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Multipole expansion for inclusions in a lamellar phase
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Inclusions in a bulk smectic phase distort the ordering of nearby layers. We argue that a multipole expansion
for this distortion represents a powerful technique for understanding the linear interactions between inclusions
with arbitrary boundary conditions. The fields for the first few higher-order moments are derived and some
specific examples are discussed. Our results show the importance of the orientation and/or configuration of the
inclusions.@S1063-651X~98!04201-9#

PACS number~s!: 82.70.Dd, 61.30.Cz, 87.10.1e
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I. INTRODUCTION

In recent years much progress has been made toward
understanding of the physical, chemical, and biological pr
erties of fluid membranes@1–5#. Such systems are of intere
to physicists due to their unique static and dynamic prop
ties and also to biophysicists who see them as models of
membranes. A cell membrane is primarily a lipid bilaye
albeit one with a wide spectrum of embedded proteins@3–5#.
Many fundamental biological processes take place in th
membranes and these are often controlled by one or mor
the species of embedded proteins. Similarlayeredmembrane
phases in solution provide one of the most extensively s
ied examples of the smectic-A liquid crystal @6,7# and are
exploited in numerous industrial contexts.

While much of the earlier studies of fluid membra
phases focused on essentially homogeneous systems
has been increasing recent attention given to heterogen
systems. Many of these have sought to understand
membrane-mediated interactions between localized in
sions residing in or between one or two@8,9# layers. Al-
though nonlinear studies have recently appeared@10# most of
the theoretical studies have been at the level of a linear
theory. These usually involve minimizing the energy of d
formation of the membrane~s! given specific boundary con
ditions for the membrane near the inclusion. The prec
choice of boundary conditions depends on the system u
consideration and this in turn strongly effects the results.
example, the interaction potential between inclusions
been shown to be highly sensitive to this choice, even at
level of whether it is attractive or repulsive@9#.

Some studies of interactions between pointlike inclusio
in bulk nematic@11# and smectic-A phases@12,13# also exist.
It is the aim of the present work to extend this formalism
deal with more complex inclusions in the smectic phase
ing a multipole expansion. We argue that this represen
powerful technique as it allows us to extract the far-fie
interaction between inclusions with arbitrary boundary co
ditions to any order. This may often be preferable to dire
and rather tedious, numerical calculation with the us
drawback of lack of clear physical insight.

This paper is constructed as follows. In Sec. II we int
duce and describe the Hamiltonian for a smectic liquid cr
571063-651X/98/57~1!/823~6!/$15.00
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tal with general inclusions present. This is then minimiz
and the results are employed in Sec. III where we introd
a multipole treatment for the inclusions. This gives both t
two body interactions and distortion field to arbitrary orde
In Sec. IV we discuss two specific examples, relevant
inclusions that induce a local curvature in the layers a
linear rodlike inclusions@14#. After the conclusions there
follow two Appendices that contain some cumbersome
sults that are nonetheless central to this paper.

II. GENERALIZED INCLUSIONS IN A BULK
SMECTIC- A PHASE

In a bulk smectic-A phase the layers are stacked atop o
another with average layer spacingd and thez direction
conveniently defined by the average layer normal. Deform
tion of the layer away from its average position may conv
niently be parametrized by the continuous scalar displa
ment fieldu, which represents the normal displacement
the layers in thez direction. Such a description leads to th
so-called Landau–de Gennes Hamiltonian@1,2,15#. We
model the effect of our inclusions in the smectic phase
including a term;c]zu in the energy density. The field
c~r !, which can have either sign, can be chosen so as
mimic the effect of an arbitrary inclusion~or distribution of
inclusions! as discussed below. This term represents
lowest-order coupling between the inclusions and the lo
layer compression~or expansion! ]zu. We reject the other
acceptable term;c¹ i

