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Continuous behavior in a simple model of the adhesive failure of a layer
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A fine-scale model of the removal of an adhesive layer by a uniform stress is described. The initial moti-
vation of this modeling project was a description of the removal of a layer of filter cake from cylindrical filters
by back-pulse pressure cleaning. The model includes the bonding forces of adhesion between the layer and a
substrate, as well as the forces of cohesion between imaginary “gridblocks” within the layer. For applied
stressegpressuresgreater than a threshold value, some of the layer is removed, with the amount of this failure
depending upon the pressure as well as the average adhesive and cohesive forces. The cohesive forces reduce
and sharpen the threshold because they increase the stress near broken adhesive bonds. We have performed
simulations on a variety of sizes, with the largest being 64 000 gridblocks. Our analysis indicates that the
regions of failure are compact with a rough boundary whose perimeter fractal dimenBigs 530+ 0.05. In
this model, the threshold exhibits the gradual decrease as the system size increases, which is well understood
for the general material failure problem in disordered media. Appealing depinning schemes with universal
power-law fits of the pressure dependence of the failure rate or the extent of failure are rendered meaningless
by the size dependence of the threshold. Howevegdhocfitting scheme provides a reasonably successful
collapse of the failure data to a universal curh\®1063-651X%98)08401-3

PACS numbe(s): 62.20.Mk, 81.40.Np, 02.70.Ns, 61.43.Bn

I. INTRODUCTION For strong cohesive forces, we observed the familiar first-
order-like behavior associated with a steplike threstjtlg
In Ref. [1] we presented a model for determining the where nearly total removai.e., failure occurs above thresh-
strength of an adhesive layer under a uniform stress. In thisld but no failure occurs below threshold. In this paper, we
paper we focus on the removal of the layer as a function ofnvestigate the behavior of the model with weaker cohesive
stress and time, for smaller thicknesses where the amount éfrces where the threshold is continuous so that one might
failure (fraction removeglvaries continuously with pressure. expect behavior similar to that of self-organized criticality
Material failure is an issue of major importance and thereford SOQ or depinning transitions.
has been widely studied for well over a century. Much of this SOC was proposed to describe apparently robust scale
work has naturally focused on the buildup of stress at deinvariance of noise spectra in a number of dynamically un-
fects, the formation of cracks, the energy changes during thstable system$17,18. The proposed scheme enabled the
process, and the dynamics of the crack propagdierld]. system(most simply viewed as sandpiles at a critical angle
A number of quasimicroscopic or microscopic models haveof reposé to maintain scale invariance since deviations from
been used to study these important questipfisl6]. Al- the self-organized critical stat@s defined by the critical
though similar in spirit to much of this modeling of the frac- angle would produce avalanches returning the system con-
turing process, our model has two distinct material strengthginuously to the second-order-like critical state. However, ex-
an adhesive strength that tries to maintain contact of th@eriments on real sandpiles have been more consistent with
layer with the substrate and a cohesive strength that tries tdiscontinuous first-order-like behavior with avalanches on
maintain the integrity of the layer. In fact, R¢f] studied a  the order of the system size and hysteritic behavior about the
very similar model in the limit of very strong adhesion fo- angle of repos¢19-21].
cusing on the failure of the integrity of the layer due to  Power-law noise spectra have been observed with mate-
thermal expansion of the substrg®. In this paper we allow rial failure [22,23 and careful simulations have observed
a variety of cohesive and adhesive strengths. These two e6OC-like avalanche§24]. On the other hand, it has long
fects in the model enable the independent study of varioubeen known that ordinary fracture has a first-order-like
features of material failure, which are less easily disenthreshold with no observable failure below threshold and
tangled in the more traditional models. The applied stresgatastrophic failure above thresh¢®]. Recent work on ma-
causes failure at a threshold that scales primarily with theerial failure in disordered media has proposed a mean-field
adhesive force. However, the cohesive forces introduce caheory that both predicted the first-order character of the fail-
operative effects leading to the familiar buildup of stress aure for systems with strong cohesive forces and quantita-
defects that both lowers and sharpens the failure thresholdively confirmed the results of simulatioh®5]. With weaker
cohesive forces, our model has a continuous threshold simi-
lar to the SOC models and we find generic scale invariance
*Also at Department of Physics, West Virginia University, WV in the self-affine fractal behavior of the advance of the rough
26506-6315. boundary of the region of failure, similar to the behavior for
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the model avalanchd®6] as well as for a number of rough
interfaces both for fracturg27] and for fluid invasior[28—

