PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Molecular-dynamics simulations of the thermal glass transition in polymer melts:
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We present molecular-dynamics simulations of the thermal glass transition in a dense model polymer liquid.
We performed a comparative study of both constant volume and constant pressure cooling of the polymer melt.
Great emphasis was laid on a careful equilibration of the dense polymer melt at all studied temperatures. Our
model introduces competing length scales in the interaction to prevent any crystallization tendency. In this first
manuscript we analyze the structural properties as a function of temperature and the longdimnetaaation
behavior as observed in the dynamic structure factor and the self-diffusion of the polymer chaing. The
relaxation can be consistently analyzed in terms of the mode coupling theory of the glass transition. The mode
coupling critical temperatur&,, and the exponeny defining the power law divergence of tlerelaxation
time scale, both depend on the thermodynamic ensemble employed in the simulation.
[S1063-651%98)07101-3

PACS numbe(s): 64.70.Pf, 61.25-f, 83.10.Nn

[. INTRODUCTION model and Monte Carlo methods necessarily means that in
general one studies the glass transition at a constant volume,
Understanding the glass transition in supercooled materiand that one completely neglects inertia effects in the short
als is a great challenge in condensed matter thEh8} and  time dynamics. Any motions on scales smaller than a lattice
also of high technological importan¢8]. Polymers consti- spacing are completely eliminated, of course. Both of these
tute a class of materials with a very small crystallizationdrawbacks can be remedied by resorting to a molecular-
tendency. The ubiquity of amorphous polymeric materialsdynamics simulation of a continuum model. Work in this
has made them a longstanding focus of the experimentalirection mainly used atomistic polyethylenelike models.
characterization of the glass transitipf] and of efforts to  Early work[29,3( focused on the glass transition as a phe-
derive models of this transitiofb]. Traditionally this work nomenon of macroscopic time scales, observing the break in
focused on the temperature range in which the typical relaxthe dependence of the specific volume on temperature. This
ation times in the material are macroscopic, i.e., in the rangstudy, as well as later work31,32, used high quenching
of seconds. rates, losing one of the main advantages of such polymeric
With the development of the mode coupling theory glass formers, namely, the ability to equilibrate chain confor-
(MCT) of the glass transitiof2,6—9, interest was shifted to mations and local packing in the amorphous state without
the temperature regime of the supercooled liquid and relaxintervening crystallization tendencies. In the series of works
ation times in the nsgs range. This ignited a tremendous [30—32, no systematic study of quenching rate effects or the
effort over the last decadd0-12 on the side of experiment degree of equilibration at different temperatures was reported
and computer simulations to test the predictions and range afn. In particular, for the dynamic structure factor, it has been
validity of this theory on all kinds of glass forming materials. shown[22,23 that the observed behavior depends strongly
Originally this theory was developed for hard sphere liquids,on the degree of equilibration one has achieved.
but it has been applied to and claimed to have been tested on Thus we decided to perform a systematic study of the
as diverse materials such as collojds,14, ionic glasses glass transition in a polymer melt using a simple coarse-
[15], molecular liquidd 16], and polymerg17]. The emerg- grained polymer model in the continuum consisting of
ing picture seems to be that the theory can be applied ihennard-Jones particles connected by nonlinear spf@js
situations where the glass transition is determined by th&his model can be equilibrated with respect to local packing
repulsive part of the intermolecular interactions, i.e., whereand chain conformations down to temperatures well in the
there are no site specific attractive interactions which couldegime of the supercooled liquid. All our results on the dy-
give rise, for instance, to network formation like in SiO namic properties of the polymer melt are therefore equilib-
On the computer simulation side, there has been a versium dynamics. We also decided to simulate this model un-
detailed test of MCT on a mixture of Lennard-Jones particlesler constant voluméNVT) as well as constant pressure
[18-20, which belongs to the class of materials discussedNpT) conditions to study the difference and similarities of
above. The glass transition in polymer melts has been studhe glass transition in these ensembles. Since both cooling
ied in great detail with Monte Carlo simulations of the bond methods follow different paths in the state space of the
fluctuation mode[21-27), which can also be applied to the model, we expect quantitative differences between the obser-
modeling of real polymer§28]. The combination of lattice vations at constant volume and constant pressure, albeit
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qualitatively similar behavior, as was seen experimentally dg, p;
[34]. For a direct quantitative comparison one would need, gt om (©)
for instance, a whole set of constant pressure cooling curves.

