) in the scaling The ratio in Eq.(4.7) is the inverse of the average of

function is zero, in contrast to thé<D case for whichx,  A(X/y) with weightg(x,y), so that computing the maximum
>0, and the scaling equation is the same as for SmoluM. and the minimunmM, of A for various values ot leads
chowski's equation without growth. to exact bounds for _that can be L_Jsed_ to check numerical
For =0 we haven=0 and consequently there is a non- evaluations ofr [20] since Eq.(4.7) implies

trivial polydispersity exponent. We can use the methods
discussed i120] to studyr. These methods make it possible
to derive exact bounds and excellent approximationsrfor
The key relations that we use are, on the one hand, integr
equation(3.27 for 7 and, on the other hand, a series of
integral equations for the momeritt, of 7 [18] obtained by
multiplying Eq. (3.25 by x* and integrating ovex, for any
value ofa>7—1 (such that the integrals converge in 2ero

2—(1-a)im,<7<2—(1—a)/M,. (4.8

s a concrete example, let us determine such bounds for
=2 andw=0.5. Sincer<1+\ (hereA=0.75), Eq.(4.7)
holds fora=A\, for which we can numerically compute the
minimum and maximum oA. From Eq.(4.98), this leads to
the inequality 1.5 7<1.607 175. Thus Eq4.8) holds for
0.607 175< a<\ and we can compute new bounds for each
a in this interval and find the tightest bounds. The upper

2(1—a)f x“f(x)dx:f f F(X)F(Yy)K(X,y) bound obtained forw=\ cannot be improved sincA(0)
0 0 =1 for a<\, hence 2- (1— a)/M =1+ «, but we obtain a
X[X¥+y— (x+y)*]dx dy. better lower bound of 1.54 forr=0.68. Table Il presents
such exact bounds fd»=2.
(4.3 The next step is to use a variational method to compute

accurate values of at very low numerical cosf20]. The
basic idea of the variational approximation is to choose a
arametrized family of variational functions and minimize
he violation of Eq.(4.7) for a well-chosen sample of values
of a. The key point is the choice of the variational function.
As argumented if20], a natural three parameters class of

2f+xf(x)dx=f fﬂcf(x)f(y)K(x,y)dx dy. (4.4  functions is
0 0

As a preliminary remark, let us show that whee=2, the
exponentr is bigger than one. Let us assume that1.
Since the scaling function is integrable in zero, we can writ
Eq. (4.3) with =0,

. . 1 c C
From the inequality, fu(XvTOaCvaZ):<_+ L _2> e X (49
X70 XTl(To) X)\
K(X,y)I(X“’/D +yw/D)(X1/D+leD)D712X}\+y)\
(4.5  The last term corresponds to the exact asymptotic decay at
largex of the scaling functiorf18,19, while 7, is the poly-
for D=2, we see that Eq4.4) leads to dispersity exponent and; is the subleading exponent in
smallx (its value as a function of is taken to be the same
e e e for the exact scaling functiprThis class of function has
f(x)dx= f(x)dx| yM(y)dy, (4.6 8 : _
0 0 0 the correct large- and smallx asymptotic behavior expected
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' ' ' ' ' ' ' ' ' The variational approximation was used to study the be-

1.9 | 1 havior of 7. The set of moments was chosen as discussed in
18 $ [20]. Results are shown in Fig. 4 for different values®f
17 and w>0, while Fig. 5 shows the values affor «=0. For
16 D=1, the kernel is equal ta“+y®, corresponding to the
' kernelK1,, with the notations of Eq(3.28), which was ex-
15 tensively studied ih20]. The exponent is bigger than 1 for
© 14 any >0, while 7=0 whenw=0. Since E7<1+w for
13" >0, we see that—1 whenw—0, hencer has a discon-

tinuity at w=0. For anyD andw=0, the kernel also reduces
to K3~ t.