30]. In performing power-law fits to the failure rate, which
are similar to power-law fits for a number of depinning tran-
sitions[31-35, we encountered a problematic size depen-(a)
dence that seems to preclude any useful power-law charas
terization. It seems likely that this is related to the well-
known size dependence of the material failure threshold
where larger systems tend to have larger defects and ther
fore will have lower failure thresholdg2,36]. Unrelated to
these theoretical schemes for extremal dynamics in randor
media, arad hocexponential fit leads to an adequate univer-
sal collapse of the failure data as a function of pressure an
time. b)

Il. DESCRIPTION OF THE FINE-SCALE MODEL FIG. 1. The gridding of the layer in this model is shown in the
upper part of this figure. Griddings of several sizes were used; the

r]argest gridding had 64 000 blocks with 200 units “around the fil-
er” (into the page in this figure with periodic boundary conditions

This model was motivated by problems encountered i
the removal of the layer of filter cake from cylindrical filters

during the ba_ck-pulse cleaning .Cyde of pressur!zed_ quidi;e onnecting the front and back edgesd 320 along its lengtfthe
bed combustion1]. ]n the phy_s|cal sys.tem motlvatlng th's horizontal in this figurg The outwardz direction) applied pressure
model, a layer of filter cake is deposited on a cylindricalgyce p on the filter cake is balancdgee Eq.(1)] by the stresses
candle filter to some thickness then a back-pulse pressure gye to the displacemente) of the blocks that stretch the cohesive
is applied from the inside of the candle filter to blow the ang adhesive springs. Accelerated Gauss-Seidel iterations ¢8)Eg.
layer filter cake off, thereby cleaning the filter. The stress Ollead to an equilibrium strain field; we have performed iterations
pressure actually responsible for removing the layer is thentil the square of the change in the strain field is less thart20
pressure drof® across the layer. In general, this model de-If the actual stress on a bond exceeds its randomly chosen breaking
scribes the strength of a layer adhering to a substrate in tharess, that bond will break.
presence of a uniform stress attempting to remove the layer.

In our model, the layer is gridded into rectangular blocksPI?={I?}E; je&; j—{txXIH{Gi_1j(€i_2;— € ;) +Gi11j(€ 12
of thicknesd and a squarkx | base. The gridding is at a fine
scale, intermediate between the centimeter scale of the filter €i))FGij-(€ij-2~ € 1)+ Gijraleijia— el
and cake and the micron scale of the individual particles in D
the layer. Our model systefshown in Fig. ] is assumed to
be flat, lying in thex-y plane; however, continuity around = ™" o
the cylinder is preserved by periodic boundary conditions irPividing Eq. (1) by 12, the area of the base, Eq) is sim-
they direction. The other edges are clamped by strong forceRlified with T (the thickness ratid =t/I) replacingt. Note

to avoid failure initiating at edge defects. The back-pulsen@t differences between the average Young modukts

cleaning forceF =PI2 is applied at the base of each block; an_d thg average shear modu{@) can also be absorbed into
as a result, each block will be displaced by some smalfhis thickness factor

amounte in the z direction. The forces resulting from the — e e o i—e e

tensile and shear stresses will balance this applied force.P 2B)E 6~ TiC-y(a-2) = )+ Gieajleinzy

Since the properties of typical filter cake seem to most —€)+Gjj-1(€ -2 €))+Gij+1(€ijr2—€ )},
closely resemble those of a brittle solid rather than a plastic @)

or ductile solid, the forces are assumed to be springlike up to

a given threshold strength. Equatitt) presents the relation where the new thickness parameter incorporates the thick-
between the applied forde on a block ar = 3(i,j) (i and] ness ratio and the ratio of the shear to Young's moduli
are even integers determining the location alongxtamdy = (t/1)({G)/(E)) and the underlined moduli are normalized,
directions, respectivelyand the displacements of that block i.e., E; ;=E; ;/2(E) andG; ;=G; ;/2(G), so that their aver-
and the surrounding blocks. Balancing the applied fdfce age value is one-half. Equivalently, the thickness parameter
are forces due to adhesive spririgsoviding the forces from s the ratio of the spring constants of the average “‘coopera-
tensile stresses multiplied by the area of the base of eadfive” cohesive force to the average ‘“single-particle” adhe-
block (12)] and due to cohesive sprinfisroviding the forces  sive force, providing a relative measure of the cooperative
from shear stresses multiplied by the cross-sectional area bésrces in the system. Equatid®) may now be solved for the
tween any two blockst 1)1 displacement of any one block,{):

whereE is Young’s modulus ands is the shear modulus.

