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Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions
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A transition from a hexagonal to a layered pattern is observed when a magnetic suspension structured by a
magnetic field is submitted to an oscillating shear flow. This transition occurs at a well-definedgtrain
=0.15, which is found to be independent of the cell thickness, the intensity of the magnetic field, and the
Peclet number. This layered pattern is stable in the absence of the flow if it has been formedtiat afaber
higher than unity. In this domain the period of the stripes increases with the intensity of the magnetic field and
decreases with the initial volume fraction of magnetic particles. These features are explained by a model based
on the minimization of the magnetic energy and on the equilibrium of osmotic, hydrodynamic, and magnetic
pressures.S1063-651X%98)02101-]

PACS numbsgps): 82.70.Kj, 47.10+g, 83.10-y

I. INTRODUCTION steady shear flowjs13,14, but their origin is different due to
the absence of a depolarizing field that is canceled by the

The competition between long-range repulsive and shorteharges brought by the electrodes. This important difference
range attractive interactions determines the pattern formatiofitom the magnetic case and also the presence of an ionic
for many physical systems where dipolar or Coulombicpolarization in ER suspensions that can be out of phase with
forces are preseifiL]. The long-range repulsive forces tend the shear flow make the interpretation quite different. In this
to divide the matter in order to reduce the repulsive energypaper we shall limit our discussion to MR fluids only.
whereas attractive forces such as those giving rise to surface There are two main differences between magnetorheo-
tension or a Lorentz field tend to gather the matter in a singldéogical suspensions and ferrofluids. First, the aggregated
unit. This observation explains that patterns formed in veryphase of a MR suspension is compressible and its volume
different physical systems can have striking similarity. Forfraction will be determined by a balance between the mag-
instance, the undulation instability of a striped pattern thanetic pressure and the osmotic pressure. Actually, the quite
gives rise to the chevron structure is observed in magnetianusual observatiofi5] that the elongation of an agglomer-
liquids [2], thin ferromagnetic filmg3], and some systems ate of particles in MR suspension decreases when the mag-
governed by reaction-diffusion equatiofé]. In magnetic  netic field increases can be explained by taking into account
liquids, the change of period of a striped pattern with thethe change of volume fraction of particles inside the agglom-
amplitude of the external magnetic field has been succesgrate[16]. Second, the surface tension only comes from the
fully predicted when the effective surface tension at thedifference between the local magnetic field inside the aggre-
boundary between the two phases is kng®j6]. In the lim-  gate and the one on the boundfy’,18. As the magnetic
iting case where the period of the structure is much largemoment of the micronic particles is induced by the field, all
than the thickness of the layer, this approach can also dehe structure in MR suspensions is determined by the com-
scribe the structures of other systems such as amphiphilgetition between field-induced dipolar forces; this is not nec-
monolayerq7]. essarily the case in ferrofluids, where the surface tension due

