PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Cooling dynamics of a dilute gas of inelastic rods: A many particle simulation
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We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modeled
as a stochastic process, which on average decreases the translationallemaligyg), but allows for fluctua-
tions in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to
suppress inelastic collapse. This allows us to study large systems for long times in the truly inelastic regime.
During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide, and
merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a
cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping
of the internal vibrations. Inelastic collapse is avoided also in this case but in contrast to the conservative
system the translational energy decays according to the mean field scaling(Rwt 2, for asymptotically
long times.[S1063-651%98)07501-1

PACS numbeis): 47.55.Kf, 46.10+z, 05.20.Dd, 05.40:]

[. INTRODUCTION lapse is threatening. When the collision frequency increases
dramatically, then ultimately the time between collisions will
In a recent papefl], hereafter referred to as I, we dis- become smaller than the decay time for the internal energy,
cussed the properties of inelastiwo particle collisions, so that the vibrations no longer decay in between collisions.
starting from a Hamiltonian model for one-dimensional elas-Then the model effectively reduces to the above stochastic
tic rods. Within this model, the coefficient of restitutiemot ~ one without dissipation and no inelastic collapse occurs. The
only depends on the relative velocity of the colliding par-kinetic energy of translation follows on average the mean
ticles, but in addition becomesstochastiaqquantity, depend- ~ field scaling lawE(t)ect 2.
ing on the state of excitation of the internal vibrations. Here Several groups have simulated one-dimensional granular
we extend the analysis to a discussion of thany body media using event driven algorithms with constant coeffi-
dynamics of a one-dimensional gas of granular particlesgient of restitution. For (1 €)=constN a divergence of the
modeled as elastic rods. We concentrate on dilute granulaollision frequency in finite time, i.e., inelastic collapse is
systems in the “grain inertia” regime, where two particle observed. This leads to a breakdown of the algorithm and
collisions dominate the dynamics. It was shown in | thatone either has to restrict oneself to the quasielastic regime,
successive collisions are to a very good approximation unwhere e is sufficiently close to 1 or additional assumptions
correlated, so that the many body dynamics is a random Mam@about the dynamics of clusters have to be made. Bernu and
kov process. Consequently, the collisions are simulated by Blazighi [3] investigate a column of beads colliding with a
Monte Carlo algorithm: velocities are updated with a randonmwall. McNamara and Younf4] and Sela and Goldhirsd]
coefficient of restitution, drawn from the appropriate prob-discuss the cooling dynamics of a granular gas in the quasi-
ability distribution. In between collision events, particles elastic regime. They observe the evolution of spatial struc-
move freely as in an event driven algorithm. tures and a bimodal velocity distribution. The critical wave-
We focus here on the cooling properties of a large systentength of the instability is related to the minimum number of
(10 000 particlekin the inelastic regime and refer to cooling particles for inelastic collapse to occur, given a fixed value of
as the decay ofranslational energy with time. We observe e. Clementet al. [6] and Ludinget al. [7] study a vertical
the evolution of spatial structures, without running into prob-column of beads in a gravitational field with a vibrating bot-
lems with inelastic collapse, which is always avoided by thetom plate. Fore close to 1 they observe a fluidization tran-
algorithm. The most prominent spatial structures are largsition, whereas foe<<1 a bifurcation scenario is seen to take
clusters of particles, which are seen to form atetayby  place. The latter has also been observed by laici.[8] for
colliding with other clusters. The velocity distribution within a single bead on a vibrating plane.
a cluster is to a good approximation Maxwellian, whereas All of the above simulations use a coefficient of restitu-
the global velocity distribution shows significant deviationstion that is independent of the impact velocity, whereas ex-
from Maxwellian, indicating that local equilibrium has been periments on ice spheres reveal a velocity dependenee of
established within a cluster, but not among different clusterd.9]. There have also been several attempts to calculate the
The model is extended to include net dissipation, i.e., irvelocity dependence of the coefficient of restitution by ex-
reversible energy loss, in a phenomenological way by simplyending the static theory of Herf40] to viscoelastic behav-
introducing a single relaxation time for the decay of the en-or. One either assumes a phenomenological damping term
ergy of internal vibrations. The final state of this model is[11] in the equation of motion for the deformation, or alter-
one big cluster with all particles at rest. The dynamics withnatively uses a quasistatic approximatifi®,13 for low
dissipation resembles a deterministic syst@m, with con-  relative impact velocities. As a result of either approxima-
stant coefficient of restitutionas long as no inelastic col- tion, the coefficient of restitution becomes velocity depen-
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dent. Simulations of large systems with strongly inelasticp;(t) denote the conjugate momenta for the center of mass
collisions have been performed with this mog#f]. and the amplitude of vibration. The first terffy,,,, models
Another approach is based on phenomenological wavéhe internal vibrations, the second teri,, the translational
theory. Here one assumes that two colliding bodies do noinotion, and the third terni,;, the interaction between the
vibrate before collision and that the impact triggers a traveltods.
ing elastic wave in both of them. For one-dimensional rods In | we have analyzed the statistical properties of two-
this ansatz yield$15] e=1,/1,, independent of the relative particle collisions by numerically integrating the full Hamil-
velocity of the colliding particles. Herk, (1,) denotes the tonian dynamics for the casN=2 with length ratio y
length of the shorteflongen rod. As shown in I, these re- =1,/I,. The main results are the following. Equipartition
sults are contained in our model. among the vibrational states of a rod is achieved fafter
Our paper is organized as follows. In the next section weabout five collisions as compared to the relaxation of the
review the model of |, discuss the probability distribution of translational velocity, which happens on a time scale of
e, and define the algorithm for the many body dynamics.about 80 collisions. The coefficient of restitution of two suc-
Results of simulations are presented in Sec. Ill. We first discessive collisions is to a very good approximation uncorre-
cuss global quantities, such as the time decay of the kinetilated. Based on these observations a simplified description
energy and the total number of collisions as a function ofwas achieved in | by integrating out the internal degrees of
time. Subsequently we analyze the local structure with théreedom, which can be done exactly for a single two-particle
help of the pair correlation function and discuss the forma-ollision. One is left with an effective equation of motion for
tion and decay of particle clusters, as well as the distributionthe rescaled relative velocity of the two rods(7)
of the particles’ velocities. In Sec. IV the model with dissi- =Ry 1(t)/R,4(0)—1. Here r=ct/l and 1=2141,/(l,+1,)
pation of vibrational energy is introduced. Finally in Sec. V genotes an’ effective length which is always chosen much
we summarize our results and give an outlook to forthcomyayger than the range of the potential, i.el>1. Based on

