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Multipole expansion for inclusions in a lamellar phase
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Inclusions in a bulk smectic phase distort the ordering of nearby layers. We argue that a multipole expansion
for this distortion represents a powerful technique for understanding the linear interactions between inclusions
with arbitrary boundary conditions. The fields for the first few higher-order moments are derived and some
specific examples are discussed. Our results show the importance of the orientation and/or configuration of the
inclusions.[S1063-651X98)04201-9

PACS numbg(s): 82.70.Dd, 61.30.Cz, 87.18e

[. INTRODUCTION tal with general inclusions present. This is then minimized
and the results are employed in Sec. lll where we introduce

In recent years much progress has been made towards anmultipole treatment for the inclusions. This gives both the
understanding of the physical, chemical, and biological proptwo body interactions and distortion field to arbitrary order.
erties of fluid membrangd—5]. Such systems are of interest In Sec. IV we discuss two specific examples, relevant for
to physicists due to their unique static and dynamic properinclusions that induce a local curvature in the layers and
ties and also to biophysicists who see them as models of cdlinear rodlike inclusiong14]. After the conclusions there
membranes. A cell membrane is primarily a lipid bilayer, follow two Appendices that contain some cumbersome re-
albeit one with a wide spectrum of embedded protgss].  Sults that are nonetheless central to this paper.
Many fundamental biological processes take place in these
membranes and these are often controlled by one or more of
the species of embedded proteins. Simdgeredmembrane Il. GENERALIZED INCLUSIONS IN A BULK
phases in solution provide one of the most extensively stud- SMECTIC-A PHASE
ied examples of the smectk-liquid crystal[6,7] and are
exploited in numerous industrial contexts.

While much of the earlier studies of fluid membrane

phases focused on essentially homogeneous systems thel

has been increasing recent attention given to heterogeneo ?enngf tgg Iaggrggﬁgaog] Ittsh:V(?c:?gﬁu%?s:tlggag?&;OT;/ce(;-
systems. Many of these have sought to understand theently P y P

membrane-mediated interactions between localized inclyJ'ent fieldu, which represents the normal displacement of

; P the layers in the direction. Such a description leads to the
ions residing in or between one or layers. Al- oo
sions residing in or between one or t48,9] layers so-called Landau—de Gennes Hamiltonigh2,15. We

- Hlodel the effect of our inclusions in the smectic phase by
including a term~d,u in the energy density. The field

In a bulk smecticA phase the layers are stacked atop one
another with average layer spacidgand thez direction
%weniently defined by the average layer normal. Deforma-