Pattern formation has also been observed in electrorhede the interactions between the permanent dipoles is also
logical (ER) and magnetorheologicalMR) suspensions, important.
which are suspensions of much lardg&~10 um) paramag- In this paper we are going to present some experimental
netic or dielectric particles. Well-defined structures formedresults on the transition from a cylindrical to a striped pattern
with cylindrical aggregates aligned with the magnetic fieldin a MR suspensiofiSec. Ill) and on the period of this lay-
and arranged in an hexagonal pattern have been observedéred patterriSec. IV A). In particular, we shall show that, in
MR fluids at low volume fractiori8,9]. The transformation contrast to incompressible magnetic liquids, the period of the
of these cylindrical structures into a striped pattern in thdayered structure increases with the external magnetic field
presence of a shear flow was observed many year§ld@jo  strength. Also, the undulation instability of the striped struc-
but never carefully studied. It is the purpose of this paper tdure appears when the field is decreagestead of increased
report on this transition and to analyze it by adapting then ferrofluids[2]). In Sec. IV B and IV C these differences of
models used for ferrofluids. It is worth noting that if the behavior from a ferrofluid are explained by a model that
cylindrical structure is found at a low volume fraction, a takes into account the compression of the stripes by the mag-
layered structure is predicted to have a lower energy ametic field. Section V is devoted to a discussion of the model.
higher volume fractiongl1]. Striped patterns also have been We shall in particular emphasize how the presence of the
observed in ER fluids in the presence of oscillating sheashear flow can modify the relation between the period of the
flow [12] and also predicted by numerical simulations inpattern and the amplitude of the magnetic field.
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a superparamagnetic material: They do not show any mag-
netic hysteresis. The initial permeability, of the particles
was obtained from the magnetization of the sample measured
with a vibrating magnetometer; we find,=37. The corre-
sponding magnetic moment of a particle placed in the exter-
nal magnetic fieldH, will be
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optical fiber We note that for high initial permeability, the fact@ris
close to unity and the magnetic moment becomes propor-
tional to the volume of the particle. When we increase the
field we observe a phase separation of the suspension into
two phases: a concentrated one and a diluted one. In the
absence of shear, the main quantity that will control this
phase separation is the ratio of the magnetic dipolar energy
to the thermal energy:

S mie 2 32442
_ muod’BHp

v
[y
(=

current
supply

Joge|ster
oLouIeIoIUT

( white light

m,

A= =
FIG. 1. Schematic view of the device used to study the shear- Arug(2a)°KT 2kT
induced stripe pattern.
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which gives, fora=0.24um, B~1 and room temperature
Il. EXPERIMENTAL TECHNIQUE AND MATERIAL N=6.7X10"HZ (H, in A/m) or \=0.0482 (B, in gauss

In order to detect the changes of structure induced by ¥Ve see that even for fields as low & G the magnetic force
flow and a magnetic field, we have used the device shown iglréady dominates the thermal forces.
Fig. 1. The suspension is placed between two glass disks, the In the presence of a shear flow an additional parameter for
upper one is fixed on the arm of an electromagnetic vibratoptructure formation is the ket number,zvyhlch is the ratio
and the lower one on a vertical micropositioner with submi-Petween the hydrodynamic forcen6ya® induced by the
crometer resolution on the displacement. On each disk, thghear ratey on a particle and the thermodynamic force:
side in contact with the suspension is coated with a transpakT/a. With the carrier fluid being water with a viscosity
ent film of tin indium oxide. The presence of these two elec-=10"° Pa's we obtain
trodes allows us to measure the capacity of the cell, with a - 3
Hewlett-Packard impedance analyzer. This is done by re- Pe— 6mnya —0.064y @)
cording the change of capacity with the distance without kT ’ ’
bringing them into contact, which could destroy the adjust-
ment of parallelism between the disks. This adjustment of The Pelet number used in this work ranges from low
parallelism is carried out by looking at the Fabryfte (Pe=0.02 to high valuegPe=10), but it is worth noting that
fringes produced by the reflections of a laser beam betweefor all the results that will be presented in this paper, the
the two plates. The horizontality of the cell is also adjustedmagnetic forces dominate the shear forces; in other words,
by using the reflections of the laser beam on the glass disk#éhe Mason number MaPeA is much lower than unity. This
The error on the parallelism is less thanuB across the means that the flow only contributes to rearrange the struc-
whole surface and the error on the average thickness of tHeire but not to destroy it.
cell is less than Zum. The shear ratey in Eq. (2) is given by yo, where y
After the liquid has been introduced with a syringe, the=Xq/h is the strainh is the thickness of the cell, ang is
lower plate is raised to a fixed distance from the upper on¢he amplitude of the oscillatory motiorx€ Xy coswt). The
(less than 50Qum because the liquid is held by capillary frequencyf= w/27 of the oscillating shear flow was always
forceg. The horizontal displacement of the upper plate islower than 10 Hz. In this range, we can consider that the
measured with an optical detector, which detects the changshear flow is linear since the penetration length/ 7/pf
of the light reflected by a small mirror mounted on the upper=330um for f=10 Hz was larger than the thickness
plate (cf. Fig. 1). The amplitude and frequency of the oscil- =100um used for most of the experiments. The experi-
latory motion are driven by a standard amplifier and a fre-ments done with a larger thickness were made at lower fre-
guency generator. The field is set up with coils in a Helm-quencies in order to fulfill this condition.
holtz configuration and the images of the structure are
recorde_d b_y an opt!cal microscope and a video camera. The Il TRANSITION EROM CYLINDERS TO STRIPES
magnetic field is driven by a computer that also records the
upper plate displacement. In the absence of a flow, the increase of the magnetic field
The suspension we have used is made of polystyrene pairvolves a phase separation, whose characteristics have been
ticles containing inclusion$63% by weight of magnetite. reported elsewherg8,9]. The structure formed during this
These particles, designed by RiesPoulenc, are spherical phase separation consists of columnar aggregates that are
but polydisperse with an average radiais 0.24um mea- located on a hexagonal network. Such a strucfefe Fig.
sured by dynamic light scattering. These patrticles behave #a)] is only obtained if some special care is taken in order to
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FIG. 3. Period of the layered structure versus thel@eumber
for a given value of the magnetic field=55). The upper curve is
for a strain ratey=2 and the lower curve for the critical strain rate
v.=0.15.