It appears that has a discontinuity ab=0 not only for
D=1, but forD>1 as well: Whenw—0", 7 has the limit
0.9 - ] 7, bigger than its value ab=0. Thus the discontinuity that
0.800 0'1 0'2 0'3 0'4 0'5 0'6 0'7 ola 0'9 10 was ri.gorously shown to exist fdd =1 pertains td)lzl. It

) ' ) ’ T ) : ) ' is difficult to extract the value of, accurately since the

variational algorithm appears to be less accurate for small

FIG. 4. Exponentr for the kernel §“/°+y“/®)P~1 computed values of w (for w typically less than 0.1). Howevery,
with the variational approximation fow>0 and 1=<D=<3. The seems to be close to21/D, which is the value of + \ at
theoreticalo—0 limit of 7, 7,=2—1/D is plotted on theY axis  »=0. Actually, a heuristic argument, inspired from the dis-
(squarep cussion for the&<d kernel in the larged (d>1) limit, yields

70=2—1/D.
for the scaling function. In addition, it contains the exact Let fy(x) be the exact scaling function fas=0. From
scaling functions foK =1 andK =x+Y, therefore the varia- Eq. (3.27 we get
tional approximation yields the exact result forin these
casedas checked ihn20]).

1.2
1.1
1.0

+ o
A natural error function, measuring the violation of Eq. To=Ty—o+ lim f [f(x)—fo(x)]xIH (e D/Pgx
(4.7) for a set ofn momentse;, is simply w—0+70
(4.11)
XA(f)=2> [TO—Gai(fv)]z, (4.10  and the limit on the right-hand side of E¢t.11) must be
|

strictly positive, althougH f(x) —fo(x)]—0 for any x>0.
How can this occur? Since>r1,-o (for small w), [f(X)
whereG, (f,) is the right-hand side E¢4.7) for «= ; and —fo(Xx)]~c/x” whenx—0 andc must vanish whermw—0.

f=f,. This error function is, by construction, strictly zero Thlef(wi'clr)\“%ﬁintegral has an integrable singularity
for the exact scaling function. For the chosen class of variaCX M 70<2—1/D (we know thatro<2—1/D
functions and simple one-dimensional integrals, whichPUt BY the vanishing of, whereas, ifr,=2—1/D, the inte-

makes its numerical computation extremely fe2q]. gral is equivalent tac/(7o+ w/D—7) and it has the finite
limit 79— 7,-¢ provided c vanishes as #,—7,-¢)(70o

+w/D—1).

Figure 5 plots the value of and 7o=2—1/D for =0
and 1=D=6. Both 7 and 7y have the limit 2 wherD — oo,
which implies that the discontinuity im=0 vanishes at
15 - . largeD, as can be seen on the figure. The reason w2
is that whenD — o,

2.0 T T T T

e 1.0 — % ] K(x,y)=2P[(xy)¥*+0(1/D)] (4.12

and therefore th®— limit of T =2Pf is solution of Eq.
05 | 1 (3.25 with the kernel ky)¥? which is au>0 kernel with
exponentr=2 (the same trick was used j20] to study the
d—oo, d=\D limit for the K& kerne).

For <0, we haveu= w/D<0, and using the results of

0.0 1 1 1 1
o 2.0 3.0 40 5.0 6.0 van Dongen and Ern$i9], we have, forx—0,

D

FIG. 5. Variational approximation for when w=0, compared f(X)NB(w)X*J’(w)eX x“’/Dwal*l’Df(x)dx ,
to its w—0* limit 7,=2—1/D. Both 7 and 7, tend to 2 when b(w)w 0
D—ow. (4.13
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FIG. 7. Scaled mass distributions at three stages in the simula-
tion of heterogeneous growth with=—1. These results were ob-
tained from 96 simulations. In each simulation, 262 144 droplets of
radius 0.75 were initially randomly placed on a 1624024 lattice
(without overlap.

FIG. 6. Typical droplet configuration in the scaling regime of
growth and coalescence with=D =2, obtained here fon=—1,
from 262 144 droplets of radius 0.75 in the initial condition on a
1024x 1024 lattice. The picture represents the whole sysiwith
periodic boundary conditionsatt=5.0 (S=7693.9). The number
of droplets has dropped to 287.

d=D than forD>d. In the scaling regime, it was cut by a
where B, vy, and b=1imSS 2-*Y are w-dependent con- factor of more than 1000 and we were obliged to start from a

stants. These constants also depend on the definitioriépf huge number of dropletéabout 2.5¢10°) and perform a

and S(t), but y—2 whenu—0. For a given definition, say large number of simulations to obtain acceptable statistics,
without being able to reach very large times. Figure 6 shows

S(t)y=(s?/{s), Y(t)=S?My, (4.14  a configuration obtained &t 5.0 for o= —1 from an initial
. ~ configuration of 1024 droplets. The scaling form E43.15
van Dongen and Ernst showed that the scaling functioRyas ysed withy =tS**# to obtain convincing data collapse
crosses over to thee=0 (polydispersg case whenu—0  for the mass distribution, as shown in Fig. 7. Although the
since the smalk asymptote tends t@(0)x 7, where 7 gistribution of masses looks quite broad in Fig. 6, the scaling
=b~'[2— [ "x* " Pf(x)dx] is precisely theu=0 polydis-  function vanishes wher—0, in agreement with the mean-
persity exponenfwe had seb=1 in Eq.(3.27)]. field theory.