2u, which does not preserve up-dow
symmetry for a point particle and which would require t
introduction of additional Lagrange fields to ensure that
stresses are continuous across the planez5const through the
particle. It will turn out thatall linear perturbations are mos
easily introduced via the term;c]zu. Finally we omit all
terms, including those scaling like;c2, which correspond
to direct interparticle interactions as we wish to study h
only the membrane-mediated interparticle interactions. T
we write the HamiltonianH for our system as

H5
B

2 E d3r @~]zu!21l2~¹ i
2u!21c]zu#. ~1!
823 © 1998 The American Physical Society
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824 57M. S. TURNER AND P. SENS
In this expression¹ i is the gradient operator in thex-y
plane, l5AK/B is a length characteristic of the smect
~typically of the order of the layer spacingd!, andB andK
are respectively the compressional and bending modul
the smectic. The dimensionless fieldc~r ! controls the ampli-
tude of the local deformation and depends on the mic
scopic details of the inclusion-layer interactions. For e
ample, c(r )}2d(r ) corresponds to a pointlike inclusio
that exerts a local outward push on the neighboring lay
Examples of other more complex inclusions will be d
cussed in Sec. IV below.

Equation~1! represents a linearized theory and includ
the leading-order terms in an expansion in powers of der
tives of u. We require that the inclusions couple sufficien
weakly to the layers so as not to induce large deforma
gradients. This expansion can be shown to break down o
when c*1. In what follows we assume that we can safe
neglect thermal fluctuations either due to negligible am
tude or because they can be integrated out, renormalizinK
and B. Since the smectic-A exhibits quasi-long-range orde
our results are applicable only on length scales less than
layer orientation correlation length. However, since this v
ies exponentially with the layer rigidity~in kBT units! it can
be much larger thand @2#. Thus our treatment is appropria
for many thermotropic phases, such as the low tempera
diblock copolymer lamellar phase, and may also be app
priate for certain lyotropic systems.

Minimization of Eq.~1! is most easily performed in Fou
rier space, as discussed in more detail elsewhere@13#. We
find that the distortion field is given by

u~r !5E d3r 8G~u!~r2r 8!c~r 8!, ~2!

where the Green’s functionG(u)(r ) is

G~u!~r !5
21

16plz
e2r i

2/4luzu. ~3!

The energy follows by substitution

U5E d3r 8E d3r G~r2r 8!c~r !c~r 8!, ~4!

where

G~r !5
B

64plz2 S 12
r i

2

4luzu Dexp2
r i

2

4luzu
. ~5!

As mentioned above these results are not new@13# and
were previously employed in the context of interactions
tween pointlike particles. In the present work the fieldc has
a different interpretation and can be chosen to model
of
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interactions between particles with arbitrary particle-lay
boundary conditions. Equations~2!–~5! will be required in
Sec. III below, which contains the main results of this pap

III. MULTIPOLE EXPANSION

In this section we will present a multipole expansion f
the interaction potential between generalized inclusions.
define the smectic potential fieldf:

f~r !5E d3r 8G~r2r 8!c~r 8!. ~6!

This may be thought of as the energy cost of inserting a u
pointlike inclusion atr ~one with unit ‘‘charge,’’ as dis-
cussed below!.

First consider a distributionc(r 8) that is localized near
the origin ~say! and expand the kernel of Eq.~6! for ur 8u
!ur u using

f ~r2r 8!5 f ~r !2r i8¹ i f ~r !1 1
2 r i8r j8¹ i¹ j f ~r !1••• , ~7!

where¹ i denotes the gradient in ther i th direction. Thus the
potentialf becomes

f~r !5G~r !E c~r 8!d3r 82¹ iG~r !E r i8c~r 8!d3r 8

1
1

2
¹ i¹ jG~r !E r i8r j8c~r 8!d3r 81••• . ~8!

This expression is essentially the same as the correspon
expansion of the electrostatic potential far from some cha
distribution @16#. We define quantities analogous to charg

Q5E c d3r 8, ~9!

dipole moment

p5E r 8c d3r 8, ~10!

and quadrupole moment

Di j 5E r i8r j8c d3r 8. ~11!