ing work. the observation of fast equipartition among the vibrational
states, these are modeled byhe&rmalized bathcharacter-
Il. MARKOVIAN DYNAMICS OF INELASTIC RODS ized by a temperatur€z = E i/ Nmog, Where the vibrational

We first review the Hamiltonian model of | and summa energy of a rod is given 't\‘)y the sum of the energies of the
“indivi . — mod v v
rize the properties of two-particle collisions. We then showmdlwdlkjal mOd?SdEba‘h dEVtzl E,. Thuflql((jQ)t %n? IOO.I(O) d
that the transition probabilities of the resulting Markov pro- '€ tli‘l en as independent, canonically distributed random
cess obey detailed balance and introduce the algorithm fof2/1aP'€s
the dynamics of the many-body system.
(a{"(0))=(pi"(0))=0,
A. Two-particle collisions
Our starting point is the Hamiltonian equations of motion
of a system oN elastic rods of homogeneous mass density. pi(”(O) 2 Tg
(@"(0)?)= =

The particles are placed on a ring of circumferehcd=ach 2 - )

rod is characterized by its length, total massm;, and i

center of mass positioR;(t). Its vibrational excitations are

described byNmqq normal modesq;” (v=1,... Nmod Of  ynder these assumptions the relative velowityr) obeys a

wave numberk; ,=mv/l; and frequencyw; ,=ck; ,. The stochasticequation of motion

only important material parameter for our model is the sound

velocity c. We model collisions of the rods by a short range

repulsive potential/(r) =Bexp(—ar), which depends on the d 1 2>
w(T)= ;exp{ K(

momentary end-to-end distancéetween the colliding rods, ar 7— 79— W( 7')—2l 21
1=1 n=

miwi,u myw

thus coupling translational and vibrational degrees of free-
dom. We shall be interested in the hard core limit, which can
be achieved by letting— . (The constanB is arbitrary, it Xw(r—nl}) +q(7)) ] \ 3
can be absorbed by rescaling tihe:tyB and frequencies