Consequently, we should observe this crossover in nu- Figure 8 plots the scaling functions for several values of
merical simulation. Moreover, for small, but finit®, the . The results are consistent with a transition from a small-
critical x; below whichf(x) significantly departs from the
power law corresponds tglnx. of order one. Thus it is

reasonable to expect a scaling behavior wher0™, 7.0 . . - . . . . . .
_ 6.0
f(X, ) =Xc(@) " "g[X/Xe(w)], (4.19 50
with X.(w)=exd —c/o+0(1l/w)], g(y)—0 at smally, and 4.0

g(y)ecy 7 at largey. 3.0
2.0

1.0

B. Numerical simulations

The mean-field theory is in full agreement with the obser-
vation by Family and Meakifi9] and Meakin[5] of a poly- 0.0
dispersity exponent in simulations witi=D=2 and w 1.0 .
=1/2. To check the mean-field prediction of a transition 20| A
from monodispersity to polydispersity at=0, we have per-
formed simulations ird=2 for various values of the growth
exponentw. In one step of the simulation, all the droplets A0 a5 20 35 B0 25 20 a5 a0
radii were increased of an amoufit=r 4t and then colli- log,, [s/S(0)]

n . 10
sions were looked for and resolved. In most of the simula-
tions, the time increasét was equal to 0.005. It was chosen  F|G. 8. Smallx=s/S behavior of the scaled mass distributions
small enough such that further reduction would not lead tabtained in numerical simulations for different values of the growth
significant modification of the results. As can be intuitively exponentw. N(s,t) was normalized by the total initial number of

understood, the number of droplets decreases much faster faropletsn,,.

log,,[tSM)]"*NI(s, /]

-3.0 1
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4.0 . . . . . . the crossover time; to be much shorter than fat=D. In
fact, the system is obviously gelling fde>D and allw since
the occupied surface increases in a coalescémbizh leads
30 to avalanches of collisionsFor instance, numerical simula-
tions performed fod=2, w=—1, andD=1.7 show gela-
tion at a finite timety~0.12. The gelation time is nearly
_ 20r unaffected when doubling the mass of the sample, keeping
% the same initial density and mass of the droplets, or reducing
g the time step by a factor 2, and thus seems to be well defined
1.0 | . X . Con .
in the continuous time and thermodynamic limit. This case
corresponds to a nongelling system according to the mean-
o0 | field gelling criteriond>D+ 1— w, which appears to be
’ only a sufficient condition.
10 . . . . . ‘ V. CONCLUSION

20 -15 10 05 00 05 10 15 20 _ _ _ _ _
log,(t) In this article we have extensively studied a generalized

o/ Smoluchowski equation corresponding to aggregation pro-
FIG. 9. Forw=—3, S(t) grows much faster that®~“)  cegses for which particle®r clusters grow between colli-

(slope 0.5) even in the corresponding scaling regime50), a . e . .
behavior that may be related to logarithmic enhancemeStinfthe _5|ons, WIthS_A?B’ and s_mal_l partlcle$r_nonomer§_; are in-
mean field. jected. _A physical motivation for this _Work is droplet _
nucleation and we have derived generalized Smoluchowski
equation directly and found the collision kernel for two mod-
diverging scaling function fow=0 to a smallx vanishing els describing, respectively, homogeneous and heteroge-
scaling function for negative value @. For the values of neous nucleation.
negativew considered, the scaling function, as visible in Fig. For a generic kernel, with parameteksu, we have
7, although vanishing whem—0, is quite broad, with a shown that the gelation criterion was may§)>1. We have
maximum at a value significantly smaller than 1. When devoted much time to the study of the equatieithout in-
w— 07, we observe a crossover to the=0 power law and jection for which we have provided two exact solutions. The
the position of the maximum of the scaling function rapidly scaling properties for a generic kernel are seen to be strongly
tends to zero whew— 0, consistently with the discussion affected by the exogenous growth term and depeng,aon,
around Eq.(4.195. Moreover, the exponent extracted from andu. ForA> B, however, the scaling is the same as for the
the numerics is about 1.2, which compares well with standard equation. For the interesting caseg, the behav-
=1.108 from the mean field. However, theexponents for ior of the typical mas$(t) is modified, but the scaling func-
»=0 andw=0.5 do not seem to be significantly different, in tion is unchanged. Fot< 8, the scaling function is qualita-
contrast with the quite large discontinuity in the mean field.tively different and vanishes at a finitg>0.
Figure 9 shows the evolution d(t) for w=—3. In the We have also studied the case afanstant injection rate
scaling regime,S(t) is seen to grow much faster than of monomers. The distribution reaches an asymptotic steady
tP/(1=@)= t, which is consistent with the mean-field loga- state with a power law taiN..(s)=s™ 7 and we find thatr
rithmic enhancement. depends o8 and\.