The remainder of this paper is organized as follows. In

Sec. Il, we will discuss our model and the simulation proce- %: F.—¢p, (4)
dure for the NVT as well as NpT simulations. Section I dae ' 2y

will present a comparison of the static properties of the melts

in the NVT and NpT simulations. In Sec. IV, we will discuss d¢ 1 p?

our results for then-relaxation dynamics as observed in the at 6( EI ﬁ—ngT), )

dynamic structure factor and the self-diffusion of the poly-
mer chains. Section V will present our conclusions. A de- ] ] o
tailed analysis of the-relaxation regime predicted by mode WhereF; is the total force acting on particlie due to the

coupling theory along the lines of Ref22,23 will be pre-  Potentials described above, aQdrepresents the mass of the
sented in a forthcoming work. heat bath, whilg is the number of degrees of freedom. Note

that ¢ fluctuates around zero, and can thus become negative.
The mas9 has to be chosen with great cd89,40, since
otherwise one may not obtain a canonical distribution. If, for
For modeling the intermolecular and intramolecularexampleQ is very large, the kinetic energy and therefore the
forces, we used a bead-spring model derived from the ontemperature starts to oscillate with an undesired large ampli-
suggested by Kremer and Gré38], and also used in several tude. Instead of a canonical distribution one then obtains a
recent simulation$35,36. However, here we also included two-peaked distribution. In principle, any problems could be
the attractive part of the Lennard-Jones potential, since preavoided by using a chain of thermostg4d], but that would
vious work[24,25 had showed that without such an attrac- have worsened the computational effort and was thus dis-
tion the model would produce a negative thermal expansiogarded. For optimal results the intrinsic frequency of the heat
coefficient. bath should be approximately equal to the intrinsic frequency
Each chain consisted of ten beads with masset to Of the model system, a theoretical estimate of which was
unity. Between all monomers there acted a truncate@btained by calculating the frequency of a particle in a fcc
Lennard-Jones potential lattice subjected to Lennard-Jones potentials. The intrinsic
frequency of the heat bath is given p40]