- T{Gi-1j€i-2j+tGi+1j€i+2j+Gij-16 ;-2 G j+16 j+2} +P

. - 3
h T{Gi—1j*tGit1j+Gij-11Gij+1} T Ei_1; @
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Given the distributions of normalized moduli and the nor-mimicked by more springs connecting the granules; for this
malized value of applied pressufe=P/2(E), one guesses reason, each normalized breaking strength was strongly cor-
values of the displacements and then iterateg®aquntil the  related with the modulus in that each breaking strength was
displacements stabilize between iterations. If the tensilehosen randomly from a Gaussian distribution that was
stress sharply peaked about the value for that normalized modulus.
In our earlier paper for the same broadest distribution, we
Eij€i,j> Tmaxi,j 4 discussed how increasing the thickness eventually sharpens
] ) ) the threshold to a stefpe., all of the layer is removed at and
exceeds the maximum valiereaking strengthfor the (.j)  apove the threshold, while none is removed below threshold
adhesive spring, that spring will break; again in &4).the  [1]) Using a more sharply peaked distribution of forces
stress is normalized in that; ; = oy ;/(E). Similarly, if the  would only serve to further sharpen this threshold narrowing
shear stress exceeds the breaking strength for the cohesiyg range of pressures over which the failure occurs. For two

spring between any two adjacent blocks, e.g., thicknessesT=3 and 1, which allow continuous layer re-
moval (i.e., the threshold is not steplikewe focus on the
Gijra(€ij =€ j+2)> Tmaxijj+ 1, 5 dependence of the amount of layer removed as a function of
. . pressure and time as well as on the size dependence of these
that spring will break. uantities

It is natural to assume that the observed time dependenc
of the layer removalon the order of a few millisecond87])
is much slower than the elastic relaxation of the lafeeg., IV. LAYER REMOVAL AS A FUNCTION OF PRESSURE
the inverse frequency of elastic waves or the speed of sound, AND TIME
on the order of fractions of millisecond88,39). This jus- . .
tifies a quasistatic process where the layer reaches elastic For two thicknesses we have_ studied the system on a
equilibrium[as given by Eq(1)] between successive break- number of length scgles for a variety of pressures. From the
ing of bonds. The computations in our quasistatic model pm[argest_ systems, which are 200 blocks wide by_ 320 blocks
ceed as follows: (i) With the layer, at equilibrium, under no 10ng with 64 0001 X1 blocks, to the smallest, which are 60
load, the back-pulse cleaning pressure is appli@d; the blocks wide by 80 bIo_cks Io_ng with only 42_3(]O<I blocks,
layer reaches a new elastic equilibriJigqg. (3) is iterated we1 have performed s_|mulat|ons for two thickness ratibs:
until stabilization is reachdd (iii) then, at the end of this =z, Where the cohesive forces are half as strong as the ad-
time step each bond weaker than the actual stress is brokefeSive forces, an@i=1, where the cohesive forces are just as
(iv) steps(ii) and (iii), which together constitute one time Strong as the adhesive forces. For a number of systdifis
step, are repeated, until a final time step at which no furtheférent sets of normalized moduli and breaking strengthe
bonds break. Once some bonds have broken at the end of @dpoint pressuré®y,q was determined; the midpoint pres-
time step, the nearby bonds will be under a greater stres§Ureé is the pressure at which half of the layer will be re-
increasing the likelihood that they will break at the end of theMoVved. A range of pressures around the midpoint pressure
next time step. In this cascade, more bonds break than woulfaS then scanned and the results were averaged over the
have broken without the interaction mediated by the cohedifferent realizations of the systefie., differing only in the
sive bonds. Thus the cooperative effect resulting from thé@nhdom choice of strengths and mogiulihis modeling dem-

cohesive bonds produces a cascade that lowers and sharp@fstrates the effect of thickness and pressure upon the
the threshold. amount of material failure.