[19]. The transition from cylinders to stripes is expected to
occur for a strainy, such that the magnetic energy of the
inclined cylinders reaches the energy of the stripe pattern.
Note that this last energy should not change with the shear
FIG. 2. Top view of the suspension recorded by a video camera§ince the st_ripes b parallel_ to thg velocity lines. This ap-
The field is perpendicular to the plane of the figug.No flow, (y)  Proach predicts a critical strain that is an order of magnitude
oscillating shear flow with a straip=0.1, (c) same agb) but with lower than the experimental one. It probably indicates that
y=0.3, and(d) same as(c) except the magnetic field, which has the rearrangement from the cylinders to the stripes involves
been multiplied by 2. Note the change of scale franto (d). the passage by intermediate structures of higher energy,
which makes it difficult to predict.
avoid out-of-equilibrium configurations. This is achieved in L€t Us now study the striped structure that is formed for
the following way: The field is increased by steps of 0.1 Oe Strains larger thary.=0.15. The main feature characterizing
the duration of one step is about 4 s, and then the field iéhIS. structure is its penod' or, more exgctly, a dimensionless
switched off during a short period before it is increased agaif€iodd” =d/h, whereh is the cell thickness. The study of
for the next step. In the interruption period, when magnetidhiS period with the different parameterg,\,h,Pe) is the
forces between particles are absent, the particles can diffud/rPose of the next section.
over a length comparable to their radius, which allows them
to avoid being permanently trapped in a nonequilibrium con- IV. PERIOD OF THE STRIPES

figuration. The equilibrium stru_cture_ formed in this way is In this section we are going to present the experimental
hexagopal at least for not too high .'nmal volume fr_actlons. I results for the period of the structure and a model that will
we begin to shear this StTUC‘“Te W.'th a small strigirc0.1), . help us interpret the changes of the period relative to differ-
the qggreg_ates Iose_ their cylindrical Sym_”?e”y bu'.[ remairy parameters. This model is based on the assumption that
Vi’%” 1|E()jerr1]t|f|eq [cf. F|g._ _2(b)]. Ab((j)ve a _cnt:;:al strainye ith the period can be obtained from the minimization of the free
N Ii d ’ f'F e(rje IS a t(rjansmon_towa: S7a strlpeh_s';lru_ctqlrle wit %nergy of the system even though this structure is formed by
well-defined period(approximately 7um), which is illus- the application of a flow. Actually, as already pointed out,

trated in Fig. Zc). This critical strain characterizing the . . magnetic forces dominate the hydrodynamic forces in all

crossing from cylinders to stripes is independent of the Cel[he situations we have studied, so we can expect that it is the
thickness and the magnitude of the field. For volume frac- '