However, in the present caseG(r ) is not the Coulomb po-
tential but is instead given by Eq.~5!. The interaction poten-
tial U(r ) between two generalized inclusions separated br
follows by inserting a second particle atr . Since the particles
need not be identical this second particle, and its mome
are labeled with a tilde:
U~r !5E f~r1r 9!c̃~r 9!d3r 95G~r !QQ̃1¹ iG~r !@Qp̃i2Q̃pi #2¹ i¹ jG~r !@pi p̃j2
1
2 ~QD̃i j 1Q̃Di j !#2 1

2 ¹ i¹ j¹kG~r !

3@piD̃ jk2 p̃iD jk1•••#1 1
4 ¹ i¹ j¹k¹ lG~r !@Di j D̃kl1•••#1••• . ~12!
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57 825MULTIPOLE EXPANSION FOR INCLUSIONS INA . . .
The first two fields in the expansion~“G and2““G! are
given in Appendix A. We see from the results of this Appe
dix that the higher moments of the inclusions interact ra
ally with essentially the same range.Alz. In addition the
contribution to the potential from each higher moment has~i!
an increasingly rich form with more turning points, corr
sponding to more metastable states, and~ii ! an increasingly
strong power law decay in thez direction.

The distortion field u

The distortion fieldu has already been shown to be r
lated to the inclusion fieldc according to Eq.~2!. Not only
can we calculateu(c) but, by inversion, alsoc(u). This is a
powerful feature, particularly if we wish to impose bounda
conditions, e.g., on the shape of the distortion near the in
sion. An example of how such boundary conditions can
imposed is given in Sec. IV below@17#.

Furthermore we can obtain the smectic distortion fi
around a generalized inclusion by a similar multipole exp
sion of Eq. ~3!. Using the expansion~7! we find that an
inclusion at the origin induces a distortion field atr given by

u~r !5G~u!~r !Q2“G~u!~r !•p1 1
2 ¹ i¹ jG

~u!~r !Di j 1••• .
~13!

Thus we are able to visualize the distortion field induced
each moment ofc; see Fig. 1.

The multipole expansions discussed in this section c
verge forz.d. A discussion of the case when the particl
reside in the same layer (z&d) can be found in Appendix B

IV. SOME SPECIFIC EXAMPLES

We have already emphasized that the multipole expan
can greatly simplify the calculation of the interaction pote
tial. In this section we will demonstrate this with two speci
examples, a unit dipole in thez direction and a linear rodlike
inclusion.

The smectic deformation field around a unit dipole in t
z direction is given by2¹zG

(u) @see Eq.~13! and the results
given in Appendix A#. It induces a local curvature in th
layers without any net change in the spacing of the nea
layers, as shown in Fig. 1. Thus we have been able to

FIG. 1. The smectic deformation field induced by a po
z-dipole inclusion at the origin~see text! is shown. A planar slice in
the x-z plane is shown. The amplitude of the deformation is
arbitrary units while thez and x axes are ind and 2Ald units,
respectively.
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with curvature-inducing inclusions without the direct co
pling term;c¹ i

2u discarded from Eq.~1!. As mentioned in
Sec. II this offers considerable simplification, with no add
tional Lagrange fields required. The ‘‘trick’’ of constructin
a dipolar inclusion to induce curvature is, in a somewh
contrived way, similar to the use of the method of ima
charges in electrostatics.

Such dipolar inclusions are very similar to those cons
ered elsewhere@9#, where the magnitude of the angle that t
layers make with the inclusion was fixed as a boundary c
dition. This comparison is easily understood when we rea
that we can control themaximumslope of the neighboring
layers induced by the dipole. The maximum slope is foun
microscopic length.Ald away from the dipole and is sim
ply linear in the dipole momentpz . The maximum slope of
the layers atz56d ~say! is

u]xuu max
z56d

5
0.69pz

16pl3/2d5/2. ~14!

Thus the fixed contact angle boundary condition crudely c
responds to az dipole where the angle is fixed by the amp
tude of the momentpz . This identification delivers a consid
erable algebraic simplification.