theory. These usually involve minimizing the energy of de- 4 . .
formation of the membrari® given specific boundary con- w(.r)'. which can have e|ther sign, can be ?h‘?ser! SO as to
ditions for the membrane near the inclusion. The precisén'm'c. the effect_of an arbitrary mclugo@mr distribution of
choice of boundary conditions depends on the system und clusions as d|sc_ussed below. Th_|s term represents the
consideration and this in turn strongly effects the results. Fo west-order cquplmg betwegn the |nclu5|o.ns and the local
example, the interaction potential between inclusions hat®Y®' compressmrﬁorzexpan_smh J,u. We reject the other
been shown to be highly sensitive to this choice, even at thdcCceptable term-yViu, which does not preserve up-down
level of whether it is attractive or repulsiye]. _symmetr_y for a p0|_n_t particle and whlch would require the
Some studies of interactions between pointlike inclusiondntroduction of additional Lagrange fields to ensure that all
in bulk nematid 11] and smecticA phase$12,13 also exist. stre;ses are continuous across the pksmeonsF through the
It is the aim of the present work to extend this formalism toParticle. It will turn out thatll linear perturbations are most
deal with more complex inclusions in the smectic phase us€asily introduced via the term qu.szal'Iy we omit all
ing a multipole expansion. We argue that this represents ¥rms, including those scaling like ¢, which correspond
powerful technique as it allows us to extract the far-field© direct interparticle interactions as we wish to study here
interaction between inclusions with arbitrary boundary con-2nly the membrane-mediated interparticle interactions. Thus
ditions to any order. This may often be preferable to directWe Write the Hamiltoniar¥{ for our system as
and rather tedious, numerical calculation with the usual
drawback of lack of clear physical insight. B
This paper is constructed as follows. In Sec. Il we intro- _ 3 2.0 32(v2, 12
duce anl?j gescribe the Hamiltonian for a smectic liquid crys- H= 2 J L)+ AVU) ™+ grau]. @
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In this expressionV, is the gradient operator in the-y  interactions between particles with arbitrary particle-layer
plane, A= K/B is a length characteristic of the smectic boundary conditions. Equatior{2)—(5) will be required in
(typically of the order of the layer spacir), andB andK Sec. Il below, which contains the main results of this paper.
are respectively the compressional and bending moduli of
the smectic. The dimensionless fieltt) controls the ampli- lll. MULTIPOLE EXPANSION
tude of the local deformation and depends on the micro- i ) ) i i
scopic details of the inclusion-layer interactions. For ex- N this section we will present a multipole expansion for
ample, ¢(r)=— &(r) corresponds to a pointlike inclusion the_mteractlon p(_)tent|al b_etw_een generalized inclusions. We
that exerts a local outward push on the neighboring layerdl€fine the smectic potential field
Examples of other more complex inclusions will be dis-
cussed in Sec. IV below. ¢(r):f d3r'G(r—r")y(r"). (6)
Equation(1) represents a linearized theory and includes
t_he leading-order te_rms in an gxpan;ion in powers O,f ‘?'e“"a his may be thought of as the energy cost of inserting a unit
tives ofu. We require that the |nclu§|ons couple sufﬁuent]y ointlike inclusion atr (one with unit “charge,” as dis-
weakly to the layers so as not to induce large deformatior. ,ccaq belo
gradients. This expansion can be shown to break down only First consider a distributions(r
when ¢=1. In what follows we assume that we can safely
neglect thermal fluctuations either due to negligible ampli
tude or because they can be integrated out, renormallging
andB. Since the smectié- exhibits quasi-long-range order f(r_r'):f(r)_ri/vif(rH%ri/rjfvivjf(rH... . (D
our results are applicable only on length scales less than the
layer orientation correlation length. However, since this varwhereV; denotes the gradient in theth direction. Thus the
ies exponentially with the layer rigidit§in kgT units) it can  potential 4 becomes
be much larger thad [2]. Thus our treatment is appropriate
for many thermotropic phases, such as the low temperature _ N 43 N
diblock copolymer lamellar phase, and may also be appro- ¢(r)—G(r)f prr)d _V‘G(r)f Fi(r)dr
priate for certain lyotropic systems. 1
Minimization of Eq.(1) is most easily performed in Fou- T vvu. J' ™ INA3E .
rier space, as discussed in more detail elsewhse We T ViVIGO) | i grdi e ®
find that the distortion field is given by

") that is localized near
the origin (say and expand the kernel of E@6) for |r']
“<|r| using

This expression is essentially the same as the corresponding

31 ~(U) ) . expansion of the electrostatic potential far from some charge
u(r)=| dr'G(r—r")y(r’), (2 distribution[16]. We define quantities analogous to charge
where the Green’s functio&()(r) is Q:J e ©)
2
GM(r)= 167nz € (i, (3 dipole moment
The energy follows by substitution p:J rydir’ (10)
U=f dsr’f dr G(r—r")y(r)y(r’), (4 and quadrupole moment

where -~ /

Dij:J rirfyddr. (11
B ré r2
G(r)= 64N Z2 1- aN[Z] exp— aN|Z] 5 However, in the present cag&(r) is not the Coulomb po-

tential but is instead given by E¢p). The interaction poten-
As mentioned above these results are not figg} and tial U(r) between two generalized inclusions separated by
were previously employed in the context of interactions befollows by inserting a second particleratSince the particles
tween pointlike particles. In the present work the figithas  need not be identical this second particle, and its moments,
a different interpretation and can be chosen to model thare labeled with a tilde:

U<r>=J G(r+1")g(r")d " =G(r)QQ+V,G(N[QP— Qpi]— ViV,G(r)[piP;— :(QD;;+ QD;;)]— 1V,V,V,G(r)

X[pisjk_ﬁiDjk+"‘]+ %ViVijV@(r)[DijBkﬁ“‘]+'" : (12
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FIG. 1. The smectic deformation field induced by a point FIG. 2. The interaction potential in arbitrary units between two
z-dipole inclusion at the origisee textis shown. A planar slice in  parallel pointz dipoles as a function of their radial separation
the x-z plane is shown. The amplitude of the deformation is in (alongx) in units of 2yAz. The energy scales with their vertical
arbitrary units while thez andx axes are ind and 2/\d units,  displacement as 4 and changes sign with each flip of either di-
respectively. pole.

