PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Structure and dynamics of electrorheological fluids

James E. Martin and Judy Odinek
Advanced Materials Physics Division, Sandia National Laboratories, Albuquerque, New Mexico 87185-1421

Thomas C. Halsey
Exxon Research and Engineering, Route 22 East, Annandale, New Jersey 08801

Randall Kamien
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 14 June 1996; revised manuscript received 26 December 1996

We have used two-dimensional light scattering to study the structure and dynamics of a single-scattering
electrorheological fluid in the quiescent state and in steady and oscillatory shear. Studies of the quiescent fluid
show that particle columns grow in two stages. Particles first chain along the electric field, causing scattering
lobes to appear orthogonal to the field, and then aggregate into columns, causing the scattering lobes to move
to smaller angles. Column formation can be understood in terms of a thermal coarsening model we present,
whereas the early-time scattering in the direction parallel to the field can be compared to the theory of line
liquids. In simple shear the scattering lobes are inclined in the direction of fluid vorticity, in detailed agreement
with the independent droplet model of the shear thinning viscosity. In oscillatory shear the orientation of the
scattering lobes varies nonsinusoidally. This nonlinear dynamics is described by a kinetic chain model, which
provides a theory of the nonlinear shear rheology in arbitrary shear f{@4663-651X97)10112-X]

PACS numbss): 47.50+d

I. INTRODUCTION report compliment these measurements since they allow de-
termination of the slow column formation as well.
ElectrorheologicalER) fluids[1,2] are made by suspend- In the Halsey-Toor theory of column formati¢a?2] it is

ing particles in a liquid whose dielectric constant or conduc-shown that after particle chains form and span the electrodes,
tivity [3—5] is mismatched in order to create dipolar particlethe long-range dipolar interactions between vicinal chains
interactions in the presence of an ac or a dc electric field. ERre screened by the image dipoles created by the conducting
fluids rapidly solidify, or at least increase their viscosity dra-electrodes and the chains then interact via a short-ranged
matically, in response to an electric field, due to the formapotential that arises from one-dimensional Landau-Peierls
tion of particle chains that bridge the electrodes. The milli-charge-density fluctuations. The chains then coalesce in the
second response of ER fluids has piqued the interest gilane orthogonal to the field to form a three-dimensional
engineers, who are now trying to incorporate these fluids intsolid [13]. Our measurements of the power-law growth of
practical fast electromechanical actuators, such as fiber spiolumns as a function of applied voltage and fluid concen-
ning clutches and active shock absorbers. tration support this general description of coarsening, but the

To predict the behavior of ER fluid-based devices a de-observed voltage dependence has led to the consideration of
signer must have a good understanding of the both the sdhe case wherein column coalescence occurs before a charge-
lidification kinetics and the response of the activated fluid todensity fluctuation can relax.
mechanical stress, especially when flow is induced. We have The anisotropic “bow tie” light-scattering pattern we ob-
previously reported preliminary light-scattering studies ofserve is similar in appearance to that predicted by the theory
the evolution of structure in a quiescent fl§i], the steady- of line liquids. By analyzing our data in ways suggested by
state structures that form in shdai, and the nonlinear dy- this theory we show that there is a strong correspondence of
namics of chain structures in oscillatory sh¢8k. In this  the predictions of line liquid theory to scattering data taken
paper we extend those investigations and give a completghortly after the quench.
account of the light-scattering studies we have made as well For completeness we mention that within the columns the
as the theoretical ideas that can be invoked to understand tlelloids eventually form a crystalline solid 3] that recent
data. calculations show is body-centered tetragdddl]. This bct

The first experiments we report concern the evolution ofstructure has been observed in a laser diffraction experiment
structure after an electric field is applied to a quiescent ERrom a column of large silica spherg¢45]. Of course, a
fluid. This occurs in two principal phases: the fast aggregaglassy structure may result from a rapid, deep quench.
tion of particles into chains, which occurs in milliseconds, When an initially quiescent ER fluid is subjected to steady
and the slow coalescence of chains into columns, which ooar oscillatory shear, the electrode-spanning columns break
curs in minutes. Chain formation has been studied by timeinto volatile structures that continuously fragment and aggre-
resolved studies of the transmission of light through arngate, and generally tilt away from strict field alignment in the
opaque ER fluid9], birefringence and dichroisiil0], and direction of fluid vorticity. There are two fundamentally dif-
fluid permittivity [11]. The light-scattering measurements we ferent theoretical models of structure and rheology in shear:
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the equilibrium droplet model[16] and thekinetic chain  shaken and allowed to react without stirring for 2 h. The
model[17]. In both of these models we use the point dipolehydrophilic silica spheres are then coated with 5.0 ml of the
approximation, which is reasonably accurate for our colloi-organophilic silane coupling agent(8imethoxysily) propyl

dal silica fluid, which has negative dielectric contrast. In themethacrylate via a condensation reactj@i]. After a 24-h
droplet model, which was developed for stationary shear, gacuum distillation of water and ammonia at 50 °C the
free energy is minimized in order to compute the equilibriumspheres are centrifuged at low acceleratior85 g for 7 h,
size, shape, and orientation of particle structures that are prene supernatant decanted, and the soft colloidal solid is re-
sumed to be ellipsoidal. In the kinetic chain model, Wh'Chdispersed in 4-methylcyclohexanol, again chosen to closely

can be applied to both stationary and non-stationary shear,jggey match the spheres. The sample is centrifuged again at

mechanical stability condition determines the metastable sizgg g for 16 h, the supernatant decanted, and the solid resus-

and orientation of structures that are presumed to be chain ended in 4-methylcyclohexanol. To prevent settling the fi-
The predictions of these models are contrasted as we com- . .
nal sample is rotated slowly until used.

pare them to our light-scattering data, Scanning electron microscopy and elastic and ieleas-
Light-scattering measurements in steady sH&arshow - g ele Py anc and quasieleas
téc light-scattering measurements indicate that @mi-diam

how the steady-state size and orientation of these particle h iy f d at hi - .
structures depends on the shear rate, with the size decreasiﬁ'gca spheres are easily formed at high silica concentrations

and the tilt angle increasing as the shear rate increases. Thedader mild hydrolysis with 0.84 NH,OH. The elastic light-
changes are responsible for the shear thinning of the visco§¢attering data are consistent with a Gaussian sphere radius
ity of ER fluids[16]. We have extended these measurement& distribution havingrg /R of 10.5%. Light-scattering inten-
to include the voltage dependence. sity measurements indicate a refractive index increment of
We report light-scattering studies of the structural dynam-dn/dc=0.0017 ml/g, which is small enough to ensure single
ics in oscillatory shear flow. These measurements should b¥cattering from concentrated dispersions: Indeed, depolariza-
of special interest to those interested in modeling the fluidion of the scattered light was negligible.
stress response to nonstationary shear flows. Direct rheologi- TO measure the surface charge of the colloids, electro-
cal studieg 18,19 have been complicated by the difficulty in Phoresis measurements were made in a Pen Kem Laser Zee
finding a linear-response regime. It has been shown that if Blicroelectrophoresis apparatus. Since we were unable to ob-
strict linear viscoelastic regime exists at all, it is confined toServe any electrophoresis with this apparatus we simply ap-
strain amplitudes smaller than 19 Thus the framework of plied a 1-kV/mm electric field to the particles and observed
linear viscoelasticity, a phase-shifted stress in response to dReir behavior through a Nikon Microphot-FXA optical mi-
applied strain, is of limited utility for ER fluids. Powe]20] ~ croscope. Even at these high electric fields we were unable to
has presented rheological data that demonstrate the nonlinedpserve electrophoresis of these particles, although at high
nature of the stress response and these agree quite well wigPplied frequencies field-induced particle chaining was ob-
the |ight_scattering data we present here. served and found to be reversible by Brownian motion alone,
In our measurements Of the orientation dynamics in osc”jndicating that contact interactions between these particles
latory shear we find a quasilinear response regime at smafire¢ much smaller thakgT.
strain amplitudes and are able to determine experimental The two samples used in the study measured 20 and 34
conditions where the droplet orientation is in or out of phaséVt. % by thermal gravimetric analysis, although the high-
with the strain. This quasi”near regime is Successfu”y de_Concentration Sample was diluted to 11 wt. % for the kinetics
scribed by the independent drop|et modeL wherein the dropstudies. The fluid used in the OSCiIIatory shear Study is 7.5-
let size does not change during a shear cycle. However, §ft. % silica, which is 3.0 vol %, assuming a silica specific
strain amplitudes larger than about 0.25, chain volatility dur-gravity of 2.5. This corresponds to a mean separation be-
ing a single strain cycle becomes significant and the orientaween silica sphere centers 6f6R and a spacing of-11R
tion dynamics becomes strongly nonlinear. In this regime thdetween initially formed chains.
kinetic chain model gives a very reasonable description of
the observed dynamics and agrees well with direct rheologi- B. Two-dimensional light scattering

cal measuremen(20] of the stress. To study the kinetics of phase separation requires the abil-

ity to determine structure as a function of time. Traditional

Il. EXPERIMENT one-dimensional light-scattering instruments must repeti-
tively scan through a sequence of angles, with the result that
data are acquired in an interval during which the structure is