Il. MODEL AND SIMULATION TECHNIQUE

o 6

k 2
UF(rij):_ERO In

o 12
4e (—) —| =] |+C: rj<2x2¥s
Uur=1 gl RPN ®)
0: rij22><21/60', Wg zngT
(o
Setting wg equal to the theoretically obtained frequency,
whereC was a constant which guaranteed that the potentiahnd rearranging this equation, yields an expressionQfor
was continuous everywhere. Since it was not our aim tqNote thatQ depends explicitly on the temperature, and there-
simulate a specific polymer, we used Lennard-Jones unitsore had to be adjusted for every simulation temperature.
wheree and o are set to unity. Note that this means that all puring all simulations no suspicious behavior due to the
quantities are dimensionless. In addition to the Lennardchoice ofQ was observed. We also performed several Monte
Jones potential, a finitely extendable nonlinear elasticarlo (MC) simulations using both a continuum configura-
(FENE) backbone potential was applied along the chain  tional bias method42,43 and so-called smart reptation
) which were carried out at the temperatdre 1.0 in order to
1_(&) @) check the validity of the molecular-dynami¢sMD) algo-
Ro rithm and to investigate whether this could be a potentially
faster means for obtaining equilibrated configurations. For
The parameters of the potential were setke30 and the dense melts we studied we found, however, that the fast-
Ro= 1.5, guaranteeing a certain stiffness of the bonds whilest way to equilibrate the system was to use our standard MD
avoiding high frequency modeévhich would require a algorithm. The measured static properties, as obtained in the
rather small time step for the integraticemd chain crossing. MC simulations, were in good agreement with the measured
Furthermore, with these parameters we set the favored borgtatic properties of the configurations produced with the
length to a value slightly lower than the length favored bymolecular-dynamics algorithm. Furthermore, the obtained
the Lennard-Jones potential. Thus we introduced two differenergy distributions were similar. To check what influence
ent incompatible length scales in our system, which shouldhe NoseHoover thermostat has on the Newtonian dynam-
help to prevent the emergence of long range order at lowdcs, we also carried out some simulations in the microcanoni-
temperatures. cal ensemble, and compared the results to the results of the
All simulations in the NVT ensemble were performed us-simulations with NoséHoover thermostat. Both methods
ing a NoseHoover thermostaft37,38 to keep the tempera- lead to the same results; for example, the velocity autocorre-
ture at the desired level. In this technique the model systertation function of the two simulations were identi¢&ig. 1).
is coupled to a heat bath which represents an additional déFhis means that the thermostat only has a weak influence on
gree of freedom represented by the variabl@éhe equations the Newtonian dynamics, although one is able to tune the
of motion are temperature with it very effectively.
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t FIG. 2. Thermodynamic paths for the cooling experiments we

FIG. 1. Velocity autocorrelation function with and without a performed in the simulation.
(dashed lingNoseHoover thermostat. The two lines are practically
identical, meaning that the thermostat has only a weak influence o
the Newtonian dynamics. Note that because we were usin
Lennard-Jones units, all quantities shown are dimensionless.

Eonfigurations which we used for NVT simulations. Note
$hat we performed the simulations themselves at constant
volume, but this procedure made sure that the average pres-
sure was constargtvithin 5%) at all temperatures. This was
Starting configurations were obtained using the methogione because NVT simulations are computationally more ef-
proposed by Kremer and Grel23,36. Before being sub- ficient, and also because we observed better stability for
jected to the Noséloover thermostat, each configuration NvT than for NpT simulations. At almost all temperatures
thus generated was propagated in the microcanonical eRye simulated 120 polymer chains, each consisting of ten
semble Q=). At the beginning of this step the velocities 1onomers. Furthermore, at each temperature ten different
were rescaled several times in order to come close to th@onfigurations were simulated, and simulations were per-

desired temperature range. In the next equilibration step th% med at temperatures=0.48, 0.5, 0.52, 0.55, 0.6, 0.65
thermostat was switched on, and the system was propagatgd, 4 o 20420 T T T e e

until the mean square displacement of the centers of mass of ’
the polymer chains had reached sevaéj Ry denoting the
radius of gyration. At this time all measured correlators had
already decayed to zero. Ill. STATIC PROPERTIES

In order to speed up computational efficiency, we applied |, this section we will discuss the static properties of the
a linked cell scheme combined with a Verlet tapldl]. Be-  ejts as a function of temperature. The thermodynamic paths
cause of the Noseloover thermostat it was not possible 10 o1 our cooling processes in the NVT and NpT ensembles are
use a velocity Verlet algorithm; instead we used a Heun al'shown in Fig. 2. In the NVT ensemble we started our simu-
gorithm[45] with a time step ofit=0.002. lation at modestly high pressure at a high temperature. Upon

: All simulations in Fhe NVT ensem_bk_a were performed US'cooling, the pressure decreases, and becomes negative
ing 95 polymer chains, each consisting of ten monomers,

The volume was held constant ®t=1117.65 p=0.85). aro_undT=Q.7._This r_legativ_e pressure hgs consequences
Since the density was the same for all temperatures, it w hich we will discuss in detail when analyzing the structure
not necessary to generate starting configurations at eve ctor of th_e meit. In the NpT_ensembIe we keep the pressure
temperature, as it was for the simulations in the NpT enft @n ambient value, and adjust the density upon cooling.