Figure 2 shows the time dependence of the amount of
failure (mass or number of blocks removed from the layer
by a pressure@lP=P—P,,q away from the midpoint pres-

In reality, the layer has definite thickness and the “cohe-sure. For these thicknesses, the amount of failure varies con-
sive” forces may be just as significant as the “adhesive” tinuously from very little failure to total failure or removal as
forces. Since the “thickness parametel” is the ratio of pressure increases. The time dependence appears to be very
these two forcesalso of the two breaking stresgam Eqs.  similar for both thicknesses. However, it should be noted that
(1)—(5), varying T will vary the relative effect and impor- the larger thickness has a lower and a sharper threshold, as
tance of the adhesive and cohesive for¢asd strengths ~ We discussed in Refl]. Specifically, the midpoint pressure
Therefore, the natural variables in our problem &jethe is lower for T=1 (Pq=0.269 08-0.000 06) than foil =
applied pressure(ji) the thickness parameteliji) the time 7 (Pmig=0.285 40-0.000 06); also for the smaller thick-
step,(iv) the length scale, an@) the distributions of moduli  ness, a larger range of pressures is needed to scan the range
and strengths. To reduce the complexity of the results, wéom negligible to nearly complete cleaning. In the following
will assume that the applied pressure is constant; the effect gection we will fit these failure curves to likely schemes,

a known time dependence of the pressure can be easily aguantifying the differences between these two thicknesses.
certained once the dependence of the failure upon pressure

and time has been_ determingd. !n all of our s_imulations, we V. FRACTAL CHARACTER OF THE FAILURE

have chosen a uniform distribution of moduli. Each of the PATTERNS

normalized moduli was chosen randomly from a flat distri-

bution between 0 and 1. However, relying on the spring anal- Typical midpoint cleaning patterns for two thicknesses
ogy, we assume that thicker bonds between granules in th@=0.5 and } are shown in Fig. 3. At the midpoint pressure,
filter cake will be both stiffer and stronger since they can bewhere half the layer was removed, these figures show the

lll. RESULTS
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Thickness T=1, 64k blocks those found in sandpile avalanches, in other slow fracturing

Mass 630" g v ] processes, and in fluid invasion problems. To determine the
50" D fractal dimension of the rough boundary of the failure re-
gion, we have determined both the perimeter of the boundary
and the mass of the layer removed as a function of pressure
and time step for a number of realizations. We then averaged
. B T S the perimeter length and massn over the realizations. For

(@) time &fep a growing pattern, plotting the perimeter length vs mass will
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Figure 4 shows three of thesevs m plots for all times and
for all pressures for the &dblock T=1 system and the %6
T=1 andj systems. Least-squares fits of E). to the three
sets of precutoff data predict values of the fractal dimension
) from 1.32 for the largd' =1 system to 1.254 for the smaller
Mass 1.640° ITh'ﬁk'Tefs ‘Tfol's’_ 16k Ib"c’clks‘ o T=1 system. In the power-law regime, before cutoff, all of
1400* E the datain addition to data from the 4800 block systerage
e D 3 consistent with a fractal dimensio®,=1.30+0.05. To
PSR within the uncertainties, this agrees with the fractal dimen-

ARSI L S L

8000
PO sion from simulations for the perimeter of sandpile ava-
2000 lanches in the self-organized critical stf®®]. Furthermore,
; this is similar to the quantitative behavior of many rough
interfaces with a Hurst-roughness exponenttb&2—-D,,

FIG. 2. Filter cake removed as a function of time. These figures: 0.70+0.05. It should be emphasized that these are not near
show the filter cake removed as a function of time step. As dis-t_hrEShOId data; rather the data are for all pressures_and all
cussed in the text, there is an initial preremoval period when thdimes. The only data excluded from the power-law fits are
weaker bonds are being broken; then the filter cake is removed at10S€ data that manifest obvious finite-size effects, i.e., near
particular rate until saturation is achieved at each pressure. It ifhe downturn in the plots where the perimeter is approaching
clear that this mass at saturatidh,, increases continuously with the edges of the model.
pressure(a) Cleaning efficiency for the largest systg200x 320

oo e ee g oD

20
time step

=64k blocks, with thickness parameteF=1. Each curve repre- VI. CHARACTERIZING THE FAILURE ERACTION
sents the cleaning for a particular overpressure ranging from little _
cleaning atP=P,,;—0.03 to nearly total cleaning a® =P, A. Size dependence

+0.03. Cleaning efficiency for the smaller systefh00x 160
=16k blocksg for thickness parameterd) T=1 for a range of
overpressures from-0.03 to +0.05 and(c) T:% for a range of
overpressures from-0.08 to +0.05. Note that for the smaller
thickness, a larger range of pressures is required to scan the ran
of from negligible to complete cleaning.