The sample used in this study is a model ER fluid weevolving, so that temporal resolution is severely compro-
developed for light scattering6], microscopy, and elec- mised. Furthermore, the ER phase transition gives rise to
trorheological measurements6]. The colloids in our model anisotropic scattering and therefore a two-dimensional detec-
fluid are synthesized by the base-catalyzed nucleation andr is required. To meet these demands we have developed a
growth of monodisperse silica spheres from tetraethoxysililight-scattering instrument that is based on readily available
con (TEOS. To reduce the Keesom interactions that lead tovideo and computer technology.
aggregation, this synthesis was conducted in a mixed organic A 454.5-nm argon-ion laser beam, focused with a 40-cm
solvent that index matches the growing spheres. Specificallfpcal length lens, illuminates the sample, the scattered light
to prepare a 200-ml solution we combine 21.2 ml of 29.5-impinges on an opaque diffusing screen, is collected by a
wt. % NH; with 39.2 ml of formamide, 117.2 ml of benzyl fixed-gain Pulnix video camera, and is stored on a video
alcohol, and 22.4 ml TEOS. The solution is mixed but notcassette recorder at a spatial resolution of %480. The

A. Sample preparation
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video frames are then grabbed from the tape and eight-bit
digitized by a Perceptics PixelBuffer card on a Macintosh
Quadra 950. The frame grabber card immediately transfers
these images to a 32-Mbyte dual-ported PixelStore memory
board that resides on both the slow computer bus and a very
fast direct bus from the frame grabber that can support the
data transfer rate of 10 Mbyte/s. The digitized images have a
dynamic range of 256, a spatial resolution of 5480, and

a temporal resolution of s.

The length scale regime that can be studied with
454.5-nm light is from 2r/q=22 to 0.95um, whereq
=44 sin(6/2)/\ is the scattering wave vectod,is the scat-
tering angle, anad is the wavelength in the scattering me-
dium.

The scattered light that ultimately arrives at the charge
coupled device array is not the true scattered intensity that FIG. 1. Within milliseconds of an electric-field quench into the
emerges from the scattering volume. In fact, the measuretivo-phase region the scattered intensity from an electrorheological
scattered intensity increasingly underestimates the true intefiluid shows two distinct lobe¢the maximum scattering angle is
sity as the scattering angle increases. The loss of scatteredB® herg. These lobes, which are orthogonal to the electric field,
light is due to a number of causes and although each of thededicate the presence of an unstable concentration fluctuation that is
is small, they combine to give a correction factor of aimostdue to column formation. This scattering pattern is the two-
two at the highest measured wave vector, relative to zer@imensional analog of the “spinodal ring” commonly observed in
angle. We correct for the incident polarization of the Iaser,the first-order phase separation of three-dimensional systems.

the polarization and incident-angle-dependent cell and scat-

tering screen reflectances, the angular distribution of th@nd the strain frequency can be varied by adjusting the mi-
emerging light from the diffusing screen, camera vignetting,?rOStepp'ng controller speed. The detector response time lim-

the Jacobian for light refraction, and the Jacobian of the proltS the maximum frequency te 1 Hz.
jection of a sphere onto a flat screémwice). The electric field is supplied by a square wave from a

We calculate each of these corrections analytically and "€k power supply driven by Wavetek signal generator.
apply these to a 512480 constant intensity image to create Voltages are reported peak to peak._'l"he'd|electr|c constant of
a 512x 480 “template.” Each scattering image was then cor-4-methylcyclohexanol is 13.5 and silica 4.
rected by multiplying by the template on a pixel-by-pixel
basis. Calibration runs with a uniform scatterer yielded an D. Strain phase determination
essentially constant scattering image after these corrections one problem in this experiment is the phasing of the ap-
were applied, with only a small drop in the intensity at high pjied strain with the scattering data. To solve this problem,
qg. we devoted a small corner of the scattering screen to an

optical “strain phase clock.” This clock was created by run-
C. Scattering cells ning a second pulley, whose rotational axis is orthogonal to

The scattering cell for the quiescent fluid studies consistdN€ Scattering screen, synchronously with the stepping motor.
of a black nylatron body with a cylindrical cavity into which Inside this second pulley is mounted a prism that deflects by
1.0-mm-diam black anodized cylindrical aluminum elec- several degrees a He-Ne laser beam directed toward the scat-

trodes were threaded. Flat glass microscope slides wefgfing screen. As the pulley turns, the laser beam scribes a
pressed against rubberrings to provide a seal. A 12.0-kHz small circle on the scattering screen. The strain phase clock

sine wave was applied to the 0.72-mm electrode gap to incan be set by means of a rotational adjustment of the prism.

duce particle chaining. Each image thus contains both the scattering data and the
The scattering cell for the shear studies consists of afPSolute strain phase.

inner (40x2)-mm flat circular electrode that is concentric to

a 42-mm hole in an outer electrode, creating a radial electric IIl. QUIESCENT FLUID

fkield in a }.O-mm %ag. :;hel oute(; electrode ti)sdsdanddvt\)/iched The first measurements we report concern the growth and
etween plastic and both electrodes are embedded DEWWEER, .1 e of the fluid in the quiescent state. Preliminary mea-

g_IassI plat?as, W'(tjh aﬂlé'd'f'"id 2|.O-mm| gap 1k3<ra]twee(;1_ tlhe l'n”e_Eurements of the structure orthogonal to the field were re-
circular electrode and each glass plate. The radial electrif, o earlief6], here we extend those results and present an

field is parallel to the shear grad|ent in the fluid. analysis of the structure parallel to the field.
For the steady shear studies a dc servo motor was used to

drive a pulley on the inner electrode. In the oscillatory shear
studies the inner electrode was caused to oscillate sinusoi-
dally by a long rod connected to a 25-mm lever on the elec- Scattering data taken shortly after an electric-field quench,
trode shaft, which is driven open loop by an adjustable ecshown in Fig. 1, demonstrate an unstable concentration fluc-
centric shaft on a powerful 300-0z-in. microstepping motor.tuation orthogonal to the electric-field lines in the fluid. The

The strain amplitude can be varied by adjusting the eccentritvo scattering lobes have an intensity maximum at some

A. Domain structure orthogonal to the field
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FIG. 2. Intensity slices through the lobes, i.e., orthogonal to the i 3. A master curve is obtained when the scattered intensity
electric field, indicate that the peak intensity increases with timegata are plotted on dimensionless axes, indicating scaling of the
and moves to larger length scakesnallerq). The scattering func-  gomains. Averaging these data results in the inset scattering curve,
tions are noisy begause fluctuations are slow; the number of pagghich demonstratesa 2 fall off the data on the higlg side of the
ticles in the scattering volume is small. peak. This falloff, which is Porod’s law for a two-dimensional sys-

tem, indicates sharp nonfractal interfaces on the columns. The scat-

nonzero wave vector, indicating strong spatial correlationdering function on the lovg side of the peak increase gs?. This

between initially formed chains in the plane orthogonal to'S expectgd for spinodal decomposition and is a consequence of a

the field. The scattering patterns fades when the field i§onservation law.

turned off, indicating the reversibility of particle chaining.

(The Bragg scattering one would expect from chains of requ- We can analyze the data further to understand the struc-

larly spaced particles is at valuesapfarger than observable ture of the domains. For example, if the aggregating chains

with our instrument, but can be seen on the image screenstick upon contact, without rearranging to minimize their

Reversible chaining is also observed in direct optical imagelectrostatic energy, then one might expect mass fractal, two-

ing. dimensional cluster-cluster aggregation to describe the struc-
The distinctive scattering lobes are superficially the two-ture of a cross section of a column. It is also possible that

dimensional counterpart to the spinodal ring observed irsheetlike cross sections evolve or even surface fractals. In

three-dimensional systems and thus compel a comparison fact, the scaled and averaged scattering dat®t in Fig. 3

this model. In fact, if the laser beam is directed along thehave a highg shoulder that decays as °, which isPorod's

field lines, by using transparent electrodes, a scattering rinfW for two dimensions. Porod’s law indicates the presence

can be observed. We will show that more information can b@f sharp nonfractal interfaces, as expected for a system that

obtained in our scattering geometry. is spinodally decomposing. By comparison, mass fractal
The time evolution of the structure factor can be analyzedcattering would yield a high-decay that is slower thag

by taking a slice through a lobe in the direction orthogonal tofor a two-dimensional system.

the electric field lines, as shown in Fig. 2. Each of these It is also possible to test for the formation of fractal do-

single video frames is intrinsically noisy because the numbefains by the relationship of the characteristic mass and

of chains in the scattering volume is small, but it is nonethelength. The data in Fig. 4 demonstrate thab~0,52°, sug-

less clear that the scattered light increases in intensity and trgesting that within experimental error the standard scaling

peak position moves to smallgras time evolves. relation for spinodal decomposition
An elementary question is whether or not the domain _
i ith ti ile mai (1)~ Ama( D) F(/ Ama( 1)
structures scale, i.e., merely enlarge with time while main- m mad 1)), )

taining the same morphology. In a scattering experiment two

fundamental quantities are obtained: a characteristic domain

lengthL and the domain mass within a volume of siz& f(x)~x"971 for x>1

whered is the spatial dimension. In our case the character-

istic length can be identified with the inverse peak position

L(t)=27/qma{t) @and the characteristic mass is the peak in-applies sinced=2. However, this result is simply a conse-
tensityl nax- The collapse obtained by plotting the scatteringquence of the growth of nonfractal domains that have a size-
data against axes normalized by these quantitiég. 3 independent morphology and so is more general than spin-
demonstrates that the domains scale. odal decomposition.
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FIG. 4. The peak intensity,,a Scales with the peak position as
I max~Oma>. Within the errors of this experiment this indicates that
the scaling relation max~q,;gx is obeyed since the dimensiahof
this system is 2.

