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Continuous behavior in a simple model of the adhesive failure of a layer
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Duane H. Smith*
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~Received 14 August 1997!

A fine-scale model of the removal of an adhesive layer by a uniform stress is described. The initial moti-
vation of this modeling project was a description of the removal of a layer of filter cake from cylindrical filters
by back-pulse pressure cleaning. The model includes the bonding forces of adhesion between the layer and a
substrate, as well as the forces of cohesion between imaginary ‘‘gridblocks’’ within the layer. For applied
stresses~pressures! greater than a threshold value, some of the layer is removed, with the amount of this failure
depending upon the pressure as well as the average adhesive and cohesive forces. The cohesive forces reduce
and sharpen the threshold because they increase the stress near broken adhesive bonds. We have performed
simulations on a variety of sizes, with the largest being 64 000 gridblocks. Our analysis indicates that the
regions of failure are compact with a rough boundary whose perimeter fractal dimension isDp51.3060.05. In
this model, the threshold exhibits the gradual decrease as the system size increases, which is well understood
for the general material failure problem in disordered media. Appealing depinning schemes with universal
power-law fits of the pressure dependence of the failure rate or the extent of failure are rendered meaningless
by the size dependence of the threshold. However, anad hocfitting scheme provides a reasonably successful
collapse of the failure data to a universal curve.@S1063-651X~98!08401-3#

PACS number~s!: 62.20.Mk, 81.40.Np, 02.70.Ns, 61.43.Bn
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I. INTRODUCTION

In Ref. @1# we presented a model for determining t
strength of an adhesive layer under a uniform stress. In
paper we focus on the removal of the layer as a function
stress and time, for smaller thicknesses where the amou
failure ~fraction removed! varies continuously with pressure
Material failure is an issue of major importance and theref
has been widely studied for well over a century. Much of t
work has naturally focused on the buildup of stress at
fects, the formation of cracks, the energy changes during
process, and the dynamics of the crack propagation@2–14#.
A number of quasimicroscopic or microscopic models ha
been used to study these important questions@7–16#. Al-
though similar in spirit to much of this modeling of the fra
turing process, our model has two distinct material streng
an adhesive strength that tries to maintain contact of
layer with the substrate and a cohesive strength that trie
maintain the integrity of the layer. In fact, Ref.@9# studied a
very similar model in the limit of very strong adhesion f
cusing on the failure of the integrity of the layer due
thermal expansion of the substrate@9#. In this paper we allow
a variety of cohesive and adhesive strengths. These two
fects in the model enable the independent study of vari
features of material failure, which are less easily dis
tangled in the more traditional models. The applied str
causes failure at a threshold that scales primarily with
adhesive force. However, the cohesive forces introduce
operative effects leading to the familiar buildup of stress
defects that both lowers and sharpens the failure thresh

*Also at Department of Physics, West Virginia University, W
26506-6315.
571063-651X/98/57~1!/866~9!/$15.00
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For strong cohesive forces, we observed the familiar fi
order-like behavior associated with a steplike threshold@1#,
where nearly total removal~i.e., failure! occurs above thresh
old but no failure occurs below threshold. In this paper,
investigate the behavior of the model with weaker cohes
forces where the threshold is continuous so that one m
expect behavior similar to that of self-organized critical
~SOC! or depinning transitions.

SOC was proposed to describe apparently robust s
invariance of noise spectra in a number of dynamically u
stable systems@17,18#. The proposed scheme enabled t
system~most simply viewed as sandpiles at a critical ang
of repose! to maintain scale invariance since deviations fro
the self-organized critical state~as defined by the critica
angle! would produce avalanches returning the system c
tinuously to the second-order-like critical state. However,
periments on real sandpiles have been more consistent
discontinuous first-order-like behavior with avalanches
the order of the system size and hysteritic behavior about
angle of repose@19–21#.