w— w/B.) The total Hamiltonian of our model reads

H=Hparl P 0"} + He{ Pi} + Hind R G} wherex= —(al/c) Rz,l(O) andry=aR; 4(0)/«. The coeffi-
cient of restitution is given by
N Nmod (v)2 (v)2 N P2
Pi 2 qi i
- 2m ML [T om
s LA e e=limw(r) -1 (4)
N—-1 T— 0
+ > Be Rty tZ3a - (-1}, (1)

and thus becomes stochasticvariable, depending on the
HereRi;1j=Ri+1—Ri—(li11—1;)/2 is the end-to-end dis- state of the vibrational bath before the collisiar(.7) is a
tance of two undeformed neighboring rods aRdt) and  Gaussian random noise with zero mean and covariance
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Cy(n)=(a(r)a(7' + 1)) The stationary state of the Markov process is known: after
) . ) cooling, the system of two particles, each equipped with an
1 I Ihrl internal bath, evolves into a stationary state with a Boltz-
2 or| 50X 6(r—nly)| -
n=1

R 24 (7 mann distribution foiE,,
1 E
TB stat(E )=—ex _ -t (9)
ol= 5E. - (5) Prg & TS ¢

. O .

Here, ¢ denotes the Heaviside step function aiig, m(tehtg:; gﬁg]rg;;n(;? ?r::u;;z?emE.mt/ZNm"djL 1, whereE; is
= u(Rp,1(0))’/2 is the translational energy of the colliding |t can be prover{17] that this collision process obeys
rods in their center of mass frame of reference. Thevhich  detailed balance, which gives the following relation for
appear in Eqst3) and(5) are determined by the length ratio p (¢) (this relation only holds if the temperature of both
y of the rods according td';=1+y andI';=1+1/y and  rods is indeed equal, i.e8;=B,= B):
pm=mym,/(m;+m,) is the effective mass. The stochastic
process{q(7)} is simply related to two periodic Brownian 1 )
bridge processed 6] with periodsI’; andT,, respectively. pale)e = pezﬂ(;) e <F (10

In the hard core limit k— «) the stochastic equation for
the rescaled relative velocity(7) [Eq.(3)] can be solved by \when the temperatures of the baths of oscillators are zero

saddle point methods, yielding (actually, it is sufficient that only the temperature of the
longer rod is zerp i.e., q(7)=0 for all 7, the collision is

w(7)=max0,f(7)), deterministic. For this case, the coefficient of restitution is
equal toy, the ratio of the lengths of the rodsee | and
where [15]). Thus in the limit of small temperaturegg(e) should

approach & function centered aroungl. At large tempera-

tures, on the other hand, simulations suggest(tjuite sen-
f(r)= max { ' — To—z w(r' =vIy)+q(7") ;. (6)  sible) result thatpg(e) is a uniform distribution, i.e., all pos-
b sible €’s are equally probable.

It can be shown from Ed#6) that for y=1 the collision is

The duration of the collision as well as the final velocity arealways deterministic, i.e.e=1 for any realization of the
stochastic variables. The collision is ended when the memorgtochastic process( 7). This interesting result will have im-
terms in Eq.(6) overcompensate the gain from the otherplications on our setup of the simulatiofsee Sec. Il
termst’ — 7o+ q(7'), which are on average increasing.

o=sr'<r

C. Algorithm

B. Transition probability We now consider the dynamic evolution Nfparticles on

The results of the preceding section are interpreted as aring of circumferencé + = ,1;. L is thus the total length
Markov process in discrete time, which accounts for transiof the interparticle spacings. For the following arguments the
tions of the translational energy upon successive collisionsactual lengths of the particles are unimportant because the
During a collisionE,, changes to a new vallg,=E,e?. The  point in time when a collision occurs depends only on the
probability for this transition is determined by the probability end-to-end distance and the outcome of a collision depends
density for the coefficient of restitutiops(e) according to  only on the length ratio. In order to keep the notation simple
we map the system to an equivalent one consistindN of
point particles on a ring of circumferente Each particle is
characterized by its positidR;(t), its velocity Ri(t), and the
temperature of its internal bath’(t). The N4 internal

= modes of one rod are represented by one degree of freedom
T, 7 only, namelyT§)=="mdE?/N, 4. The rods are assigned al-

ternating lengths such that the ratidor each collision has a

(T here denotes the bath temperatureboth rods, under fixed value, in our case 0.8. The ratio of masses is also given

the assumption that the temperatures are equal. If that is ndY 7> @ssuming the same homogeneous mass density for both
the case, one would have to replace the ingeby two kinds of rods. We choose rods of alternating length because,

indices 8, and B,. Here, we use only one index for nota- due to the rgsult given at the en_d of Sec. II B, a Iength_ratio
tional simplicity) of y=1 impliese=1 always, which would correspond sim-
Changes in the bath temperature are not independent, bty {0 & standard one-dimensional hard sphere gas.
determined by energy conservation: The model we use is a hybrid of an event driven algo-
rithm and a Monte Carlo simulation. The particles move
2 freely in between collisions, as in event driven algorithms.
TL=Tg+ —€ E. . (8) When two particles collide, their states are updated stochas-
. 2Npog tically, according to the distribution of.