FIG. 5. The kinetics of structural coarsening is well described
by the power lawL (t)=L(0)[1+ (t/7)%®], whereL (t)=27/0max
is the characteristic length. For spinodal decomposition in a system
with a conserved order parameter one expédty~t*. An im-
portant conclusion of these experiments is that the rate of coarsen-
B. Domain growth ing is voltage dependent, as quantified in the inset.

Experimental studies of the domain growth kinetics were
complicated by the intrinsically noisy scattering signal, The time dependence of the characteristic length is shown
which led to unacceptable errors in judging the peak positiorin Fig. 5 for peak-to-peak voltages of 0.56, 1.25, and 2.5 kV
and intensity from the scattering data. To reduce the noise iAcross the 0.72-mm gap. At the earliest times the character-
the characteristic length(t) = 27/qm.(t) we computed the istic length is about (0)=1.9 mm, after which a linear in-
moments crease oL (t) with t?°is then observed at all voltages, with
the growth rate increasing with voltage. In fact, a nonlinear
least-squares fit tb(t)=L(0)[ 1+ (t/7)*] gives an average
exponent ofa=0.42, but we plot against 2/5 since this is
close. For spinodal decomposition in a system with a con-
served order parameter it is thought that after a linear, Cahn-
This integral converges only fdr< 2, so we used the zeroth Hilliard-Cook regime there is a nonlinear growth regime
and first moments. In our experiment the lower integratiorwith a characteristic length that increases Iiﬁﬁévatl’?’.
limit g,=0.33x10"2 nm™! is determined by the beam stop Thus, although the electrorheological phase transition has
radius and the upper limi,=0.529<10 2 nm 1 is set by many of the salient features of two-dimensional spinodal de-
the camera position. These experimentally fixed integratiomomposition with a conserved order parameter, the growth
limits cause truncation errors in the determination of the moxkinetics appears to be somewhat faster ttiah
ments, a point that deserves some consideration. The dependence of the growth rate on voltage is shown in

Truncation errors are of no consequence in determininghe inset graph in Fig. 5. The rate increases slightly less than
the functional form of the growth kinetics, provided that the linearly with voltage and so rules out the field-squared de-
relative error is independent of the domain size. For expendence one might naively expect by noting that the solvent
ample, the moments can be determined self-consistently biyiction is field independent and that a dipole attraction scales
taking advantage of the domain scaling implied by E.  as the field squared. However, these observations can be un-
This is accomplished by scaling the integration limits with derstood within the framework of fluctuation-induced cou-
the domain size, so thatq, =bq,=qnadt), Wherea andb pling between columns, discussed below.
are arbitrarily chosen to maximally exploit the available data. Finally, we completed studies of the dependence of col-
To do this we fixeda andb, determined an initial value for umn formation on the colloid volume fractiof.. The re-
Omayx DY integrating over all of the data, computed a ngw sults in Fig. 6 show that the initial length scalecreases
and g,, recomputedq.x and continued to iterate. These with increasing concentration, but that the growth rate
partial scaled moments are strictly proportional to the truecreaseswith concentration, causing a crossover in the
moments, but in practice we found that simply integratinggrowth curves. These curves were best linearized with a
over the finite data gave moments that scaled similarly to thgrowth exponent of 0.6, the disparity between this exponent
partial scaled moments, i.e.gmat)~11(20max.DUmay/  @nd the 0.4 value in Fig. 5 being due to the intrinsic noise in
I o(20maGmax)- the experiment. To first order the initial length scale should

L(ay ,qu)Equuqkl(q)dq. )
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since the dipole moment per unit length of a column is
BERZ.

The dominant force for columns separated by a distance
comes from fluctuations withk~p~2, thus the coherence
length of these fluctuations will be- p. Now adjacent sec-
tions of lengthp, which will be pulled in different directions
1 by this force, cannot move independently of one another be-

cause there is a strong restoring force, on the energy scale of
B?E?R3, which keeps the columns parallel to the field. We
do expect, however, that sections of lengthp can move

FIG. 6. The coarsening kinetics was also determined as a fundndependently, wheré is determined by balancing this re-
tion of the initial particle volume fractiorithe legend gives the storing force with the statistical average of the thermal force

colloid concentration in wt. % As expected, the initial column for a column of lengtht. We thus conclude that satisfies
spacingL (0) decreases with increasing concentration, whereas the

column growth rate increases with increasing concentration, caus- p

ing a crossover in the growth curves. The best power-law fit to @FdipwﬁzEst(?)v (6)
these data i (t)=L(0)[ 1+ (t/7)¥®]. This coarsening exponent of

3/5 is greater than the value of 2/5 obtained in our first experimentsyhich leads immediately tg~ p(\/ ) s

This variation is due to the large intrinsic noise in the experiment; a The time scale for the columns to be drawn together by
realistic estimate of the growth exponent is 6&1. this force can be obtained by balancing this thermal force

q 12 ion b inal (for a column of length¢) against the viscous forcE,g
ecrease as &, the mean separation between single _c , .« \vherey, is the solvent viscosity is the veloc-

chains that span the electrodes, and the data roughly bear thiS ¢ iha column. andC is a drag coefficient at most loga-

out. The faster growth rate occurs because closer chai hmically dependent ofR [23]. We thereby obtain a colli-
“feel” a greater attraction.

sion time
C. Thermal theory of coarsening - MOPS/ZC)\lllO -
. . ~—.
The roughly linear dependence of the coarsening rate on \/kB_T,BE¢27’2°

electric field and the approximately root time dependence of

the length scale of the condensed phase can be accounted f% should compare this time to the coherence time of the
semiquantitatively if we suppose that coarsening is driven byluctuations of the dipole moment on a scitep~!. By the
thermally generated dipole moments. The electric field offluctuation-dissipation theorem we expect that the time for
perfectly ordered chains or columns of dipoles is shorthese fluctuations to dissipate is;~1/Dk? where D
ranged, decaying exponentially as one moves away from the k,T/uR is a characteristic diffusion coefficient for the
column in a transverse direction, with a range that is of theyarticles[24]. We thus conclude that for large we will

order of magnitude of the lattice spacing of the particles inhave 7> . and the fluctuations will persist long enough to
the column. However, chains or columns of dipoles are esdrive coarsening. We now obtain the estimate

sentially one-dimensional solids and are thus subject to
strong Landau-Peierls fluctuations. If the phonon figdoh- p(t)~(A)5?, (8)
gitudinal or transvergeof a column isu(k), with k the wave
vector along the column, then equipartition implies tf24] Wgh A~(BE)*®, in qualitative agreement with the results
above.
2 B We conclude that the evolution of structure in an ER fluid
u(k)]*~ B’E’R®’ 3 proceeds by an unstable concentration fluctuation whose
characteristic size scale increases with a power of time. The
where R is the radius of the column an8’E?R? is the  observed growth exponent of @®.1 is slightly larger than
energy scale for density fluctuations of the column. the 1/3 value expected for spinodal decomposition and some-
These density fluctuations lead to the appearance of what smaller than the 5/9 value predicted by extending the
fluctuating electric field near the column. It is easy to showHalsey-Toor theory to account for electric-field-dependent
that this electric field is of the order of magnitui2] fluctuations in interchain interactions. However, the fact that
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FIG. 7. This diagram shows the definition of scattering wave
vectorsq, andq, used to describe the detailed shape of the two-
dimensional scattering function. The contour lines are from real L , .
scattering data. 1 2 3 xi0d

a; (m)
the characteristic growth rate increases almost linearly with
the field is further evidence that the modified Halsey-Toor FIG. 8. The width of the scattering lobe in tiag direction is a
theory accounts for the structural evolution in this system. minimum at the value ofj, where the intensity is a maximum. The
scattering width is apparently time independent for valueg of

) >0, max- The solid lines are the data smoothed by Fourier filtering.
D. Structure parallel to the field '

We have thus far limited our discussion to the scattered We can determine whether the shape of the scattering
intensity as a function of the wave vecty in the direction  function, hence the column structure, is scale invariant. A
parallel to the scattering lobes, which is perpendicular to thgcale-invariant scattering function will have a minimum
electric field. Nelson and SeurﬁQS] have studied the statis- width <q|:|U2 2 proportiona| to the peak position_ It is conve-
tical mechanics of line liquids and have noted a striking re-nient to define the Iengthuzzw/<q”1’2)2 and determine if
semblance of the shape of our scattering images to predigpis is proportional to our previously defined length .
tions for line liquids. In this section we explore these paia for a fluid subjected to a 0.56-kV/mm field are shown
connections quantitatively. Before we start our discussion if, Fig. 9. Despite the noise these data convincingly show that

is useful to examine Fig. 7 to see how a wave vegjothat L,>L, . Similar results are obtained at larger fields, so on
is parallel to the applied field for each valueqf is defined.