There are a number of appealing similarities between this
adhesive failure model, the more traditional models of self-
organized criticality, and the systems with depinning transi-
tions. Our model of adhesive failure has a threshold pressure
With a continuous increase in the extent of failure above this
threshold. The avalanches in similar fracturing models have
been shown to obey SOC-like power laws near the failure
failure originating at several locatiorithe darkest areagand  threshold[24]. Any quasistatic failure model assumes well-
then spreading to nearby blocks. The cooperative nature afeparated time scales between the short times required for
the failure process is manifest in this growth from the areaspproach to elastic equilibrium and the longer times for the
of initial failure since the cohesive bonds cause many bondpropagation of failurd41]. We have found compact failure
to share the stress so that unbroken bonds can compensaiterns with a rough perimeter with the same fractal dimen-
for nearby broken bonds. The role of increased cooperativeion as sandpiles.

(cohesive forces is clear from these patterns. For the weaker However, we find a detailed quantitative comparison with
cohesive forces where a larger pressure is required to remo®0C and depinning expectations problematic. It has been
half of the layer, failure initiates at many more sites becauséong known that real systems have a failu@ fracture

of the larger pressure exceeding more thresholds, but thiareshold that decreases with size. During the Renaissance,
failure is more localized, advancing much less far than in thela Vinci conducted experiments that showed that increasing
T=1 system with larger cooperative forces. Qualitatively,the length of a wire would decrease the strength of the wire
this T=3 pattern is intermediate between the relatively[2]. We now understand that since fracture initiates at the
smoothT=1 pattern and the site percolation patterns of thdargest defect where the stress is greatest, the increased
negligible cohesion limif1,40]. length increased the likelihood of having a larger defect,

Similar to sandpile avalanches, box-counting analysis inthereby reducing the load required to initiate fail{ige16].
dicates that these regions of growth are compact with a diMore recently, careful simulations on random two-
mension ofD=2; however, the boundary of the failure re- dimensionalLXL models have shown that the fracture
gion appears rough, suggesting a self-affine fractal similar téhreshold decreases as a power ofL)n[13,42,43. It has
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FIG. 3. Typical cleaning patterns for two thickness‘és:% (top) andT=1 (bottom). Failure of the layer initiated at the darkest parts and
spread to the lighter regime. The larger cooperatoghesive forces in theT =1 model cause the failure to spread much farther than in the
T= % model; therefore, removal of half of the layer is accomplished by a lower pressure. Except for the change in thickness, both realizations
are identical(i.e., same sets of random numbers, relatively weak bonds in the same locations, etc.

been shown in the context of percolation theory that the sizglocks. A plot of this threshold pressure y#n(size)] ! is
of the largest defect in a random system increases with thghown in Fig. 5. This figure shows that the threshold pres-
size of the system as In) [36]. Therefore, the applied force sure decreases monotonically witm(size)] %, consistent
required to initiate failure should decrease as L)rgince  with the previous discussion of failure in a somewhat differ-
the larger the defect, the greater the local stress and thent randomized mod¢#k2,13,43.
smaller the applied force required for the local stress to ini- The solid black circles show the average of the threshold
tiate failure [44]. Therefore, as the system approaches ampressure for a number of realizatiofdifferent random as-
infinite size, the failure threshold will go to zero. signments of the bond strengihsvhereas the single dots
However, because the lf size dependence is so slow, show the threshold for each of the realizations. The horizon-
macroscopic systems are not infinite and experiments on re#l spread irfIn(size)] ! is an artifact introduced to enable
macroscopic systems show that these systems yield at a finitge to more easily distinguish between the different thresh-
(i.e., nonzerp threshold. Furthermore, although annealedolds (dotg for different realizations. The real spread in the
systems may reduce the number of random defects, thereltlgreshold pressure shows the significant randomness in
raising the threshold, it seems unlikely that random defectshe defect size in a given realization and its effect on the
can be entirely avoided. Any real material will have somethreshold,(ii) how small the threshold pressures can be for
random defects and this randomness will enforce a decreasedividual realizations, andii) that this scatter in threshold
in threshold with size. pressure does not decrease significantly with system size. It
To investigate this size dependence for our adhesive failis entirely consistent with Fig. 5 that the threshold in the
ure model, we have determined the threshold presghee present problem would decrease to zero for an infinite sys-
pressure at which the first mass of adhesive layer is removedem. However, for a macroscopic systésay, size~107),
for a variety of sizes(1000, 4000, 16 000, and 64 000 Fig. 5 suggests that the threshold would be nonzero.
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Thickness T=1, 64k blocks =
(o]
L 10" . P
E slope 0.756 3 >
L PPN =
1000 | slope 05 | ]
rool -+~ Fit to Eq. (6) for M<20000 predicts |
E - A=5.3:0.4; 1/D = 0.75620.006 3 ]
7 ol Lol Lol IR R | E|
10 100 1000 107 10°
(a)
, Thickness T=1, 16k blocks
Lo e — — e ‘
0.08 009 0.1