semble, but one could use the ones generated and equili-
brated at another temperature and equilibrate them again at
the new temperature. Simulations were performed at tem-
peraturesr =0.35, 0.38, 0.4, 0.45, 0.5, 0.6, 0.7, 1.0, and 2.0. Let us now first look at the chain conformations upon
For statistical reasons ten different configurations were simueooling. The Hamiltonian we chose has no intramolecular
lated at each temperature. The equilibration of a configurabond angle part, and therefore there is no tendency of our
tion at the lowest temperature required300° MD steps, or  chains to become stiffer at lower temperatures. Consequently
almost two weeks of CPU time on an IBM Power PC for the size of the chains varies very little in our whole tempera-
each configuration. ture range(R;=2.10 atT=0.35, andRy;=2.23 atT=2.0 in
Since in the simulations of the NpT ensemble we wantedhe NVT ensemble, anRy=2.09 atT=0.48, andRy=2.23
to keep the average pressurepat 1.0 at all temperatures, at T=2.0 in the NpT ensembleIn Fig. 3 we show the
the situation differed from the one of the simulation of thebehavior of the structure factor of the chains in the NVT
NVT ensemble. In a first step we used a MD algorithm,ensemble for the lowest simulation temperature. Also in-
which also allowed for volume fluctuations of the systemcluded is a Debye functiof47] calculated with the indepen-
[39,46], to obtain the average density of the system at alently measured radius of gyration. The good agreement
certain temperature. These runs lasted up $016° MD  with the simulation data shows that the chains remain Gauss-
steps. Afterwards, in a procedure analogous to the one déan on the large scale over the whole temperature range. The
scribed above, we used the found density to generate startiragiffness paramete€y was in the range of 1.51 to 1.56.

A. Chain conformations



846 BENNEMANN, PAUL, BINDER, AND DUNWEG 57

10 o r 0.010
0.008 | ]
T=0.35
. . 0.006 | T=0.5
= ¢ Simulation = _J\/\\ T=0.6
& — Debye D 004 b ;—/\’/M T=0.7
M T=1.0
l 0.002 —_,/\_,M T=2.0
‘//w T=4.0
0.000 . .
L - N 0.0 5.0 10.0 15.0
10 10 10 q

q
FIG. 5. Structure factor of the melt for a set of temperatures in

FIG. 3. Structure factor of the chains for the lowest simulation;,,o NvT simulations. Note the appearance of a small peak aglow
temperature. Also shown is the Debye function corresponding to thg a5 aroundr=0.6. which is due to the emergence of a micro-
independently measured radius of gyration. void in the system. '

B. Packing behavior . .
pressure where the system would be likely to contract into a

The effect of the two competing length scales we intro-gense melt, expelling the free volume. The microvoid, which
duced into our model can be nicely seen by looking at thgontains up to around 5% of the simulation volume, can be
monomer-monomer pair correlation function shown in Fig.jgentified both by visual inspection and numerical analysis.
4. First of all we want to note that the pair correlation func-The position of the smallj peak is related to the typical
tion shows no long-range ordering even at the lowest teMgiameter of a microvoid. For the NVT simulations, we there-
perature we studied. The nearest neighbor peak, which is jugére have to keep in mind that at the lowest temperatures our
two upon cooling. The first of the peaks is due to the preqmount of internal surfaces.
ferred intramolecular distance or bond lengti 0.96. The For the NpT simulations this effect is of course absent, as
second peak is the preferred nearest neighbor position in theyn pe seen in Fig 6. In this case the structure factor shows
minimum of the intermolecular Lennard-Jones interaction athe pehavior also seen experimentally, with the amorphous

— 21/ . . .
Fmin=2"". . . halo moving to largeq values due to the increased density at
For the NVT ensemble this real space behavior transformgwer temperatures.