tions between 4% and 18%, there is also no change in thimagne'uc energy that will drive the period of the structure.
critical strain, at least within the uncertainty (043,
<0.17), but for the lower volume fractiofip=0.5%) we
have found a different critical strair.=0.2. At last, we A Experi | |
have verified that this critical strain does not depend on the - Experimental results
Peclet number. It then appears that the critical strain for the In Fig. 3 we have plotted the dimensionless peraid
shear-induced transition between cylinders and stripes igersus the Raet number for two different straing=0.15
quite independent of all the parameters. and 2, with a magnetic field correspondinghe55. In the

A tentative interpretation of the critical strain may start low-Peclet-number region, a higher strain gives a larger pe-
from the comparison of the energy of the two different struc-riod, but for a Pelet number above approximately 2, the
tures at zero strain. This calculation has been dongih  period becomes independent of the strain. A still more inter-
and it is possible to calculate the change of energy due to thesting observation is that below thisSdket number of 2 the
inclination of a cylindrical structure relatively to the field if structures are not stable: If we stop the flow, the striped
we neglect the end effects due to the finite size of the samplstructure breaks down into a large number of small segments

1]
1
‘é
i_

Rt e e d i 'y

kB

Before we introduce this model, let us present our main ex-
perimental findings.
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FIG. 5. Evolution of the period of the stable stripe pattéPe

A=132, Pe=2.3 =22, Pe=0 =2.3) with the field for different volume fractions.

FIG. 4. Top view of the suspension recorded by a video camera.
A |ayered structuréa) has been formed at |0W'E|et number; if we d|ﬂerent |n|t|a| Volume fI’aCtIOI’]S These reSU“IS are summa-
stop the flow, the layered structure breaks doh The layered fized in Fig. 5. Two features are worth noting. First, we
structure(c) formed at high Pelet number(Pe=2.3) and highn  observe a decrease of the period when we increase the vol-
(A=132) is stable even if we stop the flow. Then, decreasing theume fraction. This is quite understandable since we know
field, we obtain a bending instabilitg). [11] that such a behavior is already true for the distance
between aggregates in the absence of the flow. Nevertheless,
that are disoriented with respect to the initial structure; this ighis decrease is less pronounced at a high field than at a low
illustrated in the upper part of Fig. 4. On the contrary, if wefield. The second, more surprising observation is that we
stop the flow after the structures have been formed at a higlpund an increase of the period with the amplitude of the
Peclet number and high, they remain stable if we keep the magnetic field. This can be noted by comparing Figg) 2
field constant. For instance, the pattern shown in Fig) 4 and 2d): The period changes from 6.5 to/@m when the
will remain identical if we stop the flow, but if we decrease field is multiplied by a factor of 2(pay attention to the
the field, then the stripes begin to bend in order to decreasehange of scale In ferrofluids, the opposite behavior is ob-
the distance between the layers and the pattern correspongiérved. This increase of the period takes place in a range of
to the equilibrium values at lower field strength. This behav-magnetic field that depends on the initial volume fractici
ior is illustrated in Fig. 4d), which is similar to the one Fig. 9. In order to understand these behaviors we have pos-
observed in other smectic systefiy. These two features tulated a model based on a minimization of the magnetic
[the stability of the stripes when the flow is stopi&eeping  energy, which is the object of the next subsection.
the same fieldand the bending of the stripes if we decrease
the field seem to indicate that the structure formed for-Re B. Model for the period of the striped structure
is an equilibrium structure. Actually, strictly speaking, it is a
metastable structure since the stable structure in the absen'g
of flow is a triangular network of cylinders but the difference
in the energy between the two structures is siffl. In the
presence of the flow, the choice of the peridth of the
stripe pattern will correspond to a minimum of the magnetic layered pattern
energy only if hydrodynamic diffusion is high enough to :
help the particles find their optimum structure. Actually,
these are likely fragments of chains, rather than individual
particles, which are moving since, as previously stated, the .
hydrodynamic shear force on a pair of particles is always Liquid h H
smaller than the magnetic force. Nevertheless, the hydrody: A
namic force dominates at the scale of aggregates since i
increases linearly with the size of the object placed in the <>
shear. 2a <« d
In the regime where the structure is stable after turning off
the flow, we have measured the normalized period of the FIG. 6. Schematic view of the stripe structure with the notations
striped structure versus the external magnetic fléjdfor  used in this paper.

