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Solvent diffusion outside macromolecular surfaces

Erik Lindahl and Olle Edholm
Theoretical Physics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
(Received 18 July 1997

The effect of the inhomogeneous environment upon solvent molecules close to a macromolecular surface is
evaluated from a molecular-dynamics simulation of a protein, myoglobin, in water solution. The simulation is
analyzed in terms of a mean-field potential from the protein upon the water molecules and spatially varying
translational diffusion coefficients for solvent molecules in directions parallel and perpendicular to the protein
surface. The diffusion coefficients can be obtained from the slope of the average-square displacements vs time,
as well as from the integral of the velocity autocorrelation functions. It is shown that the former procedure
gives a lot of ambiguities due to the variation of the slope of the curve with time. The latter, however, after
analytic correction for the contribution from algebraic long-time tails, furnish a much more reliable alternative.
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PACS numbd(s): 82.20.Wt, 61.20.Ja

[. INTRODUCTION This is formally equivalent to Eq(1.1) and follows from
pure mathematics and the fact thais the time derivative of
The mobility of water outside macromolecules such as. For a homogeneous system in an infinite space, it is just a
proteins is difficult to assess through experimental methodsnatter of taste and maybe statistical accuracy which method
Nevertheless, there seems to be agreement about a redudedhose. In a system with boundaries, spatial variation of the
mobility close to the protein. Polnaszek and Brygiitcame  diffusion coefficient, or deterministic forces, however, this is
up with a factor 5-10, as did Kimmichkt al. [2] with a  not so.
different method. Halle and Picul€lB] reported a factor of First, Eq.(1.1) is obtained from the solution of the diffu-
about 100 in the radial and about 10 in the lateral direction tsion equation in an infinite space. The corresponding formula
the protein surface. Computer simulations offer a simplefor the process outside a complicat@daybe fractal surface
method to resolve such variations of the diffusion coefficientooks differently. In Sec. IV we show that the analytic solu-
D as a function of the distance to the surface. This has tration to the diffusion equation outside an infinite planar re-
ditionally been done by fitting the square displacement ofllecting surface gives MSDs deviating from Ed..]) in a
solvent molecules to a linear expression in tipde-7], way similar to the MSDs in our simulations and those of
[9,10..
Second, the diffusion equatidd.1) and the analytic so-
lution of the diffusion equation outside a planar surface are
strictly valid only for very long times. This is usually not a

These studies all end up with a reduced translational diffuProblem in a homogeneous system since one may then evalu-
sion coefficient close to the protein, but one reduced by &te the diffusion coefficient from the slope of the square
factor 2—4 rather than 10-100. Ahlstoet al. [8] deter-  displacement against time at very long times. For a system
mined the variation of the diffusion coefficient by fitting the With a surface, however, molecules once close to the surface
Green's function of the diffusion equation in a spaceWil after long times on the average be far away from the
bounded on the inner side by a reflecting sphere, with resultgurface. Going to long times will thus yield only the bulk
similar to those of4-7]. diffusion coefficient and a MSD linear in time. One therefore
Recently, it has been observed that the fitting by @) has to make a compromise between the necessity to go into
has its difficulties since there are systematic deviations fronimes long enough to avoid nondiffusive short-time effects
an expression of this typ9,10]. This was suggested to be and the desire to resolve spatial variations of the diffusion
due to a fractal dimensionality of the protein surface. Wecoefficient. Such a compromise can be found if there exist
want to show that there are several simpler reasons why #nes
result like that in Eq(1.1) is not valid. In addition, the ob-
served nonlinearity of a plot of the mean-square displace- t<
ment (MSD) against time makes it difficult to evaluate the |VD|?
diffusion coefficient from Eq(1.1). We therefore propose
the use of an alternative method to define the diffusion cothat are still large enough for the nondiffusive short-time
efficient from the velocity autocorrelation functiqivAC)  effects to die out. For such times, Ed.1) or the appropriate
using the Kubo formulgl1] alternative for diffusion outside some surface can be used.
Third, even if the first two problems can be resolved,
there might be nondiffusive effects also at long times since
D= EJx<v(t).v(0))dt. (1.2) the macromolecule may induce a mean potential a_cting on
3Jo the solvent molecules. Usually, one would expect this deter-

((r(t)—r(0))®>)=6Dt, t—c, (1.1

1.3
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ministic force to be attractive. In an analysis using Eiql) T - —
or an equivalent relation, such a mean attraction would show
up as a slower diffusion close to the macromolecular surface.
One could then adopt a more general equation such as the
Smoluchowski or Fokker-Planck equati¢ph2] to simulta- | -
neously try to evaluate a spatially varying diffusion coeffi-
cient and a spatially varying mean force. This, however, is
far from trivial.