Power-law noise spectra have been observed with m
rial failure @22,23# and careful simulations have observe
SOC-like avalanches@24#. On the other hand, it has lon
been known that ordinary fracture has a first-order-l
threshold with no observable failure below threshold a
catastrophic failure above threshold@2#. Recent work on ma-
terial failure in disordered media has proposed a mean-fi
theory that both predicted the first-order character of the f
ure for systems with strong cohesive forces and quan
tively confirmed the results of simulations@25#. With weaker
cohesive forces, our model has a continuous threshold s
lar to the SOC models and we find generic scale invaria
in the self-affine fractal behavior of the advance of the rou
boundary of the region of failure, similar to the behavior f
866 © 1998 The American Physical Society
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57 867CONTINUOUS BEHAVIOR IN A SIMPLE MODEL OF . . .
the model avalanches@26# as well as for a number of roug
interfaces both for fracture@27# and for fluid invasion@28–
30#. In performing power-law fits to the failure rate, whic
are similar to power-law fits for a number of depinning tra
sitions @31–35#, we encountered a problematic size depe
dence that seems to preclude any useful power-law cha
terization. It seems likely that this is related to the we
known size dependence of the material failure thresh
where larger systems tend to have larger defects and th
fore will have lower failure thresholds@2,36#. Unrelated to
these theoretical schemes for extremal dynamics in ran
media, anad hocexponential fit leads to an adequate univ
sal collapse of the failure data as a function of pressure
time.

II. DESCRIPTION OF THE FINE-SCALE MODEL

This model was motivated by problems encountered
the removal of the layer of filter cake from cylindrical filte
during the back-pulse cleaning cycle of pressurized fluidi
bed combustion@1#. In the physical system motivating thi
model, a layer of filter cake is deposited on a cylindric
candle filter to some thicknesst; then a back-pulse pressu
is applied from the inside of the candle filter to blow th
layer filter cake off, thereby cleaning the filter. The stress
pressure actually responsible for removing the layer is
pressure dropP across the layer. In general, this model d
scribes the strength of a layer adhering to a substrate in
presence of a uniform stress attempting to remove the la

In our model, the layer is gridded into rectangular bloc
of thicknesst and a squarel 3 l base. The gridding is at a fin
scale, intermediate between the centimeter scale of the
and cake and the micron scale of the individual particles
the layer. Our model system~shown in Fig. 1! is assumed to
be flat, lying in thex-y plane; however, continuity aroun
the cylinder is preserved by periodic boundary conditions
they direction. The other edges are clamped by strong for
to avoid failure initiating at edge defects. The back-pu
cleaning forceF5Pl2 is applied at the base of each bloc
as a result, each block will be displaced by some sm
amounte in the z direction. The forces resulting from th
tensile and shear stresses will balance this applied fo
Since the properties of typical filter cake seem to m
closely resemble those of a brittle solid rather than a pla
or ductile solid, the forces are assumed to be springlike u
a given threshold strength. Equation~1! presents the relation
between the applied forceF on a block atr>5 1

2 ( i , j ) ~i and j
are even integers determining the location along thex andy
directions, respectively! and the displacements of that bloc
and the surrounding blocks. Balancing the applied forceF
are forces due to adhesive springs@providing the forces from
tensile stresses multiplied by the area of the base of e
block (l 2)# and due to cohesive springs@providing the forces
from shear stresses multiplied by the cross-sectional area
tween any two blocks (t3 l )#:
-
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Pl25$ l 2%Ei , je i , j2$t3 l %$Gi 21,j~e i 22,j2e i , j !1Gi 11,j~e i 12,j

2e i , j !1Gi , j 2~e i , j 222e i , j !1Gi , j 11~e i , j 122e i , j !%,

~1!

whereE is Young’s modulus andG is the shear modulus
Dividing Eq. ~1! by l 2, the area of the base, Eq.~1! is sim-
plified with T ~the thickness ratioT5t/ l ! replacingt. Note
that differences between the average Young modulus^E&
and the average shear modulus^G& can also be absorbed int
this thickness factor

P52^E&@EI i , je i , j2T$GI i 21,j~e i 22,j2e i , j !1GI i 11,j~e i 12,j

2e i , j !1GI i , j 21~e i , j 222e i , j !1GI i , j 11~e i , j 122e i , j !%#,

~2!

where the new thickness parameter incorporates the th
ness ratio and the ratio of the shear to Young’s modulT
5(t/ l )(^G&/^E&) and the underlined moduli are normalize
i.e., Ei , j5Ei , j /2^E& andGi , j5Gi , j /2^G&, so that their aver-
age value is one-half. Equivalently, the thickness param
is the ratio of the spring constants of the average ‘‘coope
tive’’ cohesive force to the average ‘‘single-particle’’ adh
sive force, providing a relative measure of the cooperat
forces in the system. Equation~2! may now be solved for the
displacement of any one block (i , j ):