1
Py (Ev—Ey) :?Etr Pa(€)]e= VE[/Ey
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It is convenient to introduce dimensionless variabtes reached. As shown below, this time range extends over sev-
=RN/L andv;=R;/u/T,. T, serves as an energy scale anderal orders of magnitude. N _
will be identified with the homogeneous initial granular tem- ~ We assume that two-particle collisions dominate the dy-
perature of the many particle system. Time is measured ifamic evolution of the system. This is justified for a dilute

units of L v/ To/N. granular gas. Theltypical time of interaction in our model is
For the algorithm we only need relative distances anddiVen bytin=2l/c, i.e., the time a signal needs to travel back
velocities and forth on a rod. Hence, in principle, two colliding rods
can interact with a third one. This will be highly unlikely, as
Xi+1— X for 1<isN-1 long as the time between collisions is much longer than
AXi:[N+xl—xN for i=N, 1D This requires Blc<L/(N|Ri,1;]). So either the length of
the rods has to be chosen sufficiently small as compared to

viz1—v; for 1sisN-1 the mean distande/N or the initial velocitiegR; . 1;| should
(12 be small compared to the velocity of sound. The latter is a
material parameter and can have quite high values for hard
The algorithm is defined by iteration of the following steps. materials(e.g., for steelc~10* m/s), favoring short interac-
(i) Calculate the time differencat for the next collision tion times. In a standard event-driven simulation inelastic

Av;= .
vi [UI_UN for i=N.

to take place: collapse occurs when the number of particles is sufficiently
large, resulting in a diverging collision frequency. This
At=  min ( B ﬂ) (13 would clearly violate the condition that the time between two
Avi/” collisions is long compared t,.. However, since our algo-

i|Av;<0 . . . . . .
{ilavi<0} rithm avoids the inelastic collapse, as will be discussed be-

The pair of particles which is going to collide next is denoted!ow, we will still make use of the assumption that three or

by (ig,ip+1). more particle collisions will not be important.
(i) The relative distances of all particles are updated ac- A system of 10000 particles has been simulated and
cording to for the most part a length ratioe=0.8 has been used.
We start from a spatially homogeneous distribution of par-
Ax;(t+At)=Ax;(t)+Av;(t)At. (14)  ticles having a Maxwellian velocity distribution with

((F,-/Z)vjz):% [j=1 (2) stands for the shortgfongen spe-
cies of rod$. We useN,,,q= 1000 vibrational modes per par-

=0. o . . _ ticle. Initially the internal bath temperatufig)) of each par-
(i) The kinetic energy of relative motion of the pair jcle is set to 0.

(i0,iot1) as well as the mean local bath temperat(tijr)e are Qur simulations were performed on a cluster of Linux
calculated according to EtrzAviZO/Z and Tg=(Ty° workstations with Pentium processors. The longest runs took
+T(B'°+1))/2. Subsequently, a random value ofis chosen ~ about three weeks of computer time.

from the probability distributiorpg(e€), presently calculated

For the designated pairi {,io+1) we obtainAxio(t+At)

by numerically solving Eq(6) and applying Eq(4). A. Global quantities
(iv) The bath temperatures and relative velocities are up- N
dated. 1. Kinetic energy
5 The time development of the total kinetic energy, which is
. . l— € 1
TUO (14 A =TI V(1 + A =Tgt 5 E,, (15 IVeNDY
B B 2Nmod
N T
1+€ = _'2
Avi 1 (t+AD)=Av; _4(D) + TAuiO(t), (16) Eiin Zl 2 Vi (19
AUiO(HAT): — fAvio(t)- 7 in our rescaled units, is shown in Fig. 1, in comparison with