Slope 0.8 ety ] AP = P-P_ = dP+0.116 **

slope 0.5~ T FIG. 6. Fractional amount of eventual failur& (/64 000) vs

it - “Fif to Eq. (6) for M<3000 predicts AP=P—-P,=dP+0.116. Not surprisingly, the failure fractidrx)
g A=2.9910.04; 1/D_=0.796:0.002 ] obeys a power layEq. (7)] only for small values of failure fraction
o R . T STV (f<0.1) with increasing deviations near saturatiofizatL. Surpris-
ingly, the simplest assumption for a cutoff functiés F/(1+ F)
o Thickness T=0.5, 16k blocks ] works quite well with this measure of eventual failure=f/(1
S T L= —f) (O) obeying the same power law for both small and large
¥ slope 0.778 e 1 measures of failurer. The solid line shows the best fit to E(Y);
1000? 3 F= (86A P) 11.475.
100 Fit to Eq. (6) for M<4000 predicts . dependence of the threshold pressure with the size depen-
b L, AO09020 17D, 2077840005 dence ofP,,4 (the pressure required to remove one-half of
© ' 10 1000 oM the adhesive laygr there is negligible size dependence in

Pmig and any scatter i,y between different realizations
decreases significantly with system size. Clearly, this mid-
point pressure is better characterized for large systems than
is the threshold pressure.

FIG. 4. Three perimeter lengtiLf vs mass ¥) plots for all
times and for all the pressures in Fig. 2 for thek@flock T=1
system(top), the 1& block T=1 system(middle), and the 1&
block T= % system(bottom. Least-square fits of E¢6) to the three
sets of pre-cutoff data predicts values of the fractal dimension from

1.32+0.01 for the largeT =1 system to 1.26&0.01 for the smaller B. Pressure dependence
T=1 system, with the 16 T=3model having the intermediate  Sijll, for any given size system, there is a threshold with a
value of 1.2850.010. continuous increase in the amount of failiggowth in the

region of failure until an interface is reached where the pin-
Unlike the previous models where failure, once initiatedning forces(local material strengthsare too great to allow
at threshold, extends through the system, here the extent afiditional failure. This suggests a correspondence with de-
failure increases continuously as the pressure is increasgainning transitions where the rate of advance of an interface
above threshold. The size dependence of pressures associaieereases with applied force above a threshdlf—-47. In
with a given level of failure is very different from the size any case, the existence of a threshold@atvith no adhesive
dependence of the threshold pressure. Contrasting the sif&lure below the threshold and a continuous growth in the
amount of failure with the increase of pressure above thresh-
Threshold old naturally suggests a power-law fiP ¢ P,)?. Figure 6
Pressure O3FT T T T T shows the log-log plot of the fractional amount of failure vs
Pe oask e O‘ E P—P;. Not surprisingly, the failure fraction obeys a power
; . ] law only for small values of failure fractionf0.1) with
*2E . E increasing deviations near saturationfat1. Surprisingly,
0.15f : g the simplest assumption for a cutoff functiés F/(1+ F)
: works quite well, with this measure of failurg=f/(1
E ] —f ) obeying the same power law for both small where
oosE E f~F, and for largeF, wheref~1. The solid ling(in Fig. 6)
Y P I I I A 3 shows the best power-law fit t&:

0 0.02 0.04 006 008 ( 0.1AI ‘0.‘171 I ‘0‘1‘; ‘ ‘OT'IG
F={p(dP—dPy)}’, Y

01 -

A 1/(In(size))
10%° 10" 10"

FIG. 5. Threshold pressure and midpoint pressure vdhiS bestfit has an exponeft=11.5. Although the theoret-
[In (size)] ! for T=1. The solid black circles show the average of ICal treatment$46,47_| of the depinning transition suggest a
the threshold pressure for a number of realizatiaifferent ran-  Small value for this exponeng<1, a simulation on large
dom assignments of the bond strengthshereas the small dots Sandpiled26] and several experiments on different systems
show the threshold for each of the realizations. The open circle§31—39 all find larger values of3. Several find values of
show the average of the midpoint pressure for a number of realizg8>2 [26,32 with one finding a valugd~7, nearly as large
tions (indicated by the small dots as ours[34]. Admittedly, this measure of failuré is not



872 M. FERER AND DUANE H. SMITH 57

TABLE I. Size and thickness dependence of the fitting parameters in(Bgand (8).