FIG. 1. The gridding of the layer in this model is shown in th
upper part of this figure. Griddings of several sizes were used;
largest gridding had 64 000 blocks with 200 units ‘‘around the
ter’’ ~into the page in this figure with periodic boundary conditio
connecting the front and back edges! and 320 along its length~the
horizontal in this figure!. The outward~z direction! applied pressure
force P on the filter cake is balanced@see Eq.~1!# by the stresses
due to the displacements~e! of the blocks that stretch the cohesiv
and adhesive springs. Accelerated Gauss-Seidel iterations of Eq~3!
lead to an equilibrium strain field; we have performed iteratio
until the square of the change in the strain field is less than 10212.
If the actual stress on a bond exceeds its randomly chosen brea
stress, that bond will break.
e i , j5
T$GI i 21,je i 22,j1GI i 11,je i 12,j1GI i , j 21e i , j 221GI i , j 11e i , j 12%1PI

T$GI i 21,j1GI i 11,j1GI i , j 211GI i , j 11%1EI i 21,j
. ~3!
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868 57M. FERER AND DUANE H. SMITH
Given the distributions of normalized moduli and the no
malized value of applied pressurePI 5P/2^E&, one guesses
values of the displacements and then iterates Eq.~3! until the
displacements stabilize between iterations. If the ten
stress

EI i , je i , j.sI max i , j ~4!

exceeds the maximum value~breaking strength! for the (i , j )
adhesive spring, that spring will break; again in Eq.~4! the
stress is normalized in thatsI i , j5s i , j /2^E&. Similarly, if the
shear stress exceeds the breaking strength for the coh
spring between any two adjacent blocks, e.g.,

GI i , j 11~e i , j2e i , j 12!.tI max i , j 11 , ~5!

that spring will break.
It is natural to assume that the observed time depende

of the layer removal~on the order of a few milliseconds@37#!
is much slower than the elastic relaxation of the layer~e.g.,
the inverse frequency of elastic waves or the speed of so
on the order of fractions of milliseconds@38,39#!. This jus-
tifies a quasistatic process where the layer reaches el
equilibrium @as given by Eq.~1!# between successive brea
ing of bonds. The computations in our quasistatic model p
ceed as follows: ~i! With the layer, at equilibrium, under n
load, the back-pulse cleaning pressure is applied;~ii ! the
layer reaches a new elastic equilibrium@Eq. ~3! is iterated
until stabilization is reached#; ~iii ! then, at the end of this
time step each bond weaker than the actual stress is bro
~iv! steps~ii ! and ~iii !, which together constitute one tim
step, are repeated, until a final time step at which no furt
bonds break. Once some bonds have broken at the end
time step, the nearby bonds will be under a greater str
increasing the likelihood that they will break at the end of t
next time step. In this cascade, more bonds break than w
have broken without the interaction mediated by the co
sive bonds. Thus the cooperative effect resulting from
cohesive bonds produces a cascade that lowers and sha
the threshold.

III. RESULTS

In reality, the layer has definite thickness and the ‘‘coh
sive’’ forces may be just as significant as the ‘‘adhesiv
forces. Since the ‘‘thickness parameter’’T is the ratio of
these two forces~also of the two breaking stresses! in Eqs.
~1!–~5!, varying T will vary the relative effect and impor
tance of the adhesive and cohesive forces~and strengths!.
Therefore, the natural variables in our problem are~i! the
applied pressure,~ii ! the thickness parameter,~iii ! the time
step,~iv! the length scale, and~v! the distributions of moduli
and strengths. To reduce the complexity of the results,
will assume that the applied pressure is constant; the effe
a known time dependence of the pressure can be easily
certained once the dependence of the failure upon pres
and time has been determined. In all of our simulations,
have chosen a uniform distribution of moduli. Each of t
normalized moduli was chosen randomly from a flat dis
bution between 0 and 1. However, relying on the spring an
ogy, we assume that thicker bonds between granules in
filter cake will be both stiffer and stronger since they can
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mimicked by more springs connecting the granules; for t
reason, each normalized breaking strength was strongly
related with the modulus in that each breaking strength w
chosen randomly from a Gaussian distribution that w
sharply peaked about the value for that normalized modu
In our earlier paper for the same broadest distribution,
discussed how increasing the thickness eventually shar
the threshold to a step~i.e., all of the layer is removed at an
above the threshold, while none is removed below thresh
@1#!. Using a more sharply peaked distribution of forc
would only serve to further sharpen this threshold narrow
the range of pressures over which the failure occurs. For
thicknessesT5 1