results for the deterministic model with constantor small
1+e times the curves for the deterministic and the stochastic dy-
Avi0+1(t+At)=Avi0+1(t)+ TAUio(t)' (18 namics are rather similar. In the initial stage very little en-
ergy is stored in the internal modes and hence the coefficient
of restitution is approximately given by the deterministic
value. However, the deterministic dynamics runs very
quickly into the inelastic collapse, as can be seen from the
total number of collisions, which is shown as a function
Many-body simulations using the above algorithm haveof time in Fig. 2. When this happens, the simulation gets
been performed to study the cooling dynamics of the systenstuck so that the curve for the kinetic energy breaks off in
More precisely, we focus here on the intermediate range ofig. 1. The stochastic dynamics shows completely different
time scales where equipartition among the internal modebehavior: The kinetic energy continues to decrease until
has already been achieved and the final equilibrium state ¢fquilibrium is reached, wheree,, continues to fluct-
equipartiion among all degrees of freedom is not yetuate around the stationary value, which is given By~

(v) Continue with stefi).

Ill. SIMULATIONS
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10° ¢ . . . . . . present a phenomenological extension of our model, which
Eoo — stoch. &, 10000 particles takes into account energy dissipation of the microscopic de-
N stoch. ¢, 50 particles grees of freedom. In the final state of the model with energy
1 -~~~ det. &, 10000 particles dissipationall particles are at rest.
107 .

2. Collision rate

Simple mean field argumenitS] have been used to derive

%402 - i scaling laws for the time evolution of kinetic energy and
v collision rate. One assumes that the particle velocities are
uncorrelated and Gaussian distributed. For a constant coeffi-
. cient of restitution one obtaing,(t)~t~2 and Ny~ Int.
10° ¢

E Neither scaling law fits our data, as can be seen from Figs. 1
and 2. McNamara and Yourg| have already pointed out
that the mean field scaling laws are only applicable in the
guasielastic regime, where no inelastic collapse occurs. Oth-
107 10 100 10f 10°  10* 100 10 erwise the assumption of uncorrelated Gaussian velocities
t breaks down. In the stochastic model we have additional
fluctuations of the coefficient of restitution, which invalidate

FIG. 1. Reduction of the kinetic energy per particle as a functionthe derivation of the above scaling laws. Hence it is no sur-
of time. The curve for the deterministic coefficient of restitution _ . . ) L
rise that the data disagree with these relations.

breaks off because an inelastic collapse occurred. The dot-dashgd . .
The rate of collisions becomes constant as the stationary

line shows the average energy per vibrational mode for the 50 par-t te | hed b f Fia. 2. Th
ticle run and illustrates that equipartition holds in the s'[ationaryS ate IS approached, as can be seen from Fig. 2. The average

state. collision rate is given byNy=NAv/(2Ax). In the station-
ary state the velocities are indeed uncorrelated Gaussian vari-
ables, distributed according to

=Ein(t=0)/(2Noqt+ 1). (The final state has not quite been
reached for the 10 000 particle run in the time interval that is

-12 2
shown in Fig. 1) p‘(v):(Z—w exg — FJ—U ,
The final state of our stochastic model is a consequence of . 2Nmoat 1 2(2Npogt 1)1t
the idealized assumption that the total system is conserva- (20

tive. In a more realistic model of granular media one expects

the particles to be at rest in the final state. In Sec. IV we shali¥herej =1 (2) again stands for the shortdonge type of
rods. We assumax=1 and perform the average over ve-

40 : . . locities to obtain

— 1.0

. N
N stat__ (2 1)

e o o 7 (2Npogt 1)

This result is in very good agreement with the simulations of
the 50 particle system in the stationary stigee Fig. 2. The
10 000 particle system is also approaching the correct value

0 50 y 000-0 ] as it gets closer to the stationary state.

N_/10°
N
o

10000 particles B. Local quantities
— — - 50 particles (scaled)

10 1 1. Particle density

---------- T As is well known, inelastic particles without internal

------ Sy structure tend to cluster in one dimension. This clustering

T , , leads to a breakdowginelastic collapskof the system ife is

0 50000 100000 150000 constant and less than a critical value that depends solely on
t the number of particles. In our model particles have internal

degrees of freedom and the translational energy is not com-

pletely lost in a collision but is stored in the internal vibra-

the stochastic modésolid line). (The units on the axes of the inset tions and can be transferred back to the translational motion.

are the same as on the regular axékhe deterministic model DUe to the properties qfs(¢) (see Sec. Il B the probability
quickly runs into the inelastic collapse, seen by the diverging numfor this to happen gets larger as the translational energy de-
ber of collisions. The dotted lines show the theoretical number ofcfeéases. Therefore clusters do form but dissolve after a while
collisions as a function of time in the stationary state according t)and no inelastic collapse takes place.