To solve these problems, one needs to be careful when
defining the diffusion coefficient. We assume self-diffusion
in an infinite homogeneous space to be characterized by a
MSD at long times proportional to time with the proportion-
ality constant being six times the diffusion coefficient. This
self-diffusion coefficient is a property of the fluid that may
be defined locally also in a finite nhonhomogeneous space,
although in this case it cannot be derived from the MSD at
'9”9 times. It can, however, be obtamgd from Ipcal short- FIG. 1. Number of water molecules vs closest distance to a
time data through the Kubo formu(a.2) since this involves 5 tein atom(relative scalp
much shorter time scales. The result then defines the slope
the MSD would have at very long times in an infinite space200-400 ps, storing coordinates every 0.2 ps. To calculate
for a fluid with the same global properties as ours has l0y\/ACs shorter runs(20-40 p$ were used, but data were

cally. stored more ofteritypically every 0.01 psdue to the fast
Equation(1.2) is valid as long as the diffusion coefficient decay of the VAC.

and mean potential do not vary appreciably over distances

0.0 1.0 2.0 3.0
distance (nm)

that a solvent molecule travels in the time it takes for the . RESULTS
VAC to decay to zero. For Brownian motion, this happens
on a time scale of the inverse dampi@g'. We get an upper A. The mean potential
estimate of the distance by multiplying with the free flight A count of the average number of water molecules at
velocity y3kgT/m: different distances from the protein gives a result like that in
Fig. 1. The drop at big distances is due to the finite size of
1 [3kgT kgT /3m /3m the periodic box, which also means every water molecule has
B m mg kB_T:D keT' 1.4 5 periodic copy of the protein within 3 nm. This result was
converted to a mean potentidl,¢,{r) using the Boltzmann
For water, this evaluates to less than 0.01 nm. distribution:

We have here applied both Eqggl.1) and (1.2) to an
analysis of a simulation of myoglobin in water solution. In
addition to the diffusion coefficients, we have also found an
evaluated a mean potential by which the first shell of water
molecules is bound to the protein surface with a binding Umead ) =C—KkgTIN[N(r)/A(r)]. (3.2
energy of 2—3 kJ/mol.

N(r)drocA(r)e Ymeat/keTqy (3.2

HereN(r)dr is the number of water molecules in a shell of
thicknesdr at distanca from the protein and\(r)dr is the
volume of that shell in space. The volume was calculated by
Myoglobin was simulated in a periodic box containing counting the number of points on a fine grid covering the
5763 water molecules. As the initial structure we used theentire periodic box having different distances to the closest
entry 1IMBA [13] from the Brookhaven Protein Data Bank. protein atom. The consta® was chosen to give the mean
For the simulations a standard molecular-dynamics prograrpotential zero at long distances from the protein. In this way
GROMOS [14] was used. All potential parameters were thethe solid curve in Fig. 2 was generated. This shows a mini-
standard ones oGRoOMOS and the water model was the mum with a depth of about 2 kJ/mol at the distance 0.33 nm,
simple-point-charg€SPQ one[15]. United atoms were used a weak local maximum at 0.45 nm, and a leveling off to the
for the aliphatic hydrocarbons, while polar hydrogens wereconstant value further out. There are about 700 water mol-
represented explicitly. All bond lengths were kept fixed us-ecules inside this maximum. The protein surface area can be
ing the algorithmsHAKE [16]. The step length for the inte- calculated using, e.g., the method and program of Lee and
gration of the equations of motion was chosen to 0.002 psRichards[18] and is then found to be 75 rfrSince a water
and a cutoff at 1.0 nm was used. The system was initiallymolecule typically covers an area of about 0.1 ?nrthis
equilibrated for 200 ps. Pressure scaling was used durinneans that essentially a whole first shell of water lies in the
part of the equilibration to obtain a volume of the systemfirst minimum of the mean potential.
corresponding to the volume at atmospheric pressure. Tem- As a control, the mean potential was evaluated indepen-
perature scalin§17] to a heat bath with temperature 300 K dently by averaging the mean force perpendicular to the pro-
using a time constant of 0.1 ps was used during the entireein on the water molecules as a function of distance from
simulation. Production runs to obtain MSDs were typicallythe protein. The result was subsequently integrated to give