2 and 1, which allow continuous layer re
moval ~i.e., the threshold is not steplike!, we focus on the
dependence of the amount of layer removed as a functio
pressure and time as well as on the size dependence of
quantities.

IV. LAYER REMOVAL AS A FUNCTION OF PRESSURE
AND TIME

For two thicknesses we have studied the system o
number of length scales for a variety of pressures. From
largest systems, which are 200 blocks wide by 320 blo
long with 64 000l 3 l blocks, to the smallest, which are 6
blocks wide by 80 blocks long with only 4800l 3 l blocks,
we have performed simulations for two thickness ratiosT
5 1

2 , where the cohesive forces are half as strong as the
hesive forces, andT51, where the cohesive forces are just
strong as the adhesive forces. For a number of systems~dif-
ferent sets of normalized moduli and breaking strengths!, the
midpoint pressurePmid was determined; the midpoint pres
sure is the pressure at which half of the layer will be
moved. A range of pressures around the midpoint press
was then scanned and the results were averaged ove
different realizations of the system~i.e., differing only in the
random choice of strengths and moduli!. This modeling dem-
onstrates the effect of thickness and pressure upon
amount of material failure.

Figure 2 shows the time dependence of the amoun
failure ~mass or number of blocks removed from the lay!
by a pressuredP5P2Pmid away from the midpoint pres
sure. For these thicknesses, the amount of failure varies
tinuously from very little failure to total failure or removal a
pressure increases. The time dependence appears to be
similar for both thicknesses. However, it should be noted t
the larger thickness has a lower and a sharper threshold
we discussed in Ref.@1#. Specifically, the midpoint pressur
is lower for T51 (Pmid50.269 0860.000 06) than forT5
1
2 (Pmid50.285 4060.000 06); also for the smaller thick
ness, a larger range of pressures is needed to scan the
from negligible to nearly complete cleaning. In the followin
section we will fit these failure curves to likely scheme
quantifying the differences between these two thicknesse

V. FRACTAL CHARACTER OF THE FAILURE
PATTERNS

Typical midpoint cleaning patterns for two thickness
(T50.5 and 1! are shown in Fig. 3. At the midpoint pressur
where half the layer was removed, these figures show
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57 869CONTINUOUS BEHAVIOR IN A SIMPLE MODEL OF . . .
failure originating at several locations~the darkest areas! and
then spreading to nearby blocks. The cooperative natur
the failure process is manifest in this growth from the ar
of initial failure since the cohesive bonds cause many bo
to share the stress so that unbroken bonds can compe
for nearby broken bonds. The role of increased coopera
~cohesive! forces is clear from these patterns. For the wea
cohesive forces where a larger pressure is required to rem
half of the layer, failure initiates at many more sites beca
of the larger pressure exceeding more thresholds, but
failure is more localized, advancing much less far than in
T51 system with larger cooperative forces. Qualitative
this T5 1

2 pattern is intermediate between the relative
smoothT51 pattern and the site percolation patterns of
negligible cohesion limit@1,40#.

Similar to sandpile avalanches, box-counting analysis
dicates that these regions of growth are compact with a
mension ofD52; however, the boundary of the failure re
gion appears rough, suggesting a self-affine fractal simila

FIG. 2. Filter cake removed as a function of time. These figu
show the filter cake removed as a function of time step. As d
cussed in the text, there is an initial preremoval period when
weaker bonds are being broken; then the filter cake is removed
particular rate until saturation is achieved at each pressure.
clear that this mass at saturationM` increases continuously with
pressure.~a! Cleaning efficiency for the largest system~2003320
564k blocks!, with thickness parameterT51. Each curve repre-
sents the cleaning for a particular overpressure ranging from l
cleaning at P5Pmid20.03 to nearly total cleaning atP5Pmid