The schematic view of the striped structure is shown in
%. 6 and we shall use the following notations for the mag-
netization:M , is the magnetic moment of one stripe avigl
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is its volume;M =M, /V, is the magnetization inside each U,
stripe andM =M ¢ is the average magnetization of the v o a- (10
sample. The quantity =e/d is the apparent volume fraction

of the stripes, that is, the part of space that is occupied by the |n this model we have two unknowng: andd. Now, if
stripes. It must not be confused with the internal volumewe assume that the fractiap of the space occupied by the
fraction inside the stripeg,= ¢/, with ¢ the average vol- stripes does not depend on the period, the period is obtained
ume fraction of the suspension. The magnetic energy of thgy minimization of the total energy, for a given value @f
system is obtained from the product of the total magnetigelative to the period:

moment of the sample and the external field

AUn/V)+ (U V)]
U, 1 1 n ] i =0. (12)
VvV = 2y NaMa'Ho==5 ¢M;-Hy, ) ¢
) ) ) From Egs.(3), (9), and(10) we obtain
whereN,/V is the number of stripes per unit volumigl,
can be calculated from the magnetic momegtof a particle M2iD| 20
inside the stripe. We have ® 5o =z (12)
2/.L00"d ® d
M 1:& my, (4) Equation(12) gives the period of the structure if we suppose
imad that ¢ or equivalently the internal volume fractiapy, (since

_ o= ¢l p,) of the stripe pattern is known. In practice the
with dense phase is compressible and its volume fragignris
unknown, except at high values &f where the increase of
magnetic pressure should give a volume fraction close to the
maximum packing fraction of the system. In the general
case, we need an additional equation to obtain this internal
volume fraction. It is based on a balance between the os-
motic pressureéP s, which should destroy the stripes in the
absence of the field, and the magnetic presgue which
gives the attractive forces necessary to obtain this phase

my= 47TM0ﬁa3H loc 1 )

where B is the same quantity as in E€l). Here, instead of
the external field that has been used to defineve must
consider the local fieltH,,. on the particle. This local field is
the external fieldH, minus the demagnetizing field, which
comes from the magnetizatidvl;, plus the Lorentz field:

DM; M, separation. The magnetic pressure is simply given by
Hige=Ho— +3_- (6)
Mo Mo A(UnV) 13
p _—
HereD is the demagnetizing factor related to the stripe pat- " e g

tern. It is given by[2
¢ M2l or, from Egs.(8) and (9) and taking into account thab,

d* & sirf(mne) =dlo,
D(QD,d*):[Qﬁ‘ 3 > 3 2
¢ n=1 n MT (1 JD ) 14
Pn=—"5—1|5—"D+¢— |.
27n " 2p0 |3 Ielq
X|1l—ex _d_* (7)
For the osmotic pressure we can use either the Carnahan-

. . — 4_1 3 . .
In Eq. (6) the quantityd = Ho— DM / g is the average field Starling expressiofwherev =3 a* is the particle volume

on a scale larger than the typical size of the structure. The KTa(1+ ot dp2— &)
local field is obtained with the trick of the Lorentz cavity. If Pos™ 1— 3a . (15
we assume that the width of a stripe is much larger than the v(1=¢a)

diametgr of t.he particle, We can take a Lorentz sphere insidg, g,meqq hocexpressions that show better agreement with
the stripe with a Lorentz f|eld-|,96=l_v|1/3ﬂo. Fro_m .Eqs. the pressure calculated by the numerical simulation for the
(3~(7) we obtain for the magnetizatiod , of a stripe: internal volume fraction higher than 40% such[28]