System ¢ B dp, A B
T=1,(4.%) 16.1+0.1 5.2:0.1 0.0609 10%3 o+1
T=1,(16K) 12.3+0.1 7.2:0.2 0.0815 9%1 4.9+0.3
T=1,(64Kk) 8.60+0.02 11.4750.10 0.115 1021 5.1+0.3
T=3,(16K) 6.94+0.04 5.86:0.05 0.165 39.20.6 3.8:0.6

identical to the velocities of the pinned interfaces in the otheonly observable deviations occur at the smallest failure, sug-
work. However, the scaling of should differ from the scal- gesting that the pressure dependence of the finite measures of
ing of the failure rated#/dt only by a characteristic time failure has a well-defined thermodynamic limit. Just as a
scale that seems nearly constant. Furthermore, for the comnsmall power law suggests a possible logarithmic dependence,
pact failure patterns discussed earlier, the rate of growth o& large power law suggests an exponential dependence, im-
failure is directly related to the velocity of the interface plying that InF might have a simple dependence dR,
bounding the region of failure, and this is very similar to thee.g., a polynomial. Figure 7 shows simple nearly linear be-
interfacial velocities in the depinning systems. In any casehavior that is well fit by the quadratic shown
we find a large exponent for the increase in damage with
increasing pressure, which, like other determinationg fafr F=ghdP1-BdR), 8
depinning systems, is significantly larger than the small o
value predicted by the theoretical treatmel§,47. Note that adP=0, P=Ppg, S0 thatF=1, eliminating the

It seems likely that the size of this exponent may be af.n€€d for a constant in the quadrafd P—ABdP”. Table |
fected by the size dependence of the threshold because if ti§OWS the values from the best fits of both Eggand(8) to
thresholdP, decreases with size while, 4 (the pressure at e data, and the corresponding size dependence. The expo-
which half the layer is removécioes not change, a larger nentl_al fits show an insignificant size deper_ld_enc_e and are all
power will be needed to mimic both the slower removal rateconsistent with the values chosen for the fit in Fig. 7.
just above the lower threshold and the similar removal rate Although the power-law fits above threshold seem more
nearP,4. Indeed power-law fits to our smaller systems re-fundamental and physmallylmeanlngful, the size de_pgndence
quire smaller values of the exponesit specifically the best S€ems to preclude a meaningful power-law fit to finite sys-
fits to the data predicB~7.2 for the 1& systems andg3 t_ems. On the other h_and, the sge_mmgby hocexponentlal
~5.2 for the 4.8 systems; see Table I. This nontrivial size 11tS offers more promise of providing a useful fit to macro-

dependence for the threshold and the exponent precludessﬁOpiC systems, given t_he ne.gligible size dependence in the

universal prediction for the power law applicable to macro-Parameters fitting the simulation results.

scopic systems. In fact, in the thermodynamic limit of infi-

nite system size, a power-law fit for these random systems C. Dependence on pressure and time

seems meaningless. It is natural to hope that the failure fraction might be
On the other hand, the size dependence of the removal @fescribed as a function of the two variables

finite fractions(of finite measures of failurg, i.e., not close

to threshold seems well behaved and easily characterizable. FIF(P)=3(t/7(P)), 9

Figure 7 shows the measure of failufersdP=P— P4 for

systems of three different sizé64k, 16k, and 4.&). The ~ Where, in addition to the above pressure dependence of the
measure of failure there is a pressure-dependent characteris-

— tic time that affects the pressure dependence of the rate of
] cleaning. Preliminary to ascertaining the pressure depen-
dence of this characteristic time, Fig. 8 shows the time de-
pendence ofF/ F(P). Surprisingly, these curves overlap to
within the rather large uncertainties; any effort to look for a
characteristic time seems meaningless, with the effect of the
characteristic time being negligible compared to the errors in
the fitting function7(P). The careful reader may have no-
ticed that the smallest pressure data have been omitted from
these plots simply because of their large uncertainties. On
the other hand, the largest pressures have also been omitted