There are several experimental issues to address. Is the
shape of the scattering lobes scale invariant? How does th  xqp?
width of a scattering lobe vary along its length? What is the
functional form of the scattered intensity in the parallel di-
rection, that isJ(q,,q, =c)? We will examine each of these
issues experimentally and then will compare our results tc
theory. a0l

The first issue we will investigate is the variation of the
scattering width parallel to the field as a function of the scat-

tering wave vectoq, . To do this it is useful to define the ¢ as| - 1
parallel moment < P

a ./-./(

o) 2] awatn
3.0r 24 -
<CI|\1/2>:J’O q|l/2|(q,QL)dQ|/ Jo 1(qy,q.)dg. -t

We have chosen to work with root moment to eliminate con- | e ]
vergence problems with the integrals, as the intensity falloff .
is expected to be Lorentzian in the direction parallel to the 20l i
field. The results are shown in Fig. 8 for a sample subjectec 20 25 20 a5 <103

to a 0.56-kV/mm field at various aging times. A deep mini- L, (hm)

mum in the width of the scattering function is observed at a

value of q, that decreases with time and a master curve [, 9. The lengti, is proportional toL, , indicating that the
appears to be developing for valuesqef past the minimum.  shape of the scattering data, and thus the domain structure, is scale
The minimum scattering width occurs at the valuegofthat  independent. Note that there is roughly a one-decade difference in
maximizes the scattered intensltfg,;=0,q,) and this value length scales, however, with correlations along the chains extending
of q, is proportional to the momexiq, ) defined previously. much further.
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FIG. 10. The intensity integrated in thg direction should in- ayy<ay /22
crease linearly withg, , and this is found at all times. The same
result is found at all voltages. FIG. 11. The line shape of the scattering data inghdirection

is fit to a Lorentzian(dashed linesat various times after the field

expenmental grounds we Conclude that the Scatterlng funcquench. At eal’ly times the fit is quite good, but at late times the
tion and column structure are scale invariant. scattered intensity decreases more rapidly than a Lorentzian.

According to theory of line liquids, the integrated scat- ) ) o
tered intensityf Z1(q, ,q, )dq, should increase linearly with the bottom of the_sample, there. is an equat!on of continuity
q, for g, <q, ma The data shown in Fig. 10 bear this out. for the areal density(x,y,z), defined so that in ary cross

This result is due to an underlying conservation law, as disSection at heighto,
cussed below.

Finally, the theory of line liquids predicts that the line f p(X,y,Zp)dx dy=N(zp), 9
shape in they, direction is Lorentzian. Determining the line

shape is difficult in such a noisy system, so we tried _to tak‘?/vhereN(zo) is the number of dipole spheres in that section.
full advantage of our data in order to reduce the noise. TGt yhe chaing are continuous from one electrode to the other,
average thel?lgznal we) ‘?hose avalue af , (i) c.ompu_ted then it is clear thaN(zp) will be independent of,. As with

the width(qj*)? and heightl (q,=04,) of a 1-pixel-wide e continuity of charge this implies that

slice in theq, direction at thisq, , and (iii) nonlinearly

binned the normalized dat@/(qj’2 2 versusl (g, ,q,)/1(q; ap
=0,,) (the nonlinear bin widths were chosen to keep the 9z
signal-to-noise ratio fixed This was repeated for each value

of g, to obtain a signal-averaged data set at one particulaiheref(x,y,z) is a vector in thexy plane and can be inter-
coarsening time. In Fig. 11 we show the resultant time depreted as they projection of the local tangent vector to the
pendence of the line shapes. At early times the data are wethains at k,y,z) [26]. The conservation law implies that
described by a Lorentzian, but at later times they decreasghen dx=09,=0, 3,=0 or, in other wordsgsp(0,04,)=0,
more rapidly than Lorentzian for largg /(q’3?. This may  where p(d) = po+ p(G). This implies that the structure
indicate that the line liquid theory only holds shortly after function

chain formation. Taken as a whole, the agreement between

the experimental data and the line liquid theory is compelling S(G)={6p(q)Sp(—1a)) (11

at short times.

+V,-£=0, (10)

will vanish wheng,=q,=0. This is a generic feature of line
o liquids, independent of equilibrium, and is seen here in the
E. Line liquid theory data. Of course if the chains are broken or contain branches,
The intensity plots of the structure function of the ER the continuity equation will be modified by the addition of a
fluid at short times after the field is applied is reminiscent ofsource term. For large values ¢f the dipole chains will
the equilibrium structure factors of line liquid5,26. appear to be unbroken if the density of chain ends and
However, since the interactions between the chains of dibranch points is low enough. At smallgithe structure func-
poles are attractivgl 2], it is clear that once the dipole chains tion will cross over to that of an isotropic liquid, at long
are formed there is no equilibrium state until the dipoleenough length scales even extendbdt finite) objects will
spheres condense into their final crystalline fdd8-15. appear as point26].
Let us first review some generic features of an ensemble Equally generic to the structure function of line liquids is
of directed lines. Most notably, if the lines go from the top toa peak at some value af, corresponding to the average
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interchain spacing. This is simply due to the incipient liquid _
or crystalline order that will emerge at lower temperatures. Sz(q)zf e aY)g(x,y,z=0)dx dy
Again, the data show these peaks.

To consider the dynamics of the coarsening, we note that
the chains form almost immediately. Thus we can view the
coarsening of the dipole fluid as the coarsening of a line gas
suddenly quenched into the crystal phase and ignore the _J ( )% 17)
complication of chain formation. Note that although the B GAy92) 57
number of dielectric spheres is constant with time, the num-
ber of chains need not be as they can join and coalesce evéffiere the last equality comes from the convolution theorem.
in the absence of chain ends and branch points. Thus wEhe data have been reduced to this form by integration along
suggest a nonconserved coarsening dynamics. We model the. We see agam two generic features of the line liquid. The
change in areal density according to the Langevin equatiorplot of 1(d,)=02/S,(q,) versusg, should rise linearly at

smallq, and then have a dip af’ , the wave vector of the

zf e+ aYIg(x y 7)8(z)dx dy dz

dp(X) SF[p] incipient crystalline order at the relevant density. According
g -r Sp(X) +7(x0), (12 to the model outlined abové(q, )= Bq?+Cq’, in agree-

ment with the data for smatf, . We may also look at the

where 7(x,t) is a noise term with correlation chosen to en- time dependence df(q, ;). Using Eqgs.(15) and (17) we

sure that the system comes to thermal equilibrium, namely,have
I(q, ;t)=e? " Bl(q, :0) (18)
(n(x,) 7(x" ,t)) =TkgTS(x—x")8(t—t'). (13 * -
for small times.
Using the model free enerdg6] for a line liquid, we are led _While there is no time_at which an equili_brium line liquid
to the linearized equation for the structure functj@a]: exists, at short enough times the system is not far from the

dilute gas that it started as on its way to a crystal. A more

IS(q:t) g2 detailed theory of the coarsening would require the introduc-
—~—2T|C?+K — +1|S(G;t)+2TkgT, tion of nonlinearities along the lines of Langer, Bar-on, and
o qi (g Miller (28]

. IV. STEADY SHEAR
wherer <0 andC andK are constants related to the stiffness

and density of the dipole chaifi26]. The nonlocal nature of The shear thinning of the fluid viscosigy is perhaps the
the kernel in Eq(14) is a consequence of the conservationmost basic aspect of electrorheology. For the colloidal silica
law. For short times Eq14) can be solved and we find that fluid studied here we found 6] that at low applied fields the
viscosity shear thinned ag~y~ %, where vy is the shear
S(q;t)~e‘w<d)t8(q;0)+[1—e‘W(d>‘]S(q;oc), (15) rat_eilwhereas a_t high appllgd fields the standard result
~ v~ + was obtained. The discovery of the anomalous 2/3
shear thinning exponent prompted the development of the
funci i h the f fali ith i Iindependent droplet model, which gives this exponent. This
Pnc lon wilf have the form ot a line gas W' an exponential 5 4e| makes some very specific predictions about the drop-
q-dependent decay F(ﬁqu qu N qu the modes de- |t gjze and orientation as functions of the shear rate and field
cay, while forCq} +Kg;< —rqf the modes grow. Thus we and these can be determined by light scattering. Likewise,
expect that for very smadl, there will be a regime off, for  the kinetic chain model, originally developed to account for

with w(g)=2I[Cq?+K(g2/g?)+r]. Thus the structure

which the scattered intensity will grow at early times. oscillatory shear, gives a shear thinning exponent @fand
The structure function at zero time should be that of a linenakes dramatically different predictions for the chain orien-
gas, namely, tation. In the following we report measurements of the ori-
entation of particle structures and compare these to the ki-
p2q? netic and equilibrium models.
S(G;0)* = 7 , (16)
Bg; +Cq; +Ka;