The first two fields in the expansidiVG and—VVG) are  with curvature-inducing inclusions without the direct cou-
given in Appendix A. We see from the results of this Appen-p|ing term ~ V2u discarded from Eq(1). As mentioned in
dix that the higher moments of the inclusions interact radi-gec, || this offers considerable simplification, with no addi-
ally with essentially the same rangeyAz. In addition the  tional Lagrange fields required. The “trick” of constructing
contribution to the potential from each higher momenttigs 4 dipolar inclusion to induce curvature is, in a somewhat

an increasingly rich form with more turning points, corre- contrived way, similar to the use of the method of image
sponding to more metastable states, éndan increasingly charges in electrostatics.

strong power law decay in thedirection. Such dipolar inclusions are very similar to those consid-
ered elsewherf9], where the magnitude of the angle that the
The distortion field u layers make with the inclusion was fixed as a boundary con-

dition. This comparison is easily understood when we realize
lated to the inclusion fields according to Eq(2). Not only that we can control thenaximumslope of the neighboring
can we calculate (i) but, by inversion, alsa(u). This is a Iayers mdqced by the dipole. The maximum slope is fo_und a
powerful feature, particularly if we wish to impose boundary Microscopic length= V\d away from the dipole and is sim-
conditions, e.g., on the shape of the distortion near the inclP!Y linear in the dipole momenp,. The maximum slope of
sion. An example of how such boundary conditions can bdhe layers az=+d (say is

imposed is given in Sec. IV beloyW7].

The distortion fieldu has already been shown to be re-

Furthermore we can obtain the smectic distortion field ) 0.6, 14
around a generalized inclusion by a similar multipole expan- | XU|ZT§>;_ 167\ 3252 (14

sion of Eq.(3). Using the expansioni7) we find that an

inclusion at the origin induces a distortion fieldragiven by Thus the fixed contact angle boundary condition crudely cor-

—cWw vy . ne lu.v. e L responds to a dipole where the angle is fixed by the ampli-
U =GTNQ=VGT(r)-pt sVV,GND; &+ - tude of the momenp, . This identification delivers a consid-
(13 ooz
erable algebraic simplification.
Thus we are able to visualize the distortion field induced by We may also go on to ask about the interaction between
each moment off; see Fig. 1. two such dipoles. Their interaction is given byV,V ,G [see
The multipole expansions discussed in this section conEd. (12) and the results given in Appendix]Awhich is
verge forz>d. A discussion of the case when the particlesPlotted in Fig. 2. This potential is nonmonotonic and changes

reside in the same layer£d) can be found in Appendix B. Sign each time either one of the dipoles changes sign. Thus
there are regions in space that are attractive for parallel di-

IV. SOME SPECIFIC EXAMPLES poles_but rep.ulsi\'/e fqr antiparallel_ and vice versa. This may
have interesting implications for dipoles that are not perma-
We have already emphasized that the multipole expansionently anchored either up or down in the membrane.
can greatly simplify the calculation of the interaction poten- Finally we mention briefly the interaction between rodlike
tial. In this section we will demonstrate this with two specific inclusions that couple uniformly to the layer spacing along
examples, a unit dipole in thedirection and a linear rodlike their length. Such rods have a net charge-charge interaction
inclusion. but this is insensitive to their relative orientations. Further-
The smectic deformation field around a unit dipole in themore rods with indistinguishable ends have no dipole mo-
z direction is given by- V,G") [see Eq(13) and the results ment. Thus the leading-order orientationally dependant term
given in Appendix A. It induces a local curvature in the enters at the quadrupolar order. The quadrupole moment of a
layers without any net change in the spacing of the nearesimple rod is easily calculated: for a rod confined to xhg
layers, as shown in Fig. 1. Thus we have been able to degllane that makes an angtewith the x axis it is
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o — cogf#  singcos @ . 6,
i=Plsing cow  sito |’ (15 /2

where 8 is a coupling constant. For two such quadrupoles.

making angles®); and 6, with their line of separatioifthe x

axis) the interaction potentiall is obtained from Eq(15) / 4

andV;V;V, V|G (this last tensor is easily calculated but is

too cumbersome to give in fQllThe energy of the two qua-

drupoles is found to be

2
U(x_,¢91,¢92)=%[12—36?’4'+18>_<‘r—2iH 05 1 15 2z 2.5 3
z/(2V Az
— (24x%— 19*+ 2x®)(cos¥, + cosdH,) @ / )
+(6— 187+ 9x*— x®)c0s2 6, — 6,) - /292
+(5x*—x®)cos2 6, + 6,)], (16)

where x?=x?/(4\|z]). Plots of the relative orientations /4
{64,605} that minimize this energy are given in Fig. 3.