[I. MOLECULAR-DYNAMICS SIMULATION
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FIG. 2. Mean potential vs distance from protein. The solid line  FIG. 3. Mean square displacement vs time in a log-log plot. The
is from the Boltzmann distribution and the dotted line is from inte- solid lines represent a linear increase with time.

ted f . . . .
grated average forces exponentse in the range 0.85-0.96, i.e., a less-than-linear

increase, as observed p9,10]. We also calculated standard

) - ; deviations of the fits by dividing the data into ten subsets and
one obtained frqr_n EC('S'Z.)’ but the minimum is deepe® . repeating the processyon eacﬂ of these. The standard devia-
kJ/mol) and positioned slightly further out from the protein tions of the results were then scaled to a sample 10 times
surface. larger.

From this we conclude that the first layer of water mol-  The exponent being less than unity means that values of
ecules outside a protein surface will be bound to the proteity gptained from a linear fit will depend on the lower bound-
by a weak mean potentidh couple of kJ/mal Since the  ary of the fitting region, as can be seen in Fig. 4, albeit with
protein is an atomic surface enabling weaker or strongefarge standard deviations. This is a severe problem with the
bonding at different places this will not be uniform; calcula- MSD method since it leads to systematic errors in the value
tions of the residence times for waters close to a prdtéjn of the diffusion coefficient, errors that will therefore not
show a variation of a factor 20. For a Boltzmann factor, theshow up in the standard deviations obtained from subsets.

the dotted curve in Fig. 2. This curve is similar to the solid

corresponding difference in energy would kgTIn20~7.5. The normal and parallel diffusion coefficients obtained by
Thus the binding energy probably varies between zero antits from 20 ps to 100 ps are plotted as functions of distance
the order of 10 kJ/mol, with an average of 2—3 kJ/mol. to the protein surface in Fig. 5. For comparison, the values

from the VAC can be found in the same figure.

B. Diffusion fficients from mean- re displacemen e - . . .
iffusion coefficients fro ean-square displacements C. Diffusion coefficients from velocity autocorrelation functions

For each water molecule, we approximate the normal to The projection of a water molecule’s velocity on the pre-

the protein surfac,e by the direction _from the closest IorOte'r{/iously mentioned direction normal to the protein surface is
atom to the water’s center of mass in each step. The change

in distance along this direction was taken as the normal dis- y - -
placementAr, of the water molecule. The square displace- %; _____ |
ment parallel to the surfaczkrﬁ follows from the total square } """""""""""""

displacement andr?=Arf+Arf. o b T

m°/s)

Waters were divided into five bins based on their average s _ |
distance to the surface during the simulation. The bin limits °'9_ '
were 0.45, 0.9, 1.2, and 1.5 nm. et
For each such bin, square displacements were average‘;;:,_’
over both molecules and the time oridin=0 in Eq. (1.1)]. g2or 1
The resulting MSDs are plotted vs time in Fig. 3 for bin 2, ¢ t + :
with an appearance similar to the other bins. The curves 4
show a free flight behavidi.e., the molecules do not “feel” 1ot .

the presence of their neighbpnsp to approximately 0.5 ps. s— Normal MSD in bin 1
For intermediate time#0.5—10 p3 the increase is less than &=~ Normal MSD in bin 5
linear for both curves, although for long times it seems to ;4

0 20 40 60 80 100

tend to linearity. Since the normal motion has one degree of lower boundary of fit (ps)
freedom and the parallel two, thmlk MSD at large times
should be expected to increase &tand 4Dt, respectively. FIG. 4. Diffusion coefficient from the mean-square displace-

However, this is not the case for the time period studied inment as a function of the time window used for the fit. The upper
our simulations. Fitting the MSDs to a power |&® yields  boundary was 100 ps.
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FIG. 5. Diffusion coefficients perpendicular and parallel to the FIG. 7. Algebraic tail fitted to an enlarged part of the velocity
surface calculated with the two methods vs distance from the proautocorrelation function.
tein.