A. Droplet fragmentation and orientation

whereB>0 is related to the average spacing and this expres- When an ER fluid is subjected to shear, the columns frag-
sion is valid for smallj. At largerq there will be additional ment and tilt in response to the hydrodrodynamic forces,
terms leading to the peak that represents the average chaigsulting in several changes in the light-scattering pattern
spacing. This form also predicts that at fixgdthe structure (Fig. 12). First, the coarsening of the lobes stops and the
function will fall off along g, with a Lorentzian line shape, scattering pattern reaches a steady state, as shown in Fig. 13.
in agreement with the data. Second, the scattering pattern is rotated in the direction of
The three-dimensional structure function gives us infor-fluid vorticity. Finally, the peak of the scattering lobes de-
mation about the two-dimensional structure as well. Sincereases tag=0 (Fig. 14, showing that the quasiperiodic
the two-dimensional structure functio8,(x,y)=S(x,y,z intercolumn correlations are destroyed. These observations
=0) we have indicate rotated structures whose spatial correlations have
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FIG. 12. When an ER fluid is subjected to steady shear the
columns fragment into droplets that tilt in the direction of the fluid
vorticity to some equilibrium angle,,,,, relative to the electric
field. A more subtle change is that the maximum of the scattering
lobes moves to zero scattering wave vector, indicating a loss ir
spatial correlation between droplets.

| (arb. units)

been destroyed by shear. By measuring the degree of rotatic 1 2 3 4 5 xio®
as a function of shear rate, we can directly test models of th: q(m)
steady-state fluid structure.

To characterize the scattering data it is necessary to have FIG. 14. A radial slice of the scattered intensity taken through
a systematic method of determining the an@lg, by which  the center of the tilted lobes shows that the maximum scattered
the scattering lobes of the sheared fluid are rotated relative tfotensity occurs at zero-scattering wave vector, unlike in the quies-
those of the quiescent fluid. In the following, positigg,,,  cent fluid, where a peak occurs at finge
indicates a rotation in the direction of the fluid vorticity. To . . . .
determines, ., we first divide a time-averaged scattering im- E&rth; if the laser beam is considered as the axis, then we
age into 360 wedges that each subtend 1° of arc. The Scfgve.mtegrated over the latitudes to obtaln'the |nter)s!ty asa
tered intensity in each wedge is computed by integrating th unction of Iongltude. Eurthermore, th? prime meridian is
intensity from the experimentally determined limigsto q, . orthogqnal to the direction of the el_ectr_lc field. :
We have termed this technique “longitudinal’ scattering M Fi9: 15 we contrast the longitudinal analysis for the

analvsig 71 by analoav to the latitudes and lonaitudes of thequiescent fluid with that of a fluid sheared at a rate of
ysist7] by 9y g 1.06 1. The scattering maximum of the sheared sample is

shifted to positive# and the scattering half-widtlo is
x108 broader than in the sheared fluid. The peak position and half-
‘ ' ' ' ' ‘ width were extracted by fitting the Gaussiah(6)

=1(0)e™ ("~ ma)27* tg the data(Fig. 16, which worked
well, despite the slight bilateral asymmetry of the scattering
e 3 lobes.

10} = . We first investigated the dependence of the droplet orien-
#ﬁ tation on the applied electric-field frequency. This depen-
3{ dence is shown in Fig. 17 for a sample at 0.8 kV and a shear

i rate of 1.4 5. Because the angular displacement is nearly
| =089 = 1.04(s) constant over this frequency regime, we can conclude that
L. ] . the polarizability is essentially frequency independent. We
Wl . . arbitrarily chose 1.0 kHz as the standard operating frequency
) "';-";"H‘.‘.:‘_f,,_,_‘_- L for our studies, although some shear rate studies were also
1=33s S o L done at 400 Hz. It is worth noting that because the particle
. polarizability is fast and the shear rate is slow, there is no
chance of dephasing the particle dipoles by particle rotation.
Particle dephasing would reduce the dipolar interactions at
: ' ' ' ’ ' high shear rate.
° 10 20 t(s) % * % The dependence of the droplet rotation angle with shear
rate is shown in Fig. 18. These data were taken at an applied

FIG. 13. In steady shear the scattering pattern reaches a steafduency of 400 Hz and at a peak-to-peak voltage of 1.2 kV
state, in contrast to the coarsening that occurs in the quiescent flui@cross the 1.0-mm gap. A nonlinear least-squares power-law
These data show how the scattered intensity approaches a stealiyto the data give® 7> so good linearity is obtained
state after the shear rate is increased from 0.89 to Lb4Ehe by simply plotting 6., againsty*”.
decay time of 33 s is quite large compared to the reciprocal shear This cube-root dependence is much weaker than one
rate, indicating that the droplet-droplet collision time may be anmight naively expect. For a rigid rod in shear the electro-
important time scale. static torque that tends to maintain field alignment increases

0.9

I (arb. units)

steady state intensity
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! FIG. 17. The dependence of the droplet orientation angle on the
FIG. 15. The radially integrated intensity of scattered light, ob-fleld frequljenlc)é is shown forda 7‘5r']Wt' % sam?lilztg(t)}.S kv a?plled
tained from the longitudinal analysis, is shown for an unsheared ang_cross the 1.0-mm gap and a shear rate of 1.4 $he angular
sheared sample in the polar coordinate®). Positive angles are in

isplacement is nearly constant in this regime, indicating that the

the direction of fluid vorticity and the small background scattering particle pglarlfatlon IS S_early frquency mdlegel:lgent.ll\élost ﬁf our
has been subtracted for clarity. Note that for the sheared sample traear an voé{:\ge stu |§s were408n|_e| 3:3 ' z,hat ou_gl sorlne
scattering pattern is angularly displaced, indicating column tiIting;_S ear ra_te studies were done at U HZ. ecauseF e pgrtlce polar-
broadened, indicating a dispersity of column sizes; and skewed,zab'“ty is fast and the shear rate is slow, the particle dipoles will
primarily because of the nonlinear dependence of the orientatiof®! dephase by rotation in shear.
angle on droplet size.

due to the tendency of chains or droplets to fragment in

to first order as the tilt angl®, whereas the hydrodynamic response to flow, as @scgssed_ below. .

torque increases as the shear ratén steady state the drop- The droplet or chain orientation ang_le can also be studied
let velocity is zero, so a torque balance gives the linear rela2s @ function O_f the applied ?'eC”'C field at constant shear
tion B~ .. The sublinear dependence actually observed fate. Stronger fields should align the structures more closely
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FIG. 16. The column orientation can be obtained from a Gauss- FIG. 18. The linear increase of the droplet orientation angle with
ian fit (lines) to the data or from the position of the intensity maxi- the cube root of the shear rate bolsters the independent droplet
mum. The Gaussian does not fit the wings of the data very well, buinodel of the shear thinning viscosity. This sample was 7.5-wt. %
reliably finds the peak position, while being insensitive to noise.silica and the applied voltage was 1.2 kV at 400 Hz across the
The intensity is radially integrated. 1.0-mm gap.
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leads to a shear-rate-dependent ER fluid viscosity.

sl ' ' o In the following the electric field is oriented along tke
P direction and the shear flow igz) = yzx. We also assume a
) e solvent dielectric constant;=1. The hydrodynamic torque
B ;9% Y /"/ i about they axis for a rigid ellipsoidal droplet rotating at a
/ ;/ rate 6 in a shear flowy is given by[29]
. 20F /;/ i Yy
%] .
g Ny L=2'u—02[(02c0520+bzsinze)'y—(szrcz)a],
=3 bn,+c“n
3 15t .7 . X z
% i 19
© @
£ w0l 4 | whereV is the spheroid volume and, , , are the shape-
i f dependent depolarization factors of the spheroid. The depo-
; . larization factors of a prolate spheroidal droplet can be ex-
6
5- / N pressed as,=n andn, ,=(1—n)/2. For extremely prolate
/ spheroids withc>b, we can defingg=b?/c?<1 to obtain
ol 1 [29] n~— g, where we have dropped a logarithmic term.