0f.5 1 1.5 2 245 3
V. CONCLUSIONS J z/(2V\2)

The multipole analysis presented here represents a pov —/4
erful technique for describing the distortion and interaction
fields induced by general inclusions. Our analysis offers ¢ —m /2
considerable saving over direct calculations. We have den
onstrated the 1-to-1 relationship between the inclusion fielc
¢ and the smectic distortion field(r). Hence it is possible o
to choosey to mimic the effect of any inclusion. Thus our  FIG. 3. These plots show the equilibrium angles ¢, and (b)
results are relevant for quite general inclusions. We havd?2 of two point quadrupole inclusions in a smectic phase. The

shown that certain features of simple inclusions can be dea}ngles correspond to those made by the projections of rodlike in-

. c : . clusions onto the-y plane relative to a line of separation, chosen
i(}::nbtegfzdequately by considering only a single higher moto be thex axis. We restrictd; and 6, to lie on [0,77/2] and

[ — m/2,7/2] without loss of generality. These angles correspond to

the equilibrium orientation of two rods for large enough separa-
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—X*(1-Xx?)z"2 (A1)

between a unit charg@@t the origin and a unit dipole

APPENDIX A: MULTIPOLAR FIELDS

Consider two inclusions separated bynd choose a co- _Be X \[XX_(Z_YZ)Z_SIZ
ordinate system in which the axis passes through the pro- VG= Bamnd® 0 (A2)
jection of the particles onto the-y plane. We employ the — — 3
: A _— . (2—4x%+xMz
notational simplificationx“=x?/(4\|z|) and z=|z|/d in
which units we have the potential field between unit
“charges” (5) and between unit dipoles
7 _ . _
(d/IN)| —1+ E?—W)z -3 0 VA/NX(6—6x 2+x%)z 2
_pa-x?
Ve G 0 (d/N)| -1+ %2773 0
d/Ax(6—6x2+x%)z 2 0 (6—18x2+9x*—x5%)z 4
(A3)

Any higher-order terms can also readily be calculated.
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As discussed in Sec. Il A above the smectic displacement figldratuced by an inclusion at the origin can also be written
as a multipole expansion; see H43). The deformation field due to a unit charge is given by B). This is circularly
symmetric in thex-y plane and has odd symmetry an

w204
G 16mnd © 2 (A4)

WhereTf= rf/(4)\|z|) and the factor sguf=z/|Z| preserves symmetry. The deformation figldround a unit dipole and a unit
guadrupole is found to be

— [ sgn(z)Vd/xxz 32

-

-VGW= sgr(z)\d/nyz~ %2 A5
16mhd? (1772 (A5)
I
and
d{ 1 _ d d__ _
sgnz) - ( - 54—72 z? sgnz) - xyz ? \[X x(2-rt)z %2
5
1 N d _ d 1 _ d__ _
EVVG(”)=327T)\d3 sgn(z) Xxyz’z sgnz) X(_EJ“VZ z 2 \[Xy(z—P”)zE”2 ., (A6)
_ _ d__ _ —
Vd/IAx(2—r %)z 5?2 \[K y(2-r2)z %2 sgrz)(2—4ri+ri)z ®

respectively. The symmetry of these results can be checkeshereb is some microscopic length of the ordercaind the

by carefully transforming— — z throughout. factor 1/(wb?) preserves the normalization. The smoothed
function ¢¥gn00tn Can then be substituted into E@) [or Eq.
APPENDIX B: DISCUSSION AND REFINEMENTS (2)]. The resulting multipole expansions are identical to Egs.
IN THE “SHORT RANGE” LIMIT  z=d (12) or (13) except that the variablteis everywhere replaced

by Zsmooth given by
The singular nature of the Green'’s functiotis?), (20) ) ) ) i
nearz=0 may, at first sight, appear to be a cause for con- ,  __. b2/(4)‘) for the distortion fieldu
cern. In fact this behavior is not indicative of a fundamental ™" b</(2\) for the interaction potential.
flaw in the theory provided we adopt a physically motivated (B2)

“smoothness criterion” forj(r), which is discussed in more Thjs js an exact result. It is important in that it tells us that a

detail below. Alternatively we can simply argue that a lower microscopic cutoff inz arises naturally from the requirement

cutoff atz=d is a natural consequence of the breakdown ofthat 4 be sufficiently smoothly varying.

the continuum theory at such length scales. Both approaches wWhile the above treatment reassures us that there is no

produce essentially the same qualitative result. physical flaw in our theory it is nonetheless still dangerous to
We can make the physical requirement of smoothness iattempt a quantitative extrapolation of our resultszted

¢ more explicit by replacing pointlike “sources” af with  since there are now no explicit guarantees of convergence for

sources which are Gaussianrinaccording to the serieg6) or (13). However, we can say that the interac-

tion between two patrticles in the same layer is short ranged

and has a more complex form for higher order moments

1 ,
‘//smootr(r):W J w(r,)ei(ruir”)zmzdzr\’v (Bl) of l/l
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