into the structure factor of the melt shown in Fig. 5. The

amorphous structure is manifest her_e in the amorphous_halo IV. DYNAMIC PROPERTIES

aroundg=6.9, which contains both intramolecular and in-

termolecular nearest neighbor contributions. With decreasing In this section we will look at the temperature dependence
temperature the short-range intermolecular order increasesf the largest relaxation time in the melt. For simple glass
and since this is the larger of the two length scales contribforming liquids this is called thex-relaxation time. This is
uting to the amorphous halo, its position shifts to smatjer the time scale at which a particle breaks free of the cage of
values at first. At lower temperatures, however, this shift ists nearest neighbors, and large scale structural relaxation
reversed, and the peak moves to highewrlues, as would be becomes possible. For polymers then, this also is the time
expected for thermal contraction of the sample. In the samecale on which local conformational rearrangements start to
temperature range a small peak at very smplvalues occur. The largest relaxation time in polymers, however, is
(q=1.7) develops. Both effects result from a microvoid de-the time for the overall renewal of the chain conformation,
veloping in the system, because we are in a range of negatiwghich is a factor oN? (N being the number of monomers in

a polymer chaiplarger for chains following Rouse dynamics
[48], and a factor ofN® for larger chains where reptation
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FIG. 4. Pair correlation function for the NVT simulations and q

the range of indicated temperatures. Curves for lower temperatures
are shifted upward. FIG. 6. Same as Fig. 5 for the NpT simulations.
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FIG. 7. Intermediate dynamic structure factor at the first maxi- FIG. 8. Same as Fig. 7, but with times scaled bydhelaxation
mum of the static structure factor for the NVT simulatig@as and time scale for the range of temperatures where the time-temperature
the same for the NpT simulatiorib). superposition holdga) NVT ensemble(b) NpT ensemble.

effects have to be taken into accoyd¥]. The temperature structure factor is qualitatively the same, with the plateau
dependence of this longest relaxation time is determined byegion occurring at a smaller value Bf(t). We empirically
the temperature dependence of the prefactor in these scalirgfine ana-relaxation time scale by the requirement

laws, which is the time scale for local conformational

changes, which, as discussed, is enslaved tathmcess of Fq(7,)=0.3. (8

the structural relaxation.
In the undercooled liquid close to the mode coupling critical

A. Structural relaxation temperature the time-temperature superposition principle is
o o expected to hold. Figured@® and &b) show that indeed we
We will discuss the structural relaxation in terms of thefing 5 superposition of the-relaxation behavior for the NVT

incoherent intermediate dynamic structure factor simulation in the region 0.38T<0.45; for the NpT simu-
1M lations this occurs in the range 048 <0.6.
Fo()={ — > ealri®-riol) 7 One generally also analyzes therelaxation behavior by
a M =1 fitting the empirical Kohlrausch-Williams-Watts formula to
the data,
where M stands for the total number of monomers in the
melt. As can be seen in Fig. 7, which shoWg(t) at the f(t):Ae—wT)B_ 9

peak position of the static structure factor, the intermediate

dynamic structure factor starts to exhibit a two step relaxin the temperature range where we found the time-

ation process when Iovyering the temperature, the so-cﬁ_lled temperature superposition principle to hold, we find
and « processes. In this paper we focus on the behavior of

the long-timea process, and leave a detailed analysis of the B=0.560.04 (NVT); B=0.7£0.08 (NpT). (10
B relaxation to a forthcoming publication.

Comparing the behavior of the NV[Fig. 7(@)] and NpT  The error bars are mostly due to the effect that one can
simulations[Fig. 7(b)], we see that the slowing down of the changegB by almost 15% by changing the time interval over
structural relaxation and the development of the two stepvhich one tries to fit the data. When one tries to fit the
process occur for higher temperatures in the NpT ensembléehavior at higher temperatures, the resulting valuessfor
The behavior ofF4(t) at the first minimum of the static increase, approaching unity at high temperatures.
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As can be seen in Fig. 10, we obtalg=0.215+-0.02 and
E=1.1+0.1 for the NVT simulations, and;=0.34+0.02
and E=0.93+0.1 for the NpT simulations. Close to the
mode coupling critical temperature the VFT curve is well
approximated by a power law divergence with exactly the
same critical temperature and exponent as obtained from an
independent mode coupling fit. Very close Tg the VFT
curve flattens in comparison with the ideal mode coupling fit.
L - > - A This is again in accord with what would be predicted by an
10 10 10 10 extended mode coupling analygi®2], taking into account
T-T, structural decay via activated processes. It is also a behavior
typically seen in experimerd9] and simulationg50].