Hence the mean-field approximation yields a qualitatively We have paid special attention to the case abastant
correct description of numerical results fd=D. However, mass injection ratendA=28-1, related to homogeneous
this approximation is clearly bound to break down at verynucleation. This corresponds to a time-dependent, self-
long times, probably unreachable so far to numerical simueonsistent injection rateé(t)xc—Mg(t). We have shown
lations. The reason is that the mean fiél(t) diverges, thatl(t) vanishes at long times, in agreement with the drop-
while the actuaM (t) cannot diverge from a geometric con- let deposition and coalescence model. For droplets deposi-
straint, which, of course, is absent in the mean-field theorytion, M 4 is proportional to the surface coverage and the van-
Indeed, ford=D, M,(t) is also proportional to the occupied ishing of the injection rate corresponds to the saturation of
area fraction and is therefore bounded. This means that #te coverage to 1. Thus our self-consistent Smoluchowski
long times, strong density-density correlations and/or mulequation recovers a merely geometrical constraint, which is
tiple collisions play a crucial role and are not taken intoquite nontrivial.
account in the mean-field theory. Consequently, the upper As far as scaling is concerned, we have found consistent
critical dimension is infinite fod=D. However, since the results for u<B—1, with nontrivial polydispersity expo-
divergence ofM, is only marginal, the mean-field descrip- nents foru=8—1, recoveringd=1+ g andz=1/(1-B) as
tion should be essentially correct forxt., wheret, is a  for the droplets deposition and coalescence model. However,
large crossover time. Thus the qualitative agreement betwednr > B—1 kernels, we could not find a consistent scaling
the mean field and numerics can be explained by the fact thand there might be no scaling solution with a constant mass
t; is too large to be observed. injection rate. The mean-field kernel for droplets deposition

The mean-field approximation also breaks down for alland coalescence hag>pB—1 and taking into account
d>D because the occupied surface fractidp,p algebra- excluded-volume pair correlations may be essential to obtain
ically diverges. Since the divergence is algebraic, we expe@ consistent description by a kinetic equation, including a
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nontrivial polydispersity exponent j& is switched tog—1. (a) Case $>s;

It is qqlte”dlfflcult tr?ugn to study these correlations either | ot us assume thas(t)>s,(t) or, equivalently, that
numericatly or analyticatly. SP1<S/S. We see that the growth terf8.22) is much

Finally, we have _applled these results to droplet grOWthsmaller than Eq(3.21) in the scaling limit and the scaling
and coalescence witd=D. We have shown that Smolu- equation is

chowski's approach accounts for the qualitative difference in
the scaling function with thed<<D case. We have computed
nontrivial polydispersity exponents occurring fer=0 and
described the crossover from monodispersity to polydisper-

bxf (x)+af(x)=f(x) f(:rmf(xl)K(x,xl)dxl

sity occurring foro— 0~ . We have compared these theoret- 1(x

ical results with numerical simulations, with good agree- _Efof(xl)f(x_xl)K(Xl’X_Xl)dxl
ment, despite mean-field limitations, which we have

discussed. (A1)

As a conclusion we would like to point om_Jt that one Of_thewherebzlimSS‘z‘“Y anda=lim¥YS1"* are positive and
main reasons why people have become increasingly inter

d'in breath fi ic that it | - possibly zero or infinite.
ested in breath figures is that it is an example geametri- For finitea andb, this equation is very close to the stan-

cally constrainedgrowth process, where diffusion plays a yary smoluchowski equatiofi.1) with the same kernek,
minor role, in contrast with diffusion-limited cluster-cluster |\ hich corresponds ta=2b and 0<a< + and was well

aggregatior{ 14,15,28 or Brownian coalescence of droplets gi,died in the literatur§18—20. The polydispersity expo-
[44]. Therefore, one could doubt that neglecting densitynent -, if any, has the upper boung<1+\<2 (see Sec.