. : . : 102 Thus bothg andn are suitable small parameters for expan-
x sion.
s V2y1/3 . . I
N9 If the droplet is in mechanical equilibrium, then the hy-
drodynamic torqud. must balance the electrical torqie

FIG. 19. The orientation angle is shown as a function of thep o "0 trostatic torqué on a spheroid of dielectric con-
applied field, at constant shear rate, for a 7.5-wt. % silica ﬂu'd'§tants inclined at an angl@ to the field is[30]

Because the fluid is nonohmic at high voltages, it is expected tha

the particle and fluid polarizabilities will be field dependent, thus (e— 1)2
obscuring the scaling. Still, at the lower shear rate of 0:34tke K=—-——"--E?V sin(20), (20)
data are in good agreement with the expected cube root law. At the 8m(e+1)

higher shear rate the data are better described by a smaller expo- ) ) o

nent, near 0.2, perhaps due to the formation of a shear slip instabiwhereE is the applied electric field.

ity. If we assume that the droplet anghes small, then bal-
ancing the electrostatic and hydrodynamic torques gives

with the field. Because the fluid is non-Ohmic at high volt- 16m(e+1) oy 1 Mn
ages, it is expected that the particle and fluid polarizabilities o~ “e—1E2 Eoc F (21

may be field dependent, so the scaling is expected to be
somewhat obscur_ed. Stl!|, Fig. 19 shows that_ the data at ﬁln:MO:y/ZSOSCBZE(Z) is the Mason number, which ex-
shear rate of 0.34's are in good agreement with the cube- resses the ratio of hydrodynamic to electrostatic forces be-
root law obtained in the shear-rate-dependent studies. wWR y y

will now compare these observations with the predictions oftween two V'C'nil spheres in shear in terms Of. the dielectric
the models. contrast facto3= (e, — &¢)/(e,+ 2¢.), Wheree, is the par-

ticle dielectric constantg,. is the dielectric constant of the
continuous phase, and,=8.854<10 “F/cm is the
vacuum permittivity. Note that for a rigid droplet with a
Here we give a brief derivation of the independent dropletlarge aspect ratio in a large shear gradient, the tilt angle will
model first developed to describe the shear thinning viscosite large, causing the droplet to gain polarization energy. It is
of an ER fluid. This model neglects droplet-droplet hydrody-therefore reasonable to expect the droplet to attempt to mini-
namic and electrostatic interactions and so is most approprinize its total energy by reducing its size, even at the expense
ate for dilute suspensions at low Mason numbers, yet it reef increasing its surface energy per unit volume.
mains informative for larger values of the concentration. Having determined the tilt angl® as a function ofg
This independent droplet model is based partly on the=b?%/c?, we can now find the size and aspect ratio of a
result of Halsey and Toof13] for the shape of a particle droplet that minimize its total energy. This is done by bal-
droplet. By balancing depolarization effects against surfacancing the depolarization ener@yhich will be a function of
tension, one finds that such an independent droplet is roughly and 4, both small parameteragainst the surface tension of
a prolate sphere, with the sizeof the droplet in the direction a droplet.
parallel to the applied field related to the skzef the droplet The depolarization energy of a spheroid 3§
in the direction perpendicular to the field by~r23c??,
wherer 4 is the radius of an colloidal particle. _ (e-1VE?
In shear flow an ellipsoidal droplet will rotate so that its a 8
long axis is no longer parallel to the field. The larger the
droplet, the greater the rotation in a shear flow. This rotatiorwhere only the lowest-order terms érendn have been kept.
reduces the depolarization energy of a droplet and a balanckhis energy is minimized wheé=0 andn=0, so this term
between depolarization energy and surface energy detefavors long, thin columns aligned with the field. On the other
mines the characteristic droplet size. This size computatiohand, the surface energy term

B. Independent droplet model

e—1
e+1

6>—(e—1)n

(22
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S(e—1)E?S 1
T @3 1yl x7TE

favors large spheroidal droplets. He3e-4m(abc)?® is the  where y=8£(3). To obtain some idea of the magnitude of

surface area of the spheroid and we exgeet 4 [13,31]. the local-field correction, the enhancement, over the dipole
Minimizing the total energyF4+F¢ gives gxMn?? b approximation, of the breaking strength of a chain in tension

«Mn~%3 andcxMn~% The droplet width ish=xc?3, asin  aligned along the field direction i&3)(3x;— ,)/2. For B

the theory of the quiescent fluif6]. Also, since Mng = — 3 this factor is 0.71, but foB=1 the enhancement is
«Mn*3, Eq. (4) indicates thatd<Mn'® for M<1, which  7.54.
confirms thatd is small. Thus, as the shear rate incregses The fluid exerts a Stokes friction on each of the spheres

the electric field decreasethe droplet lengtle and its aspect and thus a hydrodynamic torque on the chain. Balancing this

ratio c/bcMn 1 decrease while the tilt angle increases. hydrodynamic torque against the electrostatic torque, ob-
The dependence of the droplet orientation angle has tained by summing the tangential component of the dipolar

direct bearing on the fluid viscosity. The field enhancemenforce along the chain, gives;Z(3)tard=8 MnN? for the tilt

of the viscosity is conveniently quantified by the dimension-angle of a chain of R+ 1 spheres. Balancing the hydrody-

less field-specificviscosity ug=(u—uy)/ dpo, Whereu, namically induced tension at the chain center against the

is the solution viscosity at infinite Mn. To determine the radial component of the dipolar force gives the mechanical

droplet contribution to the shear part of the stress tensor westability constraint

compute the hydrodynamic torque per unit volume in the

fluid. If the volume fraction of droplets ig, then this isty 3k1C0S 06—k, 2
= b4, lg, which yields £3) —5ing com = 16 MnN*~. @7
prxMn—2R (24 The chain angle thus increases with chain length. The long-

est stable chain will have a critical chain angle that depends

for the field-induced contribution to the shear-thinning Vis- o the dielectric contrast through

cosity. This calculation applies only to the intermediate Ma-

son number regime where the Mason number is small 3 x 5 14 /4
enough for chains to form, yet not so small that these chains tang.= \| 1" K2\ 2 -7 X (28)
€ 2K3+ Ko 3

span the electrode gap. Vi—yi2’
C. Chain model (Note that the singularity is outside the physical rang@.of

The chain angle is also closely approximated by the linear

We have recently developed a simple chain mé@ié] of  rejation sirg,=2/5(1+3x/10). As 8 increases over its
electrorheology that is based on a balance of electrostatic angsximum physical range of 1 to 1, the critical chain angle

hydrodynamic forces. Thisthermal mode_I was originally increases from 31.3° to 59.3°. A stable chain of maximum
based on the interaction between the induced dipole MQength N<Mn~Y2 will be oriented at exactly the critical

ments _of dielectric spheres in s_olution. The _dipol_e momentang|e 6.. By contrast, the droplet model gives a ellipsoid
was originally computed for_ a smg!e sphere in a liquid CON-jgngth L«Mn~3 and an orientation angle increasing @s
tinuum, but we have modified this model to account for s 13

local-field effects by self-consistently computing the dipole The data clearly show a dependence of the chain angle on
moment on an enchained sphere. The presence of vicing/

: f fhe cube root of Mn and so support the droplet model. How-
spheres then alters the local field and this has a substantigy,e, electrode friction can affect the simple prediction of the

effect on the agreement of the model with experiment, as Wepain model to give a linear increase of the critical angle

shall see. with Mn.
In the chain model the particle structures are presumed to
be _chains of spheres that intergct through dipol.ar forges with Rheology
their neighbors. The self-consistent electrostatically induced i ) ) )
attractive dipolar force i§17] The viscosity can be computed in a straightforward fash-

ion. The electrostatic torque on a single-particle pair is
Fo=bZ(3)[(3k,c0860— KZ)F+Kssin(20)b], (25  2aF¢,=2af(3)k3b sin2. There are Bl such pairs in a
chain so the electrostatic torque per chain i
whereb=3ma?u,y/8 Mn, {(3)=1.202 is the Riemann zeta = $na’eqsB°E3LL(3)k4siN20. In terms of the volume
function, andr and @ are unit vectors parallel and perpen- fraction ¢ of spheres the stress in the sample is thus
dicular to the line of centers between the spheres. The re= geogcﬁ2E§¢g(3)K3sin200. Using our result for the criti-
maining constants have to do with the local-field effects andta| angle gives the shear field specific viscosity
are given by

14208 pe=c Mn~ %, (29)

+X

T A= X1 x18)% where to a good approximatioe=£(3)%%¢(3)(1+ 153
. +558°+§B°) over the physical range ¢.

The scalingu — u 4 ¥~ 1 has been obtained in many ex-

K22(1+X/4)2' (26) periments, including those conducted on our silica fluid at
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strain
clock

FIG. 20. A typical scattering image contains a pair of scattering lobes and the strain clock. These scattering lobes are tilted in the

direction of fluid vorticity by some angl@ relative to the orientation of the scattering lobes obtained for the quiescent fluid, which are
orthogonal to the electric-field vector.

high fields[16]. However, for the silica fluid at low fields we tering lobes are tilted by an angberelative to the orientation
find w—pu4sxy 23 a result consistent with the elliptical of the scattering lobes obtained for the quiescent fluid. The
droplet mode[16]. angle # was then obtained by one of two methods: locating
the intensity maximund,,,, or finding the mediarg,,,, de-
fined as that angle that divides the integrated scattered inten-

We have reported preliminary measurements of ER fluidsity into equal halves, sf)ZS:I (0)d0=ff’gool (0)d6. The lat-
in oscillatory shear flow that demonstrate that the chain dyter method is used when the strongly nonlinear dynamics is
namics is highly nonlinear. The nonlinear dynamics was reéagharacterized by twin peaks. Under these circumstances sim-

sonably well described by a simplenetic chain model, in b\ |ocating the maximum peak causes discontinuities in the
which the nonlinear response is caused by large variations i ata

the chain length during an oscillation. These chain length
variations are caused by aggregation and fragmentation pro-
cesses that occur during each cycle. At the time these results
were reported we did not understand why the simple model At relatively low strain amplitudes the response of
we presented did not agree more quantitatively with experithe orientation anglef,, to the sinusoidal shear strain
ment, nor did we have direct experimental evidence for they: ¥o Sin(2mit) was nearly linear, demonstrating that frag-
chain Iength variations assumed to drive the nonlinear '®mentation and aggrega_tion effects may be not be important
sponse. In the time hence we have thoroughly examined thg perturbative flows where,<1. This quasilinearity is ex-
chain model, including such effects as local-field correctionsemp"ﬁed in Fig. 21, where Lissajous plots of tap,)
multipolar interactions, and hydrodynamic screening. EX-againsty are shown to be nearly elliptical. At the low shear
perimentally, we have now determined the chain size variafrequency the chain orientation leads the strain by 57°. Since
tions that occur during each cycle. We will first reexaminey gge phase shift would put the droplets in phase with the
the kinetic chain model, showing how it can be modified tostrain rate, we conclude that the polarization coupling to the
take into account these effects and then we will reanalyz@jectric field, which tends to align the chains, dominates the
previously reported data and present data on the fluctuationgydrodynamic forces, so the chains deviate from field align-
in chain size during a shear cycle. ment only at the highest shear rates.