Eq. ( 21) for the 10 000 and the 50 particle runs. The data for the 50 We start again from a spatially homogeneous distribution
particle run have been scaled by a factor of 100 in order to fit on th@f particles and analyze evolving spatial structures with the
graph. help of a coarse grained densjtyWe divide the total length

FIG. 2. Number of collisions as a function of time. The inset
shows a comparison of the deterministic mo¢#dshed ling and
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o]
4000 - .
] - -0.05
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t

t=20000
FIG. 3. Time evolution of the particle density. Dark regions .
indicate high density. 0.05 |

of the ring into 100 bins and count the number of particles in

each bin. The coarse grained density is defined as the actual g

number of particles in each bin divided by the average. > 000 Bre”
The time evolution ofp is shown in Fig. 3 on a linear B

time scale and in Fig. 4 on a logarithmic time scale. Several

phases in the cooling process can be identified. First, the -0.05

particles start to form clusters and voids as they lose kinetic

energy in collisionginitially, when Ty is small compared to

the translational energy, the coefficient of restitution is al- 010 , , , ,

ways close toy). After these clusters have formed, one ob- 0 2000 4000 6000 8000 10000

serves collisions of clusters, forming larger clusters. Simul- X

taneously the dissolution of clusters starts to set in, the g 5 phase space plot of the system at two different times.

remains being sent outwards to join neighboring clusters.

The biggest clusters and voids are seen to survive for timegrger system is reached, whereas for 50 particles it takes

of order 1@. This complex interaction of forming and dis- only a time of order 19(see Fig. 1 The equilibrium state is

solving clusters continues with a clear tendency to formreached only after the formation and dissolution of essen-

fewer and larger clusters. Finally these large clusters dissolvg|ly one final large cluster. In a smaller system the end of

to establish the equilibrium state, i.@quipartitionamong  the cascade of clusters of increasing size is reached earlier,

all degrees of freedom. simply because there are fewer particles.
For 10 000 particles it takes a time of order® 1l the
cooling dynamics is finished and the equilibrium state for the 2. Phase space
e ‘, ] The complete information about the state of the system at
I timet is contained in a phase space plot, as shown in Fig. 5.
] " Within a cluster of particles we expect frequent collisions
8000 A — B and hence an effective transfer of kinetic energy to internal
] I vibrations. Frequently regions of high average density are
1 characterized by particle velocities centered around zero.
6000 However, we also observe clusters with an average nonzero
0 ] velocity, resulting at a later time in collisions of clusters.
1 One such collision of two clusters can be traced in Fig. 5
4000 around x~2500. In Fig. %a) (a snapshot taken at
=14 000) one observes two clusters both with nonzero av-
1 erage velocity moving towards each other, whereas in Fig.
2000 7 5(b) (taken att=20000) the clusters have collided and
formed a larger one.
0 | —— | We also see around~ 1000 the occurrence of a stripe

3 4 s shaped fluctuation in the phase-space plot. This type of fluc-
tuation has already been observed and discussed by Mc-
Namara and Youn{¢] and Sela and Goldhirsdh]. It gives

FIG. 4. The same as Fig. 3 on a logarithmic time scale.  rise to the formation of clusters out of an initially homoge-
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FIG. 6. Comparison of the local kinetic ener@ashed lingand v

particle density(solid line). FIG. 7. Velocity distribution of all particlegcircles and the

particles inside one particular clust@riangles at timet= 14 000.
neous region. Thus, Fig. 5 shows that the dynamics of oufhe cluster chosen for this curve is centered aroxr®000 [cf.
system are indeed rather complex as formation, movemenk;igs. 3, 4, and &].

interaction, and dissolution of clusters all happen simulta- o )
neously. leads to the observed deviations from the Gaussian curve.