density correlations may have no dramatic consequences. Ifyj B 3). As a consequence, from E(.18 we have
deed, for homogeneous nucleation, we have seen that pair

correlations may be crucial to finding a correct scaling func- My(t)cS7Y. (A2)
tion and we also found an infinite upper critical dimension
for heterogeneousi=D nucleation. However, we have
shown that Smoluchowski’'s equation in an extended form'vI
could be successfully used to describe heterogeneous grow; 2 . .
for d<D, that it was qualitatively correct fod=D in the g (_Az)f YOCXS - The scaling of Eq(3.21) with Eq. (3.23
regime accessible to simulations, and that it also gives verjfauiresS=s", hence

interesting insights into homogeneous growth, which was not S(t)octUA—N) (A3)
a priori obvious.

From Eq.(3.24 we see thatM(t) is nondecreasing. Thus
1(t) either tends to a finite limit or goes to infinity.
(i) If M4(t) tends to a finite limjtthen, necessarily from

To be consistent with our assumption tiggt)>tY1~4) we

must have\ > 8. In addition, from Eq.(3.24), a necessary
ACKNOWLEDGMENT condition for M,(t) to have a large- finite limit is that
Mg(t) must be an integrable function. #<1+p3, Mg

We are very grateful to P. L. Krapivsky for helpful cor- scales asSL*AlY, ie., M,B:xt('g—l)/(]_—)\), and is integrable

respondence. sincex> 3.
If >1+ B, we have, from Eq(3.19),
APPENDIX: SCALING THEORY WITHOUT INJECTION M goeS(t) ™ 2sp(t) 1A~ T sp(t) A Tect Tt (A4)

In this appendix we shall give a detailed demonstration okjnce r<2 and S(t)>sy(t). Therefore,M 5, being equiva-

Smoluchowski equation without injection of monomers. We—1 4 g, from Eq.(3.20,

assume that starting from a narrow distribution of droplets,

the late-time solution of Eq3.1) has the scaling form of Eq. M goc S(t)AHn(S/sg) et A~ D/A~N | ¢, (A5)

(3.19. In our demonstration, we shall always use the fact

that S(t) cannot be negligible compared $g(t)~tY(1=#)  which is integrable whena> 8.

the lower cutoff, from the discussion in Sec. 1B 2. We (i) Now let us consider the case whbh(t) diverges at
shall also implicitly assume that(t), S(t), and all the mo- long times From Egs.(3.24, (A2), (3.19, and (3.20 we

ments ofN(s,t) are asymptotically regular convex or con- obtain

cave functions. M, SF1 if <1+
N _ _ My MiS™ 2so(t)1 AT if 7>14p (AB)
1. Within the nongelling domain Mlsﬁflln(S/SO) if 7=1+ 8.

To start with, let us study the cage<1 andB<1, i.e., )
nongelling systems that are not on the gelling boundary. Ouin the three case§>s, implies thatM ;<M s5 %, hence
discussion is based on the fact that eitl8t)>sy(t) or
S(t) «sp(t). We shall study the implications of both possi- : &
bilities. Mi<— (A7)
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Therefore,M (1) <t® for any a>0. From Eq.(A2) and the
fact thatS/S is at least of order 1/sinceS(t)>tY(1~4A) Eq.

(A7) requires that

S Y
S Y
Thus the scaling condition between E¢3.21) and(3.23 is
simply
S Sl+)\
s Ty MaST

which implies thatS! * is dominated by a power law. Com-

(A8)

(A9)

bined with the fact thas(t)>tY(1~#), this requires that

S 1
— o —

S t

and

Mot~ 1St A ¢ (B-NIA-8),

thus, from Eq.(A7), we must have.= . Now, combining

Egs.(Al1l) and(A6), we see that
MM e In(t*—A/ A=A M )]

(a3=1 if =1+ B; otherwisea;=0), where

1-8 .
— if A<
1-\ B
a2=
2— —-1-
T+u if 7>1+ 8.
11—\ 1-8

SinceM ;— o, the right-hand side of EA12) must be
nonintegrable and al!; is much smaller than any positive
power oft, this implies thatv,<1. Sincer<1+\, a,>1 if
N> B. Therefore, we must have< 8. However, we already
found that\ =g, thus\ must be equal tg3. As a conse-
guence,r is never bigger than+ 8=1+\ and we can dis-

(A10)

(A11)

(A12)

(A13)

tinguish betweeru>0 kernels, for whichr=1+X=1+ 3,

and u=<0 kernels, for which there is no polydispersity expo-

nent orr<<1+ 8.