. 3B¢a kT1.85p
M= OHy with yo=—— > 8 - a
1= MoXao Xa 1+386,(D-1) ) pos_v(0.64—¢a)' (16)

Inserting this expression favl; into Eq. (3) gives the value In the following we shall use this expression where the value
of the magnetic energy per unit volume of 0.64 for the maximum volume fraction corresponds to an
isotropic disordered medium. We could as well take the
Un 1 2.0 value of 0.69, which corresponds to the body-centered-
v 2 eroHpXa: ©) tetragonal equilibrium structure of a monodisperse suspen-

sion in the limit of high\, although this structure will not
We have to introduce also the surface tension of the stripeform with the rather polydisperse suspension we are using.
o. The corresponding energy per unit volume is In any event, we have found by using both 0.64 and 0.69 in
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Eq. (16) that the dimensionless period was not very sensitive -4.60
to this change of maximum volume fraction.

The internal volume fraction is obtained by balancing the 465
osmotic and magnetic pressures

-4.70

Post Pm=0. (17 %
3
Equationg(12) and(17) have to be solved simultaneously in 475 1
order to obtain the equilibrium period and the internal vol-
ume fraction. 4.80

The surface energy is unknown; it is, by definition,
related to the difference in energy between a particle located ;| T . T
in the bulk of the stripe and on the edge. If we consider the 37 36 ng»fh) 34 33
magnetic particles to be hard spheres, the only interparticle
force comes from the magnetic field. It is the difference be- FIG. 7. Log, of the period of the layered pattern versus the
tween the local field inside the stripe and on the edge thabg;,, of the cell thickness. —, linear fit with slope 0.56; ----,
will give the surface energy. It can be shovaf. the Appen- linear fit with slope 0.50. Dots are experimental points.

dix) that this surface energy is proportional to the square of
the magnetization and to the radius of the particles: all our experiments Then we can neglect the exponential
term in Eq.(7) and we get from Eq(19)

aMm?
o=C—, (18 47%Ca
Mo d’°=—————nh. (21
sirf(mne)
where C is a constant that takes the valgef we use a nzl T
mean-field approach. Using E(L8) and the definition oh
given by Eq.(1), Egs.(12) and(17) become The prefactor oh contains the apparent volume fraction
¢, which could be indirectly a function df, because in the
@ 2 _ 4Ca (19) balance of magnetic and osmotic pressyrg,depends on
ad*| (d*)h the demagnetization fact@. Nevertheless, for high values
of A, the magnetic pressure is high and the internal volume
and fraction ¢, inside the aggregates should be near its maxi-
mum. In these conditions we do not expect any significant
b 2/1 dD change ofe with the cell thickness and the prefactor in Eq.
—12 m 3 D+ ‘Pﬁ . (21) should remain constant, justifying the predictiah
d «h%5, This is fairly well verified experimentally.
1.85¢p The intersection with the origin, taking the valug,
+ mzo- (200 —0.64, allows us to obtain the constadtappearing in the

expression of the surface tension. We obt&ir-0.005,

Equations(19) and (20) will allow us to calculate the Which s very low compared to the valdeexpected from the
equilibrium periodd* and the apparent volume fractian mean-field evaluation. We shall return to this point later.

for a given value of the parametar (or, equivalently,Ho) ~ Taking this value ofC, we can solve Eq¢19) and(20) and
and of the initial volume fractiorp. Note that in the deriva- Predict the change of the period with the initial volume frac-

tion of Eq. (19) we have neglected the derivative Mi tion. The result is shown in Fig. &olid line) for a high

which is small relative to the term on the right-hand side ofv@lué of A (A=308) together with the experimental points.
Eq. (19). The agreement is not perfect, especially for the lower volume