We have previously generalized the droplet model to os- Conversely, at high frequencies the shear rate
cillatory shear at small strain amplitudes, where aggregation- 2 75, sin(2m1t) is much larger and the droplet orientation
and fragmentation effects that occur during a cycle can bgs nearly in phase with the fluid shear since the hydrody-
ignored. This model gives a sinusoidal response, but th@amic torque dominates the electrostatic torque. Note that
single characteristic relaxation time of the system dependgnder this condition the affine deformation limit is nearly
on the strain amplitude and shear frequency. achieved, as shown by the dashed line.

At higher strain amplitudes the motion becomes
“clipped” as the droplets fragment and aggregate during the

A scattering image contains a pair of scattering lobes and;ycle in order to maintain good electric-field alignment. This
of course, the strain phase clock, as in Fig. 20. These scatonlinear motion is evidenced by the parallelogram-shaped

V. OSCILLATORY SHEAR

B. Measurements

A. Data analysis
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FIG. 21. Clockwise Lissajous plots of taif,,) againsty are
high strain frequency hydrodynamic forces dominate and the moghains. The dashed line is a theoretical curve. The amplitude of

FIG. 23. At low voltages a different nonlinear response of the

virtually elliptical (lines) when the strain amplitude is small. At fyig can be observed, with retrograde motion of fragmenting

velocity versus the chain ang(Eig. 25. Again, the theoret-

tion is nearly in phase with the strain. At low frequency the elec-motion is sensitive to the dipolar model and the method of data

trostatic forces dominate and the chains deviate from field alignyequction.
ical prediction is shown for comparison.

ment in proportion to the instantaneous strain rate, thus being

almost out of phase with the strain.

Lissajous plots in Fig. 22. The dashed lines represent theo- Starting at maximum positive strain, the droplet half cycle

retical curves computed from the theory developed below. can be described as follows. As the strain reverses, the drop-

At lower voltages we observe a different nonlinear fluid lets corotate with the fluid and tilt to a maximum angle at
response, as shown in a Lissajous plot in Fig. 23, and againsbughly half the maximum strain on the return stroke, where-
time in Fig. 24. The droplet motion leads the strain, indicat-upon they fragment and undergo retrograde motion to realign
ing that electrostatic interactions dominate. This may seemwith the electric field. If inertial effects are neglected then

surprising, given that the field is small, but we have alsothe hydrodynamic torque equals the electrostatic torque, so at
zero tilt angle the droplets corotate with the fluid. Because

system is the noncircular Lissajous plot of the chain angulatilt angle, the large area within the Lissajous loop indicates
that this nonlinear response is dissipative.

reduced the strain frequency to 0.075 Hz.
Another way to appreciate the nonlinear behavior of thisthe hydrodynamic torque is thus proportional to the droplet
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FIG. 24. The “dogbone” nonlinearity shown in Fig. 23 is plot-

FIG. 22. Lissajous plots at strain amplitudesygf=0.5, 1.6, and
3.2 have parallelogram shapes that indicate a “clipping” of the
angular motion as chains fragment and align with the field at highted against time. The strain data are fit to a sinugsddid line) and
strains. The theoretical curvédashed linesare computed in the the chain orientation data are connected by a dashed line. The ret-
instantaneous “equilibrium” limit wheré is large. rograde motion is quite evident in this representation.
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FIG. 26. The coordinate system used in the kinetic chain model.
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FIG. 25. The nonlinear response is shown as a Lissajous plot of | . ) . .
chain angle versus angular velocity. The solid line is the theoretical NiS tangential force is a maximum at the chain center,
prediction of the chain model and is plotted against the top and rightvhere in low-Reynolds-number flow it is balanced solely by
axes; the data are plotted against the bottom and left axes. the tangential componefEg. (25)] of the dipole-dipole in-

teraction force

Finally, we observed that the scattering lobes brighten _ 2 - .

considerably as they swing back through zero angle, indicat- Foco={(3)(3ma%40y/8 Mn) k5SiN20.

ing droplet aggregation. Likewise, as the lobes swing to theiBalancing the tangential hydrodynamic and electrostatic

maximum tilt they diminish in intensity, indicating droplet forces at the chain center gives the damped oscillator equa-
fragmentation. All of these observations of the droplet mo-jgn

tion point the way to the simple model of the dynamics that

we shall now present. {(3)k3y

6+ wqsin2d=y co$d where ©4= 16 M2 (30)
C. Kinetic chain model

. . The characteristic oscillator frequencwy depends

The salient features of experimental results we havestron Iv on chain size. Physically acceptable valNesiust
shown can be understood in terms of a kinetic model of the gy -y y P .

. : : . orrespond to mechanically stable chains or fragmentation
dynamics of volatile chains. We have presented this model . ) ;

X i . . will occur. The radial componerirected along the chain

elsewherd 17] for the case of fixed induced dipolar interac- __ . . )
o ; . axig of the hydrodynamic force is
tions: Here we modify the basic model to account for local-
field corrections. Local-field corrections have the important N
consequence of changing the critical chain angle from a fixed F, = E Fy- (sinf,codd) =3mugay sin(26)(N?>—k?).
value of ~39.2° to a range from 31.3° to 59.3°, depending = k¥l
on the dielectric contrast factg.

We consider a linear chain o\2+1 spheres of radiua
labeled from—N to N in a coordinate systemx(z), the
origin of which is centered on the zeroth sphéFay. 26).
The z axis is in the direction of the electric field and tke
axis is in the direction of fluid vorticity. The chain makes an
angle 0 to the x axis, so the position of th&th bead is
(2ak sinf,2ak cosf). The fluid velocity is given byv(z) Foer={(3)(3ma%uo¥/8 Mn)(3x1C0S0— k).
= yzXx, wherex is a unit vector, and the velocity of theh
bead isv,=2akf(costx—singz) for a chain rotating at an- The maximum stable chain number is determined by balanc-
gular velocityé. ing these forces at the chain center

The shearing fluid exerts a hydrodynamic forég

This force, which again is a maximum at the chain center,
puts the chain in tension whefy>0, since the chain is
tilted in the direction of shear, and in compression when
#y<0. For the chain to be stable to fracture this hydrody-
namically induced force must be smaller than the radial com-
ponent of the electrostatic interaction

5(3) 3K1C0§0_ Ko

=6 uolv(z) —vy] on thekth bead, whergu is the liquid _ . y6=0
viscosity. This hydrodynamic force can be decomposed into Nima= 8 Mn sin29 (31
a tangential component that causes chain rotation and a com- o, y6<0.

ponent that causes tension or compression. The tangential
component of the hydrodynamically induced force betweermThe maximum stable chain length is extremely dependent on
the kth and k+ 1)th spheres is chain orientation and strain rate, especially when driven by
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oscillatory shear. The maximum stable chain length diverges
when the chain is aligned with the field, when the instanta-

neous strain rate is zero, and when the chain is under com- 101 ]
pression.
If a chain is far from its maximum stable size then its size
will adjust by aggregation or fragmentation. We will de- 05 §
scribe the kinetics of aggregation and fragmentation by the
phenomenological formula 2
s 00F .
dN(t k N(t)?
d(t - N |- NZ( )l(t)}’ (32
ma -0.5 - -

where because induced dipolar forces drive aggregation the
rate constant it is useful to  write k 0t
=ko[§(3)Kgsoscﬁ2E§/8Mo], wherek, is a concentration-
dependent constant with no implicit field or viscosity depen-
dence. The reasons for this definitionlgfwill become ob-
vious in the following.