10.03. Cleaning efficiency for the smaller system~1003160
516k blocks! for thickness parameters~b! T51 for a range of
overpressures from20.03 to 10.05 and~c! T5

1
2 for a range of

overpressures from20.08 to 10.05. Note that for the smalle
thickness, a larger range of pressures is required to scan the r
of from negligible to complete cleaning.
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those found in sandpile avalanches, in other slow fractur
processes, and in fluid invasion problems. To determine
fractal dimension of the rough boundary of the failure r
gion, we have determined both the perimeter of the bound
and the mass of the layer removed as a function of pres
and time step for a number of realizations. We then avera
the perimeter lengthL and massm over the realizations. Fo
a growing pattern, plotting the perimeter length vs mass w
determine the perimeter fractal dimensionDp ,

L'Am1/Dp. ~6!

Figure 4 shows three of theseL vs m plots for all times and
for all pressures for the 64k block T51 system and the 16k
T51 and1

2 systems. Least-squares fits of Eq.~6! to the three
sets of precutoff data predict values of the fractal dimens
from 1.32 for the largeT51 system to 1.254 for the smalle
T51 system. In the power-law regime, before cutoff, all
the data~in addition to data from the 4800 block systems! are
consistent with a fractal dimensionDp51.3060.05. To
within the uncertainties, this agrees with the fractal dime
sion from simulations for the perimeter of sandpile av
lanches in the self-organized critical state@26#. Furthermore,
this is similar to the quantitative behavior of many rou
interfaces with a Hurst-roughness exponent ofH522Dp
50.7060.05. It should be emphasized that these are not n
threshold data; rather the data are for all pressures and
times. The only data excluded from the power-law fits a
those data that manifest obvious finite-size effects, i.e., n
the downturn in the plots where the perimeter is approach
the edges of the model.

VI. CHARACTERIZING THE FAILURE FRACTION

A. Size dependence

There are a number of appealing similarities between
adhesive failure model, the more traditional models of se
organized criticality, and the systems with depinning tran
tions. Our model of adhesive failure has a threshold press
with a continuous increase in the extent of failure above t
threshold. The avalanches in similar fracturing models h
been shown to obey SOC-like power laws near the fail
threshold@24#. Any quasistatic failure model assumes we
separated time scales between the short times required
approach to elastic equilibrium and the longer times for
propagation of failure@41#. We have found compact failure
patterns with a rough perimeter with the same fractal dim
sion as sandpiles.

However, we find a detailed quantitative comparison w
SOC and depinning expectations problematic. It has b
long known that real systems have a failure~or fracture!
threshold that decreases with size. During the Renaissa
da Vinci conducted experiments that showed that increas
the length of a wire would decrease the strength of the w
@2#. We now understand that since fracture initiates at
largest defect where the stress is greatest, the incre
length increased the likelihood of having a larger defe
thereby reducing the load required to initiate failure@2,16#.
More recently, careful simulations on random tw
dimensional L3L models have shown that the fractu
threshold decreases as a power of ln(L) @13,42,43#. It has
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870 57M. FERER AND DUANE H. SMITH
FIG. 3. Typical cleaning patterns for two thicknesses:T5
1
2 ~top! andT51 ~bottom!. Failure of the layer initiated at the darkest parts a

spread to the lighter regime. The larger cooperative~cohesive! forces in theT51 model cause the failure to spread much farther than in
T5

1
2 model; therefore, removal of half of the layer is accomplished by a lower pressure. Except for the change in thickness, both re

are identical~i.e., same sets of random numbers, relatively weak bonds in the same locations, etc.!.
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been shown in the context of percolation theory that the s
of the largest defect in a random system increases with
size of the system as ln(L) @36#. Therefore, the applied forc
required to initiate failure should decrease as 1/ln(L) since
the larger the defect, the greater the local stress and
smaller the applied force required for the local stress to
tiate failure @44#. Therefore, as the system approaches
infinite size, the failure threshold will go to zero.

However, because the ln(L) size dependence is so slow
macroscopic systems are not infinite and experiments on
macroscopic systems show that these systems yield at a
~i.e., nonzero! threshold. Furthermore, although annea
systems may reduce the number of random defects, the
raising the threshold, it seems unlikely that random defe
can be entirely avoided. Any real material will have som
random defects and this randomness will enforce a decr
in threshold with size.