We may also go on to ask about the interaction betw
two such dipoles. Their interaction is given by2¹z¹zG @see
Eq. ~12! and the results given in Appendix A#, which is
plotted in Fig. 2. This potential is nonmonotonic and chang
sign each time either one of the dipoles changes sign. T
there are regions in space that are attractive for parallel
poles but repulsive for antiparallel and vice versa. This m
have interesting implications for dipoles that are not perm
nently anchored either up or down in the membrane.

Finally we mention briefly the interaction between rodlik
inclusions that couple uniformly to the layer spacing alo
their length. Such rods have a net charge-charge interac
but this is insensitive to their relative orientations. Furth
more rods with indistinguishable ends have no dipole m
ment. Thus the leading-order orientationally dependant te
enters at the quadrupolar order. The quadrupole moment
simple rod is easily calculated: for a rod confined to thex-y
plane that makes an angleu with the x axis it is

t FIG. 2. The interaction potential in arbitrary units between tw
parallel point z dipoles as a function of their radial separatio
~along x! in units of 2Alz. The energy scales with their vertica
displacement as 1/z4 and changes sign with each flip of either d
pole.



es

is
-

s

o
ion
s
em
e

r
av
d
o

ge

io
s-

-
-

ni

he
in-
n

to
ra-

826 57M. S. TURNER AND P. SENS
Di j 5bS cos2u
sinu cosu

sinucosu
sin2u D , ~15!

whereb is a coupling constant. For two such quadrupol
making anglesu1 andu2 with their line of separation~the x
axis! the interaction potentialU is obtained from Eq.~15!
and ¹ i¹ j¹k¹ lG ~this last tensor is easily calculated but
too cumbersome to give in full!. The energy of the two qua
drupoles is found to be

U~ x̄,u1 ,u2!5
b2

25l2d4z4 @12236x̄2118x̄422x̄6

2~24x̄2219x̄412x̄6!~cos2u11cos2u2!

1~6218x̄219x̄42 x̄6!cos2~u12u2!

1~5x̄42 x̄6!cos2~u11u2!#, ~16!

where x̄25x2/(4luzu). Plots of the relative orientation
$u1 ,u2% that minimize this energy are given in Fig. 3.

V. CONCLUSIONS

The multipole analysis presented here represents a p
erful technique for describing the distortion and interact
fields induced by general inclusions. Our analysis offer
considerable saving over direct calculations. We have d
onstrated the 1-to-1 relationship between the inclusion fi
c and the smectic distortion fieldu(r ). Hence it is possible
to choosec to mimic the effect of any inclusion. Thus ou
results are relevant for quite general inclusions. We h
shown that certain features of simple inclusions can be
scribed adequately by considering only a single higher m
ment ofc.
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APPENDIX A: MULTIPOLAR FIELDS

Consider two inclusions separated byr and choose a co
ordinate system in which thex axis passes through the pro
jection of the particles onto thex-y plane. We employ the
notational simplification x̄25x2/(4luzu) and z̄5uzu/d in
which units we have the potential field between u
‘‘charges’’ ~5!
,

w-

a
-

ld

e
e-
-

d

l

t

G5
B

64pld2 e2 x̄ 2
~12 x̄ 2!z̄ 22 ~A1!

between a unit charge~at the origin! and a unit dipole

“G5
2Be2 x̄ 2

64pld3 SAd

l
x̄~22 x̄ 2!z̄ 25/2

0
~224x̄ 21 x̄ 4!z̄ 23

D ~A2!

and between unit dipoles

FIG. 3. These plots show the equilibrium angles~a! u1 and ~b!
u2 of two point quadrupole inclusions in a smectic phase. T
angles correspond to those made by the projections of rodlike
clusions onto thex-y plane relative to a line of separation, chose
to be thex axis. We restrictu1 and u2 to lie on @0,p/2# and
@2p/2,p/2# without loss of generality. These angles correspond
the equilibrium orientation of two rods for large enough sepa
tions.
2““G5
2Be2 x̄ 2

64pld4 S ~d/l!S 211
7

2
x̄ 22 x̄ 4D z̄ 23 0 Ad/l x̄~626x̄ 21 x̄ 4!z̄ 27/2

0 ~d/l!S 211
1

2
x̄ 2D z̄ 23 0

Ad/l x̄~626x̄ 21 x̄ 4!z̄ 27/2 0 ~6218x̄ 219x̄ 42 x̄ 6!z̄ 24

D .