Let us start withu=<0 kernels. Ast<1+ 8 andA =g,

Eq. (A12) is reduced taVl; 1/, which leads to
Ml(t)xln t.

For au>0 kernel,7=1+\=1+ 8 and Eq.(A12) leads to

Mo (In M)/t;
it is easily seen that
M(t)e<(In t)In(In t).
In both cases, we have
S(t)e<(tM ) YA,

Y(t)xS?M;.

(A14)

(A15)

(A16)

(A17)

(A18)

Thus the initial assumption tha®(t)>sy(t) implies that
A= and that the scaling equation is Hé1) with a=2b
(since B/S~Y/Y) and 0<a< -+ and is the same as for
the standard Smoluchowski equation with the same kernel.

(b) Case s,

Conversely, let us assume th&(t)«tY=A) If Y/Y
>S/Sx1ft, Y increases faster than any power law, the
growth term is still negligible at long times, and E@3.21)
and(3.23 are of the same order, hen8E /Y Y/Y, which
is contradictory, forS'**/Y vanishes faster than any power
law while Y/Y>11.

ThusY/Y=0(S/S) and both terms on the right-hand side
of Smoluchowski's equation are of the same order at long
times asS/SxSP~ 1. In addition, both terms must scale as the
collision term; otherwise the obtained scaling equation has
no physical solution vanishing below a finite argument
Xo>0. Thus Eqs(3.22 and (3.23 must be of the same or-
der, which yields

Sﬂ*l Sl+)\
oC

Y Y2

(A19)

andY(t)<S(t)2** £, The fact that the scaling function van-
ishes at a finitex,>0 ensures thal,(t)<S?Y, hence

M (t)ocS(t)P 2, (A20)

Since M (t) is nondecreasing, we must hake< . How-
ever, if A=, Eq. (3.3 yields

M1k, (A21)

henceM ;(t)=Int, which is in contradiction with Eq(A20).
Therefore, one must hawe< 8. The scaling equation has the
form

b 0f (x)+xf'(x)]—a[xPf(x)]’

—(%) jo “f oK (xxn)dx,

1 (x
—Ef f(X) F(X—X1)K(X1,X—X1)dX;. (A22)
0

(c) Conclusion

SinceS(t) =sy(t), the collection of the two cases we ex-
amined above leads to the conclusion thah#1 and B
<1, there are three main regimes of scaling, in agreement
with the qualitative discussion in Sec. 1l B 2. >\, S(t)
scales asSy(t)ctV7A) Y(t)eS(t)?, with §=2+\—5,
and there is no polydispersity exponent since the scaling
function is zero below a finite,. If B<\, S(t) scales as
S(t)xtYI7N | the mass is asymptotically conserved, i.e.,
M,(t) tends to a constant, an=2. There can be a poly-
dispersity exponent, which is the same as for the standard
Smoluchowski equatiofil.1) with the same kernel.
Eventually, in the marginal case whanr= 3, the scaling
of S(t) depends on the kernel not only through its homoge-
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neity A, but also through itsx exponent. As in thegg<<\ Therefore S/Sis of order 1. From arguments very similar

case, the scaling equation is the same as for Smoluchowsku’[g those we just used, it is easily seen tN&Y cannot be

equation with the same kernel. Fe<0 kernels, the mass in much bigger than 1. Thus, E(.21) scales as Eq3.22. If

the systemM 4(t)«Int, while for u>0 kernels, withr=1 . : . .

Y )|</| (t)octl((ln)t)ln(lnt) In botﬁ casesSo (tM ) VA8 Y/Y—1 andS/S—1, the left-hand side of E¢3.1) vanishes

and’Yocéz/M ' ! and we have to take into account the subleading terms in the
L scaling limit. This occurs foh =0, as will be seen below.