FIG. 9. Critical behavior of thex-relaxation time scale close to
the respective critical temperaturds,=0.32 in the NVT ensemble
and T.=0.45 in the NpT ensemble, plotted agaifist T.. Open
diamonds are for the NVT ensemble, and closed diamonds are for The overall conformational relaxation of polymer mol-
the NpT ensemble. ecules can be conveniently analyzed by looking at their self-

diffusion behaviof51]. For this purpose one can look at

For the a-relaxation time scale the mode coupling theory

B. Polymer self-diffusion

= (Il ol 2
of the glass transition predicts a power law divergence g1(t) =([rne(t) —rye(0)]%), 13
which describes the mean square displacement of the inner
T, (T=To) 7. (11)  Monomerg] labels different polymer chaiisThe analogous

quantity in the center-of-mass reference frame of chain
[rl.(t) being the position of the center of mass of polymer
Figure 9 shows that we indeed observe this behavior With at timet] is
and vy depending on the thermodynamic ensemble. For the _ _ . .
NVT simulations we obtain T,=0.32:0.01 and 92(t) = ([l ) =1l ) —rlyn(0) +14(0)1%).  (14)
y=2.3£0.2, and for the NpT simulations we have
T.=0.45£0.01 andy=1.95+0.15. For our model we there-
fore equilibrated our system to temperatures within 10% of — (i _ i 2
T.. Note that neafT. in the NpT ensemble the density is 9a(1) = {Lrem(®) = Ten( 0)15)- 19
much higher than for our choice of density in the NVT en- Finally, the mean square displacement of monomers at the
semble, and thus the large differencelgfis not unexpected. free ends of the chains, and the analogous quantity in the
However, it should be mentioned that it is in principle center-of-mass reference frame, are defined as
also possible to fit our data with the well-known Vogel- j i )
Fulcher-TammaniVFT) equation 9a(t) =([rendt) —rend 0)1%) (16)

95(D) =([rlnd ) — () =L d 0) +rL(0)]7). (17

The mean square displacement of the center of mass itself is

4

10
Figure 11a) showsg, to g5 measured alT=1.0, and Fig.
10° . 11(b) the same quantities @t=0.35 as measured in the NVT
ensemble. Fog4(t) one can distinguish several regimes. For
10° T short timest<<0.1 one observes a ballistic regime which is
‘ followed by a subdiffusive regime and finally a free diffusion
@ 10 T regime. Such a behavior is typical of polymer systems, and is
. predicted by many theories, e.g., the Rouse model. As can be
10 1 seen in Fig. 1(b), the situation is a little bit different at
B lower temperatures. The ballistic regime is now followed by
10 i a plateaulike regime which precedes the subdiffusive one.
Such a plateau regime is typical for glass formers, and a sign

of the onset of the structural arrest of the system. The height

of the plateau is closely related to the size of the cage a

particle is trapped in. Another difference from high tempera-
FIG. 10. 7, as measured in the NVT ensemble. Also shown aretures is that the subdiffusive regime stretches out far more in

best fits with the VFT equation, and the predictions of MCT. Thetime and, therefore, the free diffusion limit is reached only

temperature range is shifted Bx=0.32 to show the similarity of  after long simulation times.