~A3!

Any higher-order terms can also readily be calculated.
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As discussed in Sec. III A above the smectic displacement field atr induced by an inclusion at the origin can also be writt
as a multipole expansion; see Eq.~13!. The deformation field due to a unit charge is given by Eq.~3!. This is circularly
symmetric in thex-y plane and has odd symmetry inz:

G~u!5
2sgn~z!

16pld
e2 r̄ i

2
z̄ 21, ~A4!

wherer̄ i
25r i

2/(4luzu) and the factor sgn(z)[z/uzu preserves symmetry. The deformation fieldu around a unit dipole and a un
quadrupole is found to be

2“G~u!5
e2 r̄ i

2

16pld2 S sgn~z!Ad/l x̄z̄ 23/2

sgn~z!Ad/l ȳz̄ 23/2

~12 r̄ i
2!z̄ 22

D ~A5!

and

1

2
““G~u!5

e2 r̄ i
2

32pld3 S sgn~z!
d

l S 2
1

2
1 x̄ 2D z̄ 22 sgn~z!

d

l
x̄ȳz̄ 22 Ad

l
x̄~22 r̄ i

2!z̄ 25/2

sgn~z!
d

l
x̄ȳz̄ 22 sgn~z!

d

l S 2
1

2
1 ȳ2D z̄ 22 Ad

l
ȳ~22 r̄ i

2!z̄ 25/2

Ad/l x̄~22 r̄ i
2!z̄ 25/2 Ad

l
ȳ~22 r̄ i

2!z̄ 25/2 sgn~z!~224r̄ i
21 r̄ i

4!z̄ 23

D , ~A6!
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respectively. The symmetry of these results can be chec
by carefully transformingz→2z throughout.

APPENDIX B: DISCUSSION AND REFINEMENTS
IN THE ‘‘SHORT RANGE’’ LIMIT z&d

The singular nature of the Green’s functions~17!, ~20!
nearz50 may, at first sight, appear to be a cause for c
cern. In fact this behavior is not indicative of a fundamen
flaw in the theory provided we adopt a physically motivat
‘‘smoothness criterion’’ forc~r !, which is discussed in more
detail below. Alternatively we can simply argue that a low
cutoff at z.d is a natural consequence of the breakdown
the continuum theory at such length scales. Both approa
produce essentially the same qualitative result.

We can make the physical requirement of smoothnes
c more explicit by replacing pointlike ‘‘sources’’ ofc with
sources which are Gaussian inr i according to

csmooth~r !5
1

pb2 E c~r 8!e2~r i2r i8!2/b2
d2r i8 , ~B1!
r-

,

ed

-
l

r
f
es

in

whereb is some microscopic length of the order ofd and the
factor 1/(pb2) preserves the normalization. The smooth
function csmoothcan then be substituted into Eq.~6! @or Eq.
~2!#. The resulting multipole expansions are identical to E
~12! or ~13! except that the variablez is everywhere replaced
by zsmoothgiven by

zsmooth5z1 Hb2/~4l!

b2/~2l!

for the distortion fieldu
for the interaction potentialU.

~B2!

This is an exact result. It is important in that it tells us tha
microscopic cutoff inz arises naturally from the requiremen
that c be sufficiently smoothly varying.

While the above treatment reassures us that there is
physical flaw in our theory it is nonetheless still dangerous
attempt a quantitative extrapolation of our results toz.d
since there are now no explicit guarantees of convergence
the series~6! or ~13!. However, we can say that the intera
tion between two particles in the same layer is short ran
and has a more complex form for higher order mome
of c.
.
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