contribution analytically. Following Alder and Wainwright
taken as the normal velocity. The difference between th¢19], we assume a time depender@g 2 and varyC to fit

total velocity and this is used as the parallel velocity. the VAC in the range 0.5-3.0 ps; see Fig. 7. As above,
The autocorrelatiorp(t) for each of these vectors was standard deviations were obtained by dividing the data into
calculated according to subsets. It is by no means obvious where we should cut the

numerical integration and use the analytical result to infinity,
but the sum of the two parts does not change by more than a
few percent depending on where we do the cut, further jus-
where the average is over time origin<0) and molecules. tifying our choice of fitting function. In the results that fol-
The water molecules were placed into bins based on theibw, we have taken the average of cuts at 0.5—-3.0 ps in steps
distance to the surface at the time origin, instead of theiof 0.5 ps. This gives another standard deviation, which we
average distance. This is a very good approximation since add quadratically to the earlier one. As an example, the in-
molecule does not travel far before the VAC has decayed ttegral of the tail from 3.0 ps would contribute about 15% to
zero and it helps us avoid averaging out small motionsthe result.
which is a risk in the MSD case. Figure 6 shows the resulting The resulting diffusion coefficients as functions of dis-
VAC for the normal velocity in bin 2. Since the motion is not tance to the surface can be found in Fig. 5. The values from
perfectly Brownian, the VAC will have an algebraic long- the VAC are in general lower and smoother than the corre-
time tail, which we need to include in the integral. This sponding data from the MSD. Note that the MSD values
causes a problem since the tail is of the same order as theould be lower if one had chosen a lower boundary larger
noise after a few picosecond. We solve it by calculating thighan 20 ps for the fits in Sec. Il B. Both types show a clear
decrease close to the protein surface. The decrease is much
0.15 : . larger for the MSD data, and this does not show any differ-
ence between normal and parallel diffusion, whereas the
VAC data show a decrease in norntalalmost twice the one
in parallel. The most probable reason for the decrease being
smaller with the VAC data is that this does not include the
0.10 | 1 . . . ..
effect from the mean potential. The diffusion coefficient for
bulk SPC water is 3810 ° m?/s [15], which agrees rea-
sonably well with our values far off from the protein, but is
slightly larger than the experimental value .30 ° m?/s
[20].

p(1)=(V(D)-V(0)), (3.3

VAC (nm’/ps’)
o
&

IV. THE PRESENCE OF A SURFACE

0.00 . Our results above confirm the observations of Bizzarri
\ \ and Cannistrar¢9] that water molecules close to a protein

0.0 0.2 0.4 06 surface do not follow the ordinary diffusive relatiqf.l)
time (ps) valid in an infinite space but rather an equation of the type

FIG. 6. Velocity autocorrelation function for the normal part of
bin 2. {(r(t)—r(0))?)=6Dt". 4.2
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. . FIG. 9. Logarithmic derivatives of the curves in Fig. 8. This is
FIG. 8. Mean-square displacement of the solvent molecules 'napproximately the exponent

bin 1 vs time from the simulation and from the analytical solution

of the diffusion equation outside a planar reflecting surface.

D=3%x10"° m?s andz(0)=0.14 nm are used. bin. This approximation at least in part accounts for the
simulation curve being more stretched out than the theoreti-

Referencq 9] reports the exponent having smaller values cal one.

close to the proteir(down to values as low as (.6This A time-varying exponenty(t) in ([ z(t)—z(0)]?)=2Dt“
behavior was observed for times up to 10 ps, correspondingnay be estimated from the derivative of the logarithm of Eq.
to displacements up to 0.3 nm. (4.3) with respect to Ih Introducings=4Dt/z(0)? to save

We will try to explain this behavior by introducing the space, the derivative becomes
protein surface in the diffusion equation. The simplest model
of the effect of a protein on surrounding solvent molecules is

to treat the protein as a rigid reflecting boundary. Even with 4

the water molecules undergoing perfect diffusion, this —e_l/s—gerfo( 1\s)

boundary condition will invalidate Eq1.1). If the protein a(s)=1+ S . (4.5
surface is modeled as an infinite planar surface, the problem Ly b

can be solved analytically in terms of the Green’s function 1- \/?se + gerd 11\s)

for the infinite problem and a mirror source. For diffusion in
the two directions parallel to the surface the classical result

_ 2\ _ _ 2\ _ Clearly we get the classical resutt=1 in the limit of very
([x(H)—x(0)]9)=([y(t)—y(0)]*)=2Dt (4.2 long or very short times. This and the corresponding loga-
rithmic derivative of the data from bin 1 are plotted in Fig. 9,
with the same constants as above. Further away from the
surface,z(0) will be larger, and the kink will appear later.