fraction where the predicted period is two times the experi-
mental one. Nevertheless, this model succeeds quite well in
predicting a plateau for volume fractions higher than 4% and
Before we test this model relative to the experimentala strong increase at the lower volume fractions. It also pre-
results of Fig. 5, let us look at the dependence of the periodicts an increase of the period with the field, but the range of
on the thicknesh of the cell. With our device, we can easily N over which this increase should occur is two orders of
change the cell thickness, keeping unchanged the strain amdagnitude lower than the experimental one, as we can see in
the Pelet number by varying the amplitudey and the fre-  Fig. 9 (solid line) for the volume fractionp=4.5%.
quencyf of the oscillatory motion of the upper plate. We  Before we discuss this strong disagreement, let us deter-
have plotted in Fig. 7 the evolution of the logarithm of the mine the physical mechanism that produces an increase of
period d versus the logarithm of the cell thicknegsfor  the period with the field. If the internal volume fraction of
A=242, Pe=2.3, $=4.5%, andy=0.45. The best fit with a the stripes is constant, then, as both the magnetic energy and
straight line gives a slope of 0.56 and a fit with a slope ofthe surface tension scale Mﬁ we do not expect a change
0.50 is still compatible with the error bars. Actually, we can of period with the field, as can be seen from ELP), which
predict this behaviordech®5, if the normalized periodi* does not containk. If now we take into account that an
=d/h remains small compared to unitwhich is the case in increase o\ will increase the magnetic pressure and there-

C. Comparison between theory and experiments
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1.0 Lorentz sphere inside the stripe to calculate the local field is
1 not appropriate for the particles on the edge of the stripe: The
08 1 local order is anisotropic, the thickness of the stripes is only

a few particles in diameter, and the dipolar interactions with
the closest particles of the neighbor stripe can also modify
1 this surface energy.
s 1@ Concerning the second point, we have to take into account
04 the fact that the suspensions are not monodisperse. The stan-
] dard deviation is about 10% and, even if a small fraction of
024 o particles has a diameter two times lower than the average
1 ° diameter, the osmotic pressure that scales as the inverse of
o+ the cube of the radius could be much larger. Nevertheless,
000 002 004 006 008 010 012 014 016 018 020 we should assume that the effect of the pOIydiSperSity is
equivalent to lowering the average diameter by a factor of 3,
which is clearly unacceptable. A more convincing explana-
FIG. 8. Stripe period versus the initial volume fraction for tion is obtained by considering the increase of the pressure

0.6

Volume fraction : ¢

N=264. ——, theoretical predictionEgs. (19) and (20) with C normal to the plane of the stripes, which is due to the shear

=0.005. Dots are experimental results. flow. This pressure comes from the shear force between two
particles that scales asm6ya?; since the total pressure is

fore ¢,, then the apparent volume fractias— ¢/ p, will normalized bykT/v, we shall have an extra term in the

decrease along with the demagnetization fa@oand the balance of pressureq. (20)], which will be a function of
energy. This more favorable magnetic energy obtained byhe Pelet numbefEqg.(2)] and will act in the same direction
the increase of volume fraction inside the stripes allows us t@s the osmotic pressure. This pressure will increase with the
find a new minimum of the energy for a larger period. internal volume fraction of the stripes and, as for all the
components of the stress tensor, will diverge for the maxi-
mum packing fraction allowing a flow. We can choose the
V. DISCUSSION expression for the normal pressure given by Brady and co-