#(1-)
10 E

01

0.01

0.001

| | | | | | 1
£3 555 -323¢8%:¢ o ting Tunotiah(P) 1
' ' P-pP-p primarily because the fitting functiaf(P) is less successful

mid

at the extremes, but also because the highest pressure data
FIG. 7. Measure of eventual failugg vs dP=P— P, for the ~ €xhibit a noticeably sharper failure ratsharper shouldgr

T=1 systems of three different sizE84 (O), 16k (+), and 4.& than the other data. In any case, the reliable data above but

(X)]. The only observable deviations occur at the smallest measurdiot too far above threshold can be moderately successfully

of failure. Thead hocexponential form(8) provides a reliable fit to represented_ by a universal fUUC“(_)n with n?9||9|b|e size de-

the well-characterized, size-independent finite failure regime; thgpendence since the exponential fits&P) will accommo-

solid line shows this best fiF=exd102dP(1—5.1dP)]. date both the 84 and the 18 data(Fig. 8). If there is a
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FIG. 9. For thicknessT=3, plots of normalized measure of
failure F1F4(P) using thead hocexponential form ofF(P) for
the 1& systems P=—0.06 to 0.035) excluding only théP=
—0.08 and 0.05 overpressures. Although there is little evidence for
a pressure dependence in a characteristic time, the effect of thick-
ness is clear, with the failure in this thinner system occurring much
more rapidly than in the thicker system of Fig. 8.

even these weak cohesive forces have dramatically lowered
and sharpened the threshold from the case with zero cohesive

t forces where the threshold mimics the uniform distribution
of the strengths with midpoint pressure of one-half and slope

FIG. 8. For thicknessT=1, plots of normalized measure of [A of Eq. (8)] unity:

failure 7/ F(P) (a) for the power-law form ofF,(P) for the 6k«

system @P=—0.02 to 0.01) andb) the ad hocexponential form T=0.0, Png=0.5, A=1,

of Fo(P) for both the 64 (dP=-0.02 to 0.01) and 16 (dP=

—0.005 to 0.04) systems. Any pressure dependence of a character- T=0.5, P.g=0.28540-0.000 06, A~40,

istic time is quite weak, being overwhelmed by the strong pressure

dependence oF(P) and small discrepancies in this fit, although the T=1.0, Ppjg=0.269 080.000 06, A~100.

larger overpressurdg.g., for 1& dP=0.04, the solid triangles on

the dashed linedo show a sharper knee (b).

The region of failure is compact, but the perimeter bounding
the region of failure is rough with a perimeter fractal dimen-

pressure-dependent characteristic time its pressure depe§'|9n Dp=1.30-0.05 not just for one state but fo_r the full
ange of pressures, times, and sizes studied. This model ex-

gﬁpecz(ézgﬁggnvgg%’( gfmgnorhe:\c/:ﬁgﬁgnbg tl?iz Sg?grgtﬁée ibits the size dependence of the threshold known to be ge-
: ' ' neric for material failure in disordered systems. This size

smaller thicknessT= ) shows that the thickness parameter . o .
1=2) P dependence eliminates the possibility of universal power-law

significantly affects the time dependence of the failure Withde endence of the failure or failure rate upon pressure above
the approach to saturation occurring in many fewer time P pon p

. threshold. However, the midpoint pressure has a well-defined
steps, largely because of the larger pressures required. thermodynamic limitAd hocexponential fits of the amount

of material failure to deviations from this midpoint pressure
VIl. CONCLUSIONS exhibit little size dependence and offer the hope of well-
. . L haracterized extensions to systems of macroscopic size. An
We have performed simulations on a quasistatic model Ofyseresting feature of the model is the transition to first-order

material failure, which enables one to separately adjust thﬁehavior(steplike thresholdsfor larger cohesive forcefd].
single-particle(adhesive forces that scale the failure thresh- This transition will be investigated elsewhere.

old and the cooperativécohesive forces that provide the
characteristic buildup of stress at defects, which is respon-
sible for catastrophic failure at larger values of the cohesive
force. For the small cooperative forces studied in this paper, We gratefully acknowledge the support of the U.S. De-
the threshold in continuougsecond-order-like however, partment of Energy, Office of Fossil Energy.
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