To investigate this size dependence for our adhesive
ure model, we have determined the threshold pressure~the
pressure at which the first mass of adhesive layer is remo!
for a variety of sizes~1000, 4000, 16 000, and 64 00
e
e
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n
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by
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d

blocks!. A plot of this threshold pressure vs@ ln(size)#21 is
shown in Fig. 5. This figure shows that the threshold pr
sure decreases monotonically with@ ln(size)#21, consistent
with the previous discussion of failure in a somewhat diffe
ent randomized model@42,13,43#.

The solid black circles show the average of the thresh
pressure for a number of realizations~different random as-
signments of the bond strengths!, whereas the single dot
show the threshold for each of the realizations. The horiz
tal spread in@ ln(size)#21 is an artifact introduced to enabl
one to more easily distinguish between the different thre
olds ~dots! for different realizations. The real spread in th
threshold pressure shows~i! the significant randomness i
the defect size in a given realization and its effect on
threshold,~ii ! how small the threshold pressures can be
individual realizations, and~iii ! that this scatter in threshold
pressure does not decrease significantly with system siz
is entirely consistent with Fig. 5 that the threshold in t
present problem would decrease to zero for an infinite s
tem. However, for a macroscopic system~say, size'1020!,
Fig. 5 suggests that the threshold would be nonzero.
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57 871CONTINUOUS BEHAVIOR IN A SIMPLE MODEL OF . . .
Unlike the previous models where failure, once initiat
at threshold, extends through the system, here the exte
failure increases continuously as the pressure is incre
above threshold. The size dependence of pressures asso
with a given level of failure is very different from the siz
dependence of the threshold pressure. Contrasting the

FIG. 4. Three perimeter length (L) vs mass (M ) plots for all
times and for all the pressures in Fig. 2 for the 64k block T51
system~top!, the 16k block T51 system~middle!, and the 16k
block T5

1
2 system~bottom!. Least-square fits of Eq.~6! to the three

sets of pre-cutoff data predicts values of the fractal dimension f
1.3260.01 for the largeT51 system to 1.2660.01 for the smaller
T51 system, with the 16k T5

1
2model having the intermediat

value of 1.28560.010.

FIG. 5. Threshold pressure and midpoint pressure
@ ln (size)#21 for T51. The solid black circles show the average
the threshold pressure for a number of realizations~different ran-
dom assignments of the bond strengths!, whereas the small dot
show the threshold for each of the realizations. The open cir
show the average of the midpoint pressure for a number of rea
tions ~indicated by the small dots!.
of
ed
ated

ize

dependence of the threshold pressure with the size de
dence ofPmid ~the pressure required to remove one-half
the adhesive layer!, there is negligible size dependence
Pmid and any scatter inPmid between different realization
decreases significantly with system size. Clearly, this m
point pressure is better characterized for large systems
is the threshold pressure.

B. Pressure dependence

Still, for any given size system, there is a threshold with
continuous increase in the amount of failure~growth in the
region of failure! until an interface is reached where the pi
ning forces~local material strengths! are too great to allow
additional failure. This suggests a correspondence with
pinning transitions where the rate of advance of an interf
increases with applied force above a threshold@45–47#. In
any case, the existence of a threshold atPt with no adhesive
failure below the threshold and a continuous growth in
amount of failure with the increase of pressure above thre
old naturally suggests a power-law fit (P2Pt)

b. Figure 6
shows the log-log plot of the fractional amount of failure
P2Pt . Not surprisingly, the failure fraction obeys a pow
law only for small values of failure fraction (f ,0.1) with
increasing deviations near saturation atf '1. Surprisingly,
the simplest assumption for a cutoff functionf 5F/(11F)
works quite well, with this measure of failureF5 f /(1
2 f ) obeying the same power law for both smallF, where
f 'F, and for largeF, wheref '1. The solid line~in Fig. 6!
shows the best power-law fit toF:

F5$f~dP2dPt!%
b, ~7!