Since our system is far away from the quasielastic limit,
we see quite a different velocity distribution than Mac-
Namara and Young4], who simulated a one-dimensional

_Itis interesting to see how the kinetic energy is spatiallysystem of quasielastic particles. They observed a bimodal
distributed. We define a coarse grained kinetic energy denye|ocity distribution because the particles tend to concentrate
kinetic energies of all particles inside a bin and dividing by simjlar to Fig. 5. In our simulation, the situation is much

the number of particles in the bin. ~_more complex because of the formation of many clusters,
One might be tempted to conjecture that the local kineticaach with its own velocity distribution.

energy is in some way correlated to the clustering because
most collisions occur within the clusters. Figure(& an 5. Correlation function
example reveals, however, that this is generally not the case:

L : The inelasticity of collisions leads to a clustering of par-
although the kinetic energy shows some structure there is né)des’ as can be seen in Figs. 3 and 4. Williafti§] has

3. Local kinetic energy

visible correlation to the density, not even in a state such a A . . L
the one shown in Fig. 6, where all the particles are extremel escribed a (_)ne-dlmensmnal system of _|nd|V|duaI.Iy heated
’ ranular particles. He found that the pair correlation func-

clustered. Figure 6 is a shapshot of the system at time tion, defined byg(x)=(1/N—1)Ei¢j5(x—|xi—xj|) of the

=100 343(cf. Figs. 3 and 4 system in the steady state approximately, follows a power
law. Here, we observe quite a different behavior of the cor-
relation function(see Fig. 8 Instead of showing a diver-

In the cooling stage, the system is still far from equilib- gence at zero separation, it levels off to a plateau. The ex-
rium, so that the velocity distribution of the particles is not
expected to be a Maxwell distribution. It is therefore inter- 10’ . . . .
esting to test what kind of distribution the velocities really
follow.

Data analysis shows that the velocity distributionadif
particles is indeed not a Gaussian distributisee Fig. 7.
There are relatively large deviations, especially near the
maximum of the curve. If one restricts the data analysis to
only those particles inside a single cluster, however, one
finds that the velocity distribution of these is to a much better
degree Gaussian, considering that there are only about 1/10th
of the total number of particles in the cluster. This can be
well understood because there are many collisions between
particles inside a cluster and thus a local equilibrium is
reached, resulting in a Maxwellian distribution. On the other 10" : . ; .
hand, the velocity distribution of all particles reflects the ve- 10
locity distribution of theclusters As long as the complicated
process of forming and dissolution of clusters is underway, FIG. 8. The pair correlation functiog(x) of the system at
the clusters are naturally far away from equilibrium. This =14 000.

4. Velocity distribution
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planation for such a different behavior lies in the mechanism 20 ' . '
of heating: When the particles are heated individually, i.e.,
when they are driven by a random force, half of the time they
will be kicked back in the direction of the particle with 15 L
which they last collided. Thus there is some additional ten-
dency for the particles to stick together. In our model, how-
ever, the particles will only change their velocity when they =,
collide, thus favoring larger distances. S 600 650 700"

It should be noted that the correlation function in Fig. 8is <
not that of the steady state of our system but a snapshot taken
during the cooling process. The steady state of our model is 5t ]
trivial, implying a constant correlation functiog(x)=1.

IV. DAMPED INTERNAL MODES 0

0 500 1000 1500 2000

So far we have considered a conservative system, i.e., the !

total energy of translational motion and internal vibrations is g1, 9. Number of collisions as a function of time for the dis-
conserved. Such a model gives rise to a stationary equilibsipative system.
rium state in which equipartition among all degrees of free-
dom holds, so that the translational momenta are of ordeBteep regions of the collision frequency correspond to steep
O(1/yYNod - To model granular media, one should take intoregions in the energy plot because the frequent collisions
account additional dissipative mechanisms, which result in @mong clustered particles draw much energy out of the sys-
decrease of the total energy so that the particles are truly &m.
rest in the stationary state. One such mechanism is black- An important question is the following: What is the sta-
body radiation. tionary state of the system with dissipation and how long
A simple way to model this effect is to let the bath tem- does the system need to relax to the stationary state? The
perature of each particle decay in time. Hence we suggest tHinal state should be one big cluster, with all particles at rest.
following modification of the algorithm of Sec. Il C. In be- As explained above, the dynamics with dissipation resemble
tween collisions the particles move freely and their bath temthe dynamics of a deterministic system as long as no inelas-
perature decreases according to a simple exponential decaljc collapse is at hand. For this reason it can be expected that
the kinetic energy on the average follows the mean field
TiB(t)zTiB(ti)exp(—(t—ti)v) for t>t;. (22 resultE~t 2, occasionally disrupted by the occurrence of a
cluster, which is, however, quickly dissolved. Simulations
Heret; denotes the instant of time when the last collision ofSNOW that this behavior can indeed be observed; see Fig. 11.

particlei took place. The same decay frequendg used for Since the above mentioned _scalin.g'lawl never perm_its the
all particles. The updating of relative velocities and bath€N€rgy to become exactly 0 in a finite time, the stationary

temperatures in a collision is unchanged as compared to Set%_t.ate(WhiCh has energy)(can also never be reached in finite
C. ime.