From this comparison between the experimental resultéorkers[21,22, where the normal stress differendss (i
and our model, we can conclude that the increase of the=1,2) are shown to diverge a$;/7y=(1—¢a/¢m) P
stripes period with the field, its decrease with the apparenivhen Pe<1. This quantityPe~PeD,/Dg(¢) is built from
volume fraction, and its behavior with the cell thickness arethe diffusion coefficient at the actual volume fractibg( ¢)
quantitatively and qualitatively, described by a theory basedather than the diffusion coefficient of an isolated particle
on thermodynamic equilibrium in the absence of a flow.p,. As DS~(1— ¢/ ¢y) for ¢— by this model predicts
Nevertheless, two points remain unexplained. First, the suhormal stresses and thus a pressure normal to the plane of the
face energy determined experimentally from the dependencgyipes, which scales as
of the period on the cell thickness is much smaller than the
value expected on the basis of a mean-field theory. Second, PE=(1— ol ) °PE. (22)
the range of magnetic energy that gives rise to the increase of
the period is two orders of magnitude greater than the one Eqor pe-1 the scaling is different with a power2 instead
predicted by the moddtompare in Fig. 9 the dotted line to of —3. We have then added the term~,/ $,,) 2P to
the filled circleg. Concerning the low value of the surface the |eft-hand side of Eq20). The result of the prediction is
energy, a possible explanation could be that the choice of ghown by the solid line in Fig. 9. The agreement with the
experiment is much more satisfying. This improvement em-
phasizes the importance of the normal stress differences at
least for low to intermediate values of This finding is
interesting since it gives a way to correlate the normal stress
differences to the expansion of the width of the stripes. In
particular, it is worth noting that, once the layered pattern
has been formed in the presence of a flow, we can turn off
the magnetic field and measure the hydrodynamic diffusive
flux in the direction of the vorticity by recording the disap-
1 pearance of the striped pattern. The relation between normal
- stresses and shear-induced diffusion is of interest in many
1 fields related to the dynamics of suspensi¢3] and this
T T — system offers several possibilities to study this relation.

1 10 A 100

- /
0.10 i /

d*=d/
~

0.08 |

VI. CONCLUSION
FIG. 9. Increase of stripe period with the magnetic fiéot- ) _ ) o
pressed through) for the initial volume fraction(¢=4.5%). Dots In this study of field-induced phase separation in the pres-
are experimental results. ----, theoretical prediction without flowence of a shear flow we have shown that a well-defined lay-

(Pe=0); ——, theoretical prediction with Pe2.3. ered structure appears above a critical strain rate of 0.15.
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This critical strain rate is independent of most of the paramsupported by a grant from the French foreign office during
eters, but it increases slightly for the smaller volume fractionhis stay at the University of Nice.

If the layered pattern is formed at a low dket number, it

breaks when the flow is stopped. This is not the case if the APPENDIX: DERIVATION OF EQ. (18

pattern is formed at aeket number higher than unity. In the FOR THE SURFACE TENSION

latter case, the pattern is stable in the absence of a flow and The particles that are at the interface between the dense
i we .decreage the magnetic field we observe a F’e”d'”g Ir}Shase and the suspending fluid experience a local field that is
stability that is coherent with the fact that the period of the jsterent from the local field inside the stripe. If we assume

pattern decreases when the magnetic field decreases. Thqﬁﬁt the magnetization is constant everywhere in the stripe

observations indicate that in order to attain an equmbnumand zero in the suspending fluid, then the Lorentz field for a
structure we need a strong enough shear, able to overco

tential barrier. For th ilibri rruct N¥rticle on the boundary comes from the integral/of: n on
some potential barrier. For (Nese equilibrium Structures obg 5 ¢ sphere witim the normal to the Lorentz sphere. This
tained at high values of we can predict the evolution of the

. . : ; L ill gi
period with the cell thickness or with the initial volume frac- will give
tion, without taking into account explicitly the effect of the M; 1 My
flow. The agreement of the model with the experiments is Hioe=Ho—D e 2 3,

even quantitative except for the prediction of the increase of
the period with\, at intermediate values of. In this range instead of Eq.6). Taking into account that the fraction of
of A where the maximum volume fraction inside the stripesparticles on the surface isade gives a modified magnetiza-
is not reached, the effect of the shear flow is to enhance théon of the stripe withD — 3+ 5a/e instead ofD — 3 in the
hydrodynamic diffusion and hence the apparent volume fracdenominator ofy§ [Eq. (8)]. Then ifa/e is small compared
tion of the stripes. This effect needs to be investigated irto unity we can develop the magnetic energy as
more detail in future work in addition to the value of the 5
critical strain ratey, for other magnetic suspensions. Un 1 » 0, PMia
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