is regained, while one obtains

([z(t)—2(0)]?)=2Dt| 1 - 22(0) g~ 2(0)%/4Dt The physical reason for the variation of the exponent is the
V7Dt available space being smaller close to a protein due to the
) presence of the rigid wall. A solvent molecule in this region
z(0) — will therefore show a smaller MSD than a molecule far from
+ Dt erfd z(0)/v4Dt] 4.3 the surface where the entire three-dimensional space is avail-

able. Thus, using Eq.l.1) to evaluate the diffusion coeffi-
in the perpendiculaz direction. Here the complementary cient, one will get the local diffusion coefficient for times
error function erfc is defined as short enough for the solvent molecule not to feel the pres-
ence of the surface. For intermediate times the MSD will be
2y too small due to the surface and again for very long times the
erfa(y)=1— _f e ¥dx. (4.4  molecules once close to the surface will on the average be
JrJo quite far away, so the MSD approaches the bulk value. Apart
from the free-flight region, we will thus get an exponent that
The integral can be evaluated numerically or the functiorbegins at 1 and decreases, then increases above 1, and finally
looked up in a table. Equatiot4.3) is compared with the asymptotically approaches unity. At a curved surface, the
normal MSD from bin 1 in Fig. 8. For the constants in Eq. exact solution above is no longer valid, but the qualitative
(4.3 we have chosen values reasonable in bin leffect still exists for the same physical reasons. One would
[D=3.0x10"° m?/s, z(0)=0.14 nn, although the cor- expect it to be smaller at a convex surface and larger at a
rect expression would be an average ax(d)) values in the concave one.
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V. DISCUSSION calculated from MSD or NMR experiments. The VAC de-
scribes very local events on time scales of picosecond, while
'the MSD involves motions over hundreds of picosecond. For
these times a mean potential will result in a decreased mo-
bility and thus a lower diffusion coefficient close to the sur-

The two procedures to evaluate diffusion coefficients
from the slope of the MSD vs time and from the integral of
the VAC, are formally equivalent. One formula can be de-

rived from the other if the slope is taken at the limit of face. NMR data, finally, are typically obtained from correla-

Kl]gir:ggr“rr?o?/vzcgr t?: 'Qgi?g?el tlg é%kiginulo dtgt;nffr'ggqe;'cmoeﬁgion functions decaying over even larger time scales, say,
N Ever, IS p 9 ) 10-100 ns. The potential can be expected to have the same
puter simulation of limited length. In practice, one finds that

in the latter case the integral can be cut at a fairly small finit effect on NMR results and one must also keep in mind that

time. especially if we make an analvtic correction for theethe interpretation of relaxation data in terms of diffusion co-
» €SP y y efficients is far from trivial and relies upon modeling where

f\,njl]t;?:f d?flr%(;ki)orﬁlicfglflr.ic-i[ahrﬁs r;:]alt(ﬁes 'trepszsnsézle()ft(r)n;eclgm)éghe coefficients are fitted to yield either a correct frequency
P or concentration dependence of the relaxation.

Iecul_ar sgrfaqes, mean potentials, and a strongly spatially The reduction of mobility from the potential cannot easily
varying diffusion. be distinguished from a reduced diffusion coefficient in a

of nged?égsixsgé?f%?ggf gé\g? f";)d f\?/ (;tr?1 tlge F()Ee;e?;a\;axgnonsingle NMR experiment. However, measurements as a func-
9: g1 tion of temperature yield the same activation energy

have to use times<400 ps. Since the nondiffusive effects (20+5 kJ/mol) in bulk and at the surfadg]. This does

at short times have died out after times1ps, there exists a : :
. . . s . exclude a very high energy barrier, but not one of 2—3 kJ/
time window at 10-100 ps for which diffusion coefficients mol as in our case. Taking the potential into account, we

should be possible to evaluate from the MSD. The presencgltogether get a reduction of water mobility close to the pro-

of the protein surface may be more of a problem as seef) . — o :
from Fig. 9. The exponent in the relation Dt* is smaller %g‘nb%: IZE:g: ioigogh;é]ls consistent wih2], but lower

than one for short times and is still slightly varying when we

approach 100 ps, which is in the entire suitable time window.

These problems are avoided by using the Kubo forniiil3)

to calculate diffusion coefficients from the VAC instead. We thank the Gman Gustafsson Foundation for grants
The diffusion coefficients obtained from the VAC do not supporting the workstations making the present simulations

show an as large reduction close to the surface as the onesssible.
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