These scaling results can be compared to the Kasé, . : . .
_ : _If the left-hand side does not vanish, the scaling with Eq.
B=0, which we solved exactly. We found that the conven (3.23 leads toS'* Y and the scaling equation is once

tional scaling breaks down, that, with the proper scaling™ " ) . .

form, the scaling function is the same as for the exactly2d9ain Ed.(Al), but now with b/a=(1-S5/S)/(1-Y/Y).
solvable standard Smoluchowski equation without theConsequently, the polydispersity exponent, if any, is less
growth term, and thatS(t)«(tint), My(t)<Int, and Y than 1+\ and Eq.(A2) holds, leading toS?x<Y €. Since

«t?Int, just as predicted by the scaling theory. St"h=Y, we have
S(t) e, (A27)
2.A=1 and B<1
2 —
Fora=1 andB<1, it is possible to follow the same line Y(t)xS%e ™, (A28)

of reasoning, with a few modifications. In this case, one has . . _ ot _

to distinguish betweem>0 andu=0 (this is also true for Which .exclludes>\<0, §|nceS(t)>so(t) e., and alson =0

the standard Smoluchowski equation witk=1 [19]) since  or which §/S_’1 andY/Y—1. Note that in the.>0 case,
we find a=2b and once again the scaling equation is the

for >0, we find 7=2 and the scaling oM, has an extra X X

IN(S's,). It is found thatM, is asymptotically conserved, same as for the standard Smoluchowski equation. '

S(t)>s,(t), and the scaling equation is EGAL) with a Indeed, for the exactly solvable cake=1, /3t=1, which

— 2b< 4. For 4 >0, one hass=S/(InS), which leads to corresponds.tok=0, we found thatS(t)«te' and Y(t)
’ ’ «S?/e!, thusS/S—1 andY/Y—1. Thus, to treat tha =0

S(t)oceP T, (A23)  case, we shall writ&(t) = X(t)M(t), with X/X<1, and we
haveYxS?/M;=XS. The right-hand side of Eq3.1) scales
whereas ifu<0, as
1 X
S(t)ee, (A24) — 12100 +xf (01, (A29)

whereb cannot be derived from the scaling theory. while the left-hand side scales as

3.B=1and A<l S X
. tﬁ : o L2y ) (A30)
In this casesy(t)«e' and the discussion is quite different. Y

From Eq.(3.24) we see that . .
which leads taX(t)«t, recovering the exact result fagr=1.

M (t)=M,(0)e. (A25) Once again the scaling function is E@\1) with a=2b<
+o. The polydispersity exponent is strictly less than 2,
Since S(t)=sy(t) €', we have in the long-time limig/s ~ Which justifiesa posteriori that Y=S?/M; (it is possible to
=1. Let us assume th&'S>1, i.e., thatS(t) is bigger than show that assuming>2 leads FO a contra@cﬂc)nHovyever,
. St . : for <0, we were unable to find a consistent scaling.
any exponential functioe®', which means that Eq3.21) is
much bigger than Eq(3.22 (which scales as ¥/ since

B=1). From Eqs.(3.18, (3.19, and(3.20 it is clear that 4.A=1and =1
In this case we still hav ,(t)=e' andsy(t)~¢€', but it is
S2IY=0(M,(1))=0(e"). (A26) easily seen with the same kind of arguments as above that

one must haves/S>1. Thus the exogenous growth term
Consequently, if Eq(3.21) scales as Eq3.23, thenS/S*  (3.22 is negligible and the scaling of Eq&.21) and(3.22
—0(e') andY/YA+N2=0(e"?), Sincex<1, these two re-  Yields S/SxS/Y. _
lations are in contradiction with the assumption ti&is For <0 kernels, one hasl;<S?Y and we obtairs/S
much bigger than any exponential functipwhich implies  «e!, leading to
the same property for, through Eq.(A26)]. We see that if
S/S>1, Eq.(3.2)) is the leading term in the scaling limit and
the sca_llng funptlon is a pure power lafgx)=cx 7 with For x>0, we haver=2 andM,xS?n(Se)/Y, leading to
=Ilim(Y/Y)(S/S). One must have>2 such that the total S/sx<el/In(S and
mass in the system is finite at finite times in the scaling _
regime. Making use of Eg(3.19, we find that n(t) S(t)oceb"et_ (A32)
M 1(t)/sp(t) would tend to a finite valua.,.>0, which is
unphysical. In these expressiorts is an unknown positive constant.

S(t)ocee, (A31)
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