We expect that the effect of such a dissipative mechanism
will strongly depend on the frequency of collisions as com- V. CONCLUSION

pgred tov. If_collisions are rather infrequ_ent, thgn the decay e have presented the results of simulations performed
will be effective and the bath of the particles will cool down g 54 recently developed model for a one-dimensional granu-
in between collisions. The resulting dynamics should re-

semble the deterministic case and hence one should observe  1¢° . . .
a strong increase in the collision frequency, because the sys- 0.004 .
tem is developing towards inelastic collapse. When this hap-
pens, the collision frequency becomes comparable to or even

smaller than the decay rate In that case the internal modes ; \
can no longer relax in between collisions. In the limit of very
high collision frequencies the bath temperatures are effec-
tively nondecaying, so that one recovers the algorithm of
Sec. Il C without any dissipation. Hence we expect to see the
system develop towards inelastic collapse with a strong in-
crease in collision frequency, followed by a period of time
where the collision frequency levels off.

These expectations are confirmed by numerical simula-
tions of once again 10 000 particles witt=0.01. In Fig. 9 10° . . .
we show the total number of collisions as a function of time. 0 500 1000 1500 2000
One clearly observes rather sharp steps followed by !
smoother regions, as explained above. In Fig. 10 we show FIG. 10. Decrease of the total kinetic energy as a function of
the decrease in total kinetic energy as a function of timetime for the dissipative system.
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; wellian velocity distribution with, in general, nonzero mean
velocity holds for particles in the cluster.

The model has been extended to include net dissipation of
i energy by exponential damping of the internal modes. In this
case, the algorithm still shows no inelastic collapse. On the
average, the decrease of the kinetic energy follows the mean
field result but with considerable fluctuations due to the com-
plex cluster dynamics, which are still a feature of the model
with energy dissipation.

Thus our model, which is based omacroscopicmecha-
nism for the loss of translational energy during collisions, is
well suited as a starting point for simulation and theoretical
description of one-dimensional granular media. Unlike many

0% L - - - - L other models, it makes use of an exact treatment of the col-
10 10 10 10 10 10 lision dynamics of the colliding rods and hence offers a pos-
sible intuitive way of understanding the precise manner in

FIG. 11. Decrease of the kinetic energy as a function of time forwhich translational energy is removed from a granular sys-
50 dissipative particles. The dashed line showsRhe 2 relation.  tem. Future work will use this model to investigate the prop-

erties of driven granular assemblies. In our model a specific
lar medium. The model allows for an algorithm which is a mechanism—transfer of translational energy to internal
hybrid of Monte Carlo and event driven and which avoidsvibrations—has been analyzed to develop a microscopic ba-
the inelastic collapse. Thus, we have been able to performis for an effective coefficient of restitution. One may won-
long simulations on darge system far away from the quasi- der which of our results depends on the particular mecha-
elastic limit. The model in its simplest form conserves en-nism. To study this question, we are presently investigating
ergy: translational energy can be transferred to internal vidistributionsps(e) which are only restricted by detailed bal-
brational modes of the particles and vice versa. Starting fronance and not derived from a microscopic model. One may
a state with no internal modes excited, there is a long coolinglso try to extend our analysis to higher dimensional objects
regime, extending over several orders of magnitude in timesuch as disks or spheres. In the simplest geometry these ob-
before the stationary state, characterized by equipartition gécts are colliding in a one-dimensional tube, so that no tan-
energy, is reached. The decrease of kinetic energy during thigential forces such as Coulomb friction have to be consid-
cooling stage shows considerable deviations from the meaared. Our microscopic model is easily generalized to this
field resultE,;,~t~2. We have also observed a complex pro-case and allows for investigating how effectively energy of
cess of cluster forming, movement, interaction, and dissolutranslation is transferred to elastic vibratigri®]. The fre-
tion. Inside the clusters we find that the particles are close tquently used quasistatic approximation of Hertz implies no
local equilibrium, which is indicated by the fact that a Max- energy transfer at all.
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