the predictions of the two equations for our data closg o Note The subdiffusive regime can be fitted using

that very similar plots can be obtained for the quantities discussed

in Fig. 12. g,(t)=?(Wyt)*. (18)
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FIG. 11. Mean square displacements as a function of time for
T=1.0(a) andT=0.35(b). g5 describes the center of mass of the  FIG. 12. Critical behavior of the self-diffusion coefficient and
chain,g; andg, are center and end monomers, respectively,ggnd the rate constants for the NV(B) and NpT simulationgb).
and gs are the corresponding displacements in the center-of-mass ) )
reference frame. All quantities shown were measured in the NvT In Fig. 12,D(T), W1(T), andW,(T) are plotted against

ensemble. the temperature. As one sees for lower temperatures, all
quantities follow a power law behavior
We obtalnxlz_ O._62t 0.02 for all S|mulate_d temperatures. Do (T—T,)", 21)
04(t) behaves similarly ta,(t). Here the diffusive regime
is preceded by a subdiffusive one as well, which can be fitted W (T-T.)% i=14. 22)

by
5 . The critical temperature and the exponent are, within a range
9a(t)=0*(Wat)™. (19 of error, the same as those for therelaxation time scale in
. . . the respective ensemble. This shows the coupling of the con-
Again the exponent is approximately the same at all temsqrmational relaxation and diffusion of the polymer chains to
peratures. We finat,=0.67+0.03. the local structurak relaxation in the melt, as discussed in
_If our model chains would exactly follow the Rouse pre- ihe heginning of this section. Note that it is again possible to
dictions, the local monomer mobilitie4; andW, should be it the data with the VET equation using the samgand E

equal, and,; andx, should be equal to 0.5. Itis, however, a (yithin the range of errgras obtained when fitting the-
general finding from simulations that, for chains as short asg|axation times.

ours, one generally observes a smeared out crossover behav-

ior [21] from short- to long-time diffusion instead of the V. CONCLUSIONS
predicted Rouse exponent. At later timgs(t), gs(t), and
g4(t) all show the expected simple diffusive behavior In this paper we have presented a molecular-dynamics
simulation of the thermal glass transition in dense polymer
g;(t)=6Dt, (20 melts. We have studied this transition at constant density as

well as constant pressure. Our model is a coarse-grained
where the self-diffusion constant is the same foriallAt bead-spring model with nonlinear springs connecting mono-
lower temperatures, especially fgf(t) andg,(t), itis very  mers along a chain and Lennard-Jones interactions between
hard to distinguish this regime from the preceding subdiffu-all monomers. In order to introduce packing frustration into
sive one. the model, we chose incompatible length scales for intra-
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molecular and intermolecular nearest neighbor distances. Ailvhich is the Rouse time for the overall renewal of the chain

our results were obtained on well equilibrated samples.

conformations. This divergence can be observed by looking

We showed that the static structure factor of our chains okt the mobility of monomers on intermediate length scales
lengthN =10 could be well described by a Debye function at(as measured by the rate constattsandW,) and the cen-
all temperatures. The size of the chains is mostly temperatui@r of mass self-diffusion coefficient of the chains. All these
independent, as we introduced no temperature dependegtantities follow power law singularities with values for the
stiffness into the model. The two incompatible length scalegyitical temperatures and exponents in nice agreement with
in the Hamiltonian can be seen in a split of the first neighbokhe behavior of ther-relaxation time scale. The divergence
peak of the monomer-monomer pair correlation function aould be equally well described by a VFT fit to the data, and
low temperatures. For the constant volume simulation, thg could be shown that close 6, the MCT power law sin-

density we chose led to negative pressureTer0.7. This

gularity is a tangent approximation of the VFT curve. A

instability led to the buildup of microvoids taking up ap- detailed analysis of thg-scaling regime predicted by mode

proximately 5% of the simulation volume at low tempera- coupling theory of the glass transition will be presented in a
tures. The observed negative pressure is an indication thakparate publication.

the void formation process is not fully completed on the time

scale of the simulation.

In this work we analyzed the glass transition in terms of

the a-relaxation process. The divergence of theelaxation
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