this best fit has an exponentb'11.5. Although the theoret
ical treatments@46,47# of the depinning transition suggest
small value for this exponentb,1, a simulation on large
sandpiles@26# and several experiments on different syste
@31–35# all find larger values ofb. Several find values of
b.2 @26,32# with one finding a valueb'7, nearly as large
as ours@34#. Admittedly, this measure of failureF is not

m

s

s
a-

FIG. 6. Fractional amount of eventual failure (M`/64 000) vs
DP5P2Pt5dP10.116. Not surprisingly, the failure fraction~3!
obeys a power law@Eq. ~7!# only for small values of failure fraction
( f ,0.1) with increasing deviations near saturation atf .1. Surpris-
ingly, the simplest assumption for a cutoff functionf 5F/(11F)
works quite well with this measure of eventual failureF5 f /(1
2 f ) ~s! obeying the same power law for both small and lar
measures of failureF. The solid line shows the best fit to Eq.~7!;
F5(8.6DP)11.475.
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TABLE I. Size and thickness dependence of the fitting parameters in Eqs.~7! and ~8!.

System f b dPt A B

T51,(4.8k) 16.160.1 5.260.1 0.0609 10163 961
T51,(16k) 12.360.1 7.260.2 0.0815 9761 4.960.3
T51,(64k) 8.6060.02 11.47560.10 0.115 10261 5.160.3
T5

1
2 ,(16k) 6.9460.04 5.8660.05 0.165 39.360.6 3.860.6
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identical to the velocities of the pinned interfaces in the ot
work. However, the scaling ofF should differ from the scal-
ing of the failure ratedF/dt only by a characteristic time
scale that seems nearly constant. Furthermore, for the c
pact failure patterns discussed earlier, the rate of growth
failure is directly related to the velocity of the interfac
bounding the region of failure, and this is very similar to t
interfacial velocities in the depinning systems. In any ca
we find a large exponent for the increase in damage w
increasing pressure, which, like other determinations ofb for
depinning systems, is significantly larger than the sm
value predicted by the theoretical treatments@46,47#.

It seems likely that the size of this exponent may be
fected by the size dependence of the threshold because
thresholdPt decreases with size whilePmid ~the pressure a
which half the layer is removed! does not change, a large
power will be needed to mimic both the slower removal r
just above the lower threshold and the similar removal r
nearPmid . Indeed power-law fits to our smaller systems
quire smaller values of the exponentb; specifically the best
fits to the data predictb'7.2 for the 16k systems andb
'5.2 for the 4.8k systems; see Table I. This nontrivial siz
dependence for the threshold and the exponent preclud
universal prediction for the power law applicable to mac
scopic systems. In fact, in the thermodynamic limit of in
nite system size, a power-law fit for these random syste
seems meaningless.

On the other hand, the size dependence of the remov
finite fractions~of finite measures of failureF, i.e., not close
to threshold! seems well behaved and easily characteriza
Figure 7 shows the measure of failureF vs dP5P2Pmid for
systems of three different sizes~64k, 16k, and 4.8k!. The

FIG. 7. Measure of eventual failureF vs dP5P2Pmid for the
T51 systems of three different sizes@64k ~s!, 16k ~1!, and 4.8k
~3!#. The only observable deviations occur at the smallest meas
of failure. Thead hocexponential form~8! provides a reliable fit to
the well-characterized, size-independent finite failure regime;
solid line shows this best fitF5exp@102dP(125.1dP)#.
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only observable deviations occur at the smallest failure, s
gesting that the pressure dependence of the finite measur
failure has a well-defined thermodynamic limit. Just as
small power law suggests a possible logarithmic depende
a large power law suggests an exponential dependence
plying that lnF might have a simple dependence ondP,
e.g., a polynomial. Figure 7 shows simple nearly linear
havior that is well fit by the quadratic shown

F5eAdP~12BdP!. ~8!

Note that atdP50, P5Pmid , so thatF51, eliminating the
need for a constant in the quadraticAdP2ABdP2. Table I
shows the values from the best fits of both Eqs.~7! and~8! to
the data, and the corresponding size dependence. The e
nential fits show an insignificant size dependence and are
consistent with the values chosen for the fit in Fig. 7.

Although the power-law fits above threshold seem m
fundamental and physically meaningful, the size depende
seems to preclude a meaningful power-law fit to finite s
tems. On the other hand, the seeminglyad hocexponential
fits offers more promise of providing a useful fit to macr
scopic systems, given the negligible size dependence in
parameters fitting the simulation results.

C. Dependence on pressure and time

It is natural to hope that the failure fraction might b
described as a function of the two variables

F/F~P!5F„t/t~P!…, ~9!

where, in addition to the above pressure dependence o
measure of failure there is a pressure-dependent charac
tic time that affects the pressure dependence of the rat
cleaning. Preliminary to ascertaining the pressure dep
dence of this characteristic time, Fig. 8 shows the time
pendence ofF/F(P). Surprisingly, these curves overlap
within the rather large uncertainties; any effort to look for
characteristic time seems meaningless, with the effect of
characteristic time being negligible compared to the error
the fitting functionF(P). The careful reader may have no
ticed that the smallest pressure data have been omitted
these plots simply because of their large uncertainties.
the other hand, the largest pressures have also been om
primarily because the fitting functionF(P) is less successfu
at the extremes, but also because the highest pressure
exhibit a noticeably sharper failure rate~sharper shoulder!
than the other data. In any case, the reliable data above
not too far above threshold can be moderately success
represented by a universal function with negligible size
pendence since the exponential fits toF(P) will accommo-
date both the 64k and the 16k data ~Fig. 8!. If there is a
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pressure-dependent characteristic time its pressure de
dence is quite weak, being overwhelmed by the strong p
sure dependence ofF(P). On the other hand, Fig. 9 for th
smaller thickness (T5 1

2 ) shows that the thickness parame
significantly affects the time dependence of the failure w
the approach to saturation occurring in many fewer ti
steps, largely because of the larger pressures required.

VII. CONCLUSIONS

We have performed simulations on a quasistatic mode
material failure, which enables one to separately adjust
single-particle~adhesive! forces that scale the failure thres
old and the cooperative~cohesive! forces that provide the
characteristic buildup of stress at defects, which is resp
sible for catastrophic failure at larger values of the cohes
force. For the small cooperative forces studied in this pa
the threshold in continuous~second-order-like!; however,

FIG. 8. For thicknessT51, plots of normalized measure o
failure F/F(P) ~a! for the power-law form ofFp(P) for the 64k
system (dP520.02 to 0.01) and~b! the ad hocexponential form
of Fe(P) for both the 64k (dP520.02 to 0.01) and 16k (dP5
20.005 to 0.04) systems. Any pressure dependence of a chara
istic time is quite weak, being overwhelmed by the strong press
dependence ofF(P) and small discrepancies in this fit, although t
larger overpressures~e.g., for 16k dP50.04, the solid triangles on
the dashed line! do show a sharper knee in~b!.
e

en-
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even these weak cohesive forces have dramatically lowe
and sharpened the threshold from the case with zero cohe
forces where the threshold mimics the uniform distributi
of the strengths with midpoint pressure of one-half and slo
@A of Eq. ~8!# unity:

T50.0, Pmid50.5, A51,

T50.5, Pmid50.285 4060.000 06, A'40,

T51.0, Pmid50.269 0860.000 06, A'100.

The region of failure is compact, but the perimeter bound
the region of failure is rough with a perimeter fractal dime
sion Dp51.3060.05 not just for one state but for the fu
range of pressures, times, and sizes studied. This mode
hibits the size dependence of the threshold known to be
neric for material failure in disordered systems. This s
dependence eliminates the possibility of universal power-
dependence of the failure or failure rate upon pressure ab
threshold. However, the midpoint pressure has a well-defi
thermodynamic limit.Ad hocexponential fits of the amoun
of material failure to deviations from this midpoint pressu
exhibit little size dependence and offer the hope of we
characterized extensions to systems of macroscopic size
interesting feature of the model is the transition to first-ord
behavior~steplike thresholds! for larger cohesive forces@1#.
This transition will be investigated elsewhere.
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FIG. 9. For thicknessT5
1
2 , plots of normalized measure o

failure F/Fe(P) using thead hocexponential form ofFe(P) for
the 16k systems (dP520.06 to 0.035) excluding only thedP5
20.08 and 0.05 overpressures. Although there is little evidence
a pressure dependence in a characteristic time, the effect of th
ness is clear, with the failure in this thinner system occurring mu
more rapidly than in the thicker system of Fig. 8.
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