This kinetic equation gives very different time depen- FIG. 27. Lissajous plots change unexpectedly as the rate con-
dences for aggregation and fragmentation. When the chain fantk is varied. Fork=0 the oscillator reorientation raie, is a
much smaller than its maximum stable length, slow, poWer_simple constant_ar_ld the remaini_ng nonlinearities are s_,mal_l enough
law aggregation will occur withN(t)= ’_Z—N(O) F2Kt, in that a nearly elliptical response is observed. I_:or Ia«gassajous
agreement with the root time prediction of See and [36i, plots approach_a parallelogram, whereas for intermedtiatalues
which they developed for the quiescent fluid. If the chain isretrograde motion is observed.
much larger than its stable length then fragmentation will
occur exponentially quickly according to N(t)

2
=N(0)e k"Nmax Note that the fragmentation rakéN? . is

1. Electrorheology

Before we discuss the behavior of these equations we

proportional to the strain rate andirslependenbf the elec- Y/\SElr?];'I;?agig:}scLgs%ssthﬁeféidt'ﬁéeﬁerlgﬁﬂgggéénctgg?:ii&fi;ﬂe
tric field and viscosity. Of course, when the chain is at its ¢ P

maximum length no aggregation or fragmentation occuré0 the fluid stress is
sincedN(t)/dt=0. Thus the phenomenological rate equation
gives physically reasonable behavior while avoiding the
complexities of the Smoluchowski equation.

Equations(30)~(32) now comprise a set of coupled non- FErom the right-hand side of this equation it is clear that the

Imear equations that can be solved to modal the dynamics cHuid stress increases with the chain orientation angle. When
chains in shear flow. However, at this point there are four

independent parameters in the system: the Mason numbghz 0, the chain contribution to the fluid stress is zero and the
Mn, the strain frequency and amplitudey, and the rate chain comoves with the flwd 59 09529:. 0. B‘?Calls.e Eq.
constant prefactok,. A considerable simplification occurs (33) shows that the dynamics of chain orientation is indepen-

by recognizing that solutions to the kinetic equation are ofi€"t Of electric field and shear frequency, we conclude from
the formN(t) =[ £(3)xs¥/16v Mn]¥2n(»t). If all functions Eq. (34) that the stress scales purely as the square of the

are expressed in terms of the dimensionless tmest this electric field.
leads to the reduced damped nonlinear oscillator equations

o=6uoN2p(y COLO— 0) = LeoeB2ELHL(3) K3sin2e.
(34

2. Numerical results

.1 . ko n2 We can now compare the predictions of this model with
0+ 2 sin20=7y cosd, n= r 1- - j our experimental results. For this purpose we have used the
ma (33  dielectric constant of 13.5 for 4-methylcyclohexanol and 4
for silica, giving a negative value g8. For small strains the
[2 3k,C0S 00— Ky _ response is sinusoidal, as expected, but for large strains
N — ; W v6=0 (Figs. 27 and 2BLissajous plots are nonelliptical and depen-
max ) dent on the rate constakt Fork=0 the oscillator reorien-
*©, y6<0. tation ratew, is a simple constant and the remaining nonlin-

earities in Eq.(30) are small enough that a nearly elliptical

The reduction to a three-parameteyy(ky,8) model is a response is observed. Asincreases, the chains fragment
result of the particular form of the rate equation we haveand aggregate to achieve mechanical stability while trying to
chosen. The strain amplitude is fixed in the experiment@nd maximize their length and Lissajous plots approach a paral-
can be computed, so this is really a single free parametdelogram. The instantaneous response liffdtge k) of the
model. Finally, it is interesting to note that the chain orien-local-field-corrected model is in good agreement with the
tation dynamicsf(t) is independent of Mason number, al- data in Fig. 22. This agreement is much better than the bare
though the chain length dynamibKt) is not. model because of the reduced orientation angle. Finally, for
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FIG. 28. The orientational dynamics shown in Fig. 27 are plot- FIG. 29. The chain length varies considerably during the strain
ted as functions of the strain rate. As the rate condtantreases, cycle due to fragmentation at large chain angles and aggregation at
the nonlinear dynamics becomes more pronounced. small angles. The asymmetry of the peaks is due to the power-law

. ] ) ] ] aggregation kinetics being slower than the exponential fragmenta-
intermediate values & an interesting crossover is observed tion. The sinusoid is the strain.

wherein humps appear in the Lissajous plots. This hump is
commonly observed in our data at low fields, as illustrated in D. Phase bifurcation
Figs. 23 and 24.

The nonlinear behavior of this system is also shown as )
Lissajous plot of the chain angular velocity versus the chairﬁqus.fa{ havg beetn at IOVQ’ toﬂznodetr)atet f'legdi'the? thedvtﬁlt—t
angle (Fig. 27. Again, the detailed shape of the theory is age IS turned up to greater than about L. We found tha

somewhat different from the data, but the overall agreemerHje_ scattering lobes split into two_pairs. Direc_t observation
is quite good ' indicated that the phase and amplitude of motion of the two

The chain orientation dynamics is a somewhat indireclpairs differed. After digitizing the scattering data we found

test of the kinetic chain model since it is conceivable that onéhat.’ dug to the finite lobe width, the pairs of Iob_es COUI.d be
could construct another set of equations that gives the sarrfBSt'm~:]u'Shed from each other only when the strain amplitude

overall behavior. However, the nonlinear behavior of this
model is ultimately driven by the fragmentation and aggre-

The oscillatory shear measurements we have reported

T T T T T T T

gation phenomena that occur during each shear cycle. Tt 10} ©=0.075 Hz, V = 0.4 kV
dynamics of fragmentation, which occurs at twice the oscil- s o 3
lation frequency, is shown in Fig. 29. Chain aggregation is

very pronounced just as the electrode is about to return t 28} 12

. . . . . . 05
zero angle, with chains reaching a maximum size just afte

the maximum strain. During this time interval the chain is
more or less comoving with the flow. Fragmentation occurs
much before the electrode returns to zero angle because tl
chain is nearly 90° ahead of the strain and thus is already ¢
its maximum tilt angle in the opposite direction. The power-
law aggregation and exponential fragmentation leads to a 05} 22|
obvious asymmetry in the chain size peaks.
Large aggregates cause intense light scattering, so to me 20r Sl L
sure the chain size we determined the wedge integrate .| [ 13
maximum intensityl ..« (as opposed to the peak position
fmay for each scattering image. The peak intensity is plottec
against time in Fig. 30 and against chain orientation in Fig.
31. There is a very close correspondence between these datapg 309, when the maximum intensitgsolid line, plotted

and the predictioriFig. 29 of the kinetic chain model. The against the first left axjsis plotted against time, the resulting curve
peak position relative to the applied strain is about right ands very similar to the chain length fluctuations of Fig. 29. The strain
even the peak asymmetry, due to slow aggregation and fagf the sinusoidplotted against the right axisnd the chain orien-
fragmentation, can be seen. Moreover, this pattern was ohation is the small dashed line plotted against the second left axis.
served in all of the data sets, except those taken at a straifhese data, taken at a strain amplitude of 3.2, are representative of
amplitude of 0.25, despite the tremendous variations in Lisdata taken at strain amplitudes down to 0.5. Intensity fluctuations
sajous plots of the orientational dynamics. are small when the strain amplitude is 0.25.

0.0~

tan(56max)
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1 L 1 1 1 1 1
100 110 120 130 140 150 160
t (units of 7/30 s)
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FIG. 31. The data of Fig. 30 are used to make a Lissajous plot 0. strain phase (degees)

chain size versus orientation. The inset is a typical computed Lis- FIG. 33. The diff b he til le of ina lob
sajous plot of chain length versus orientation for the kinetic chain - 33. The difference between the tilt angle of scattering lobes

model. The asymmetry in the data is exaggerated in this represeﬁhat are in phase and out of phase with the applied strain reaches a
tation maximum when the strain is at half maximum on the return stroke,

i.e., 150° and 330°.

is roughly half maximum on the return strokiee., at strain

phase angles of about 150° and 330°, where 0° is defined d&de and a second population of free droplets in a central
the zero strain amplitude on the positive outgoing styoke high shear rate slip zone. If a shear slip instability is indeed
The resolved peaks are shown in Fig. 32. We attribute thi$he cause of phase bifurcation, then the free droplets in the
phase bifurcation to the onset of a shear slip instatiBg], = shear slip zone should be subject to a large hydrodynamic

with one population of chains growing out from each elec-torque and should thus be nearly in phase with the strain,
whereas the bound chains should feel little hydrodynamic

torque and should be out of phase with the strain.
' Because the scattering lobes cannot be resolved through-
0 out most of the strain cycle, it is not possible for us to di-
' | 1.0 Hz, 1.2 KV, y= 328° rectly determine the phase of each component. Instead, we
\ generated the response functiofig(t) for in phase and

ey O,u(t) for out of phase oscillators and plotted the difference
A O(t) = O,,(t) — 6;,(t) between these functions in Fig. 33. It
is apparent that the scattering lobes will be resolved when
A 0> o,, whereo, is the width of the lobes. Thus, whexy

% 20

‘ (arb. units) is a maximum we have the best chance of resolving the
| ] peaks, and this does indeed occur at the half maximum strain
90° on the return stroke. This is strong evidence in support of

two structural componentdree droplets and bound chajns
that arise due to the formation of a shear slip zone.

VI. CONCLUSIONS

We have presented light-scattering studies of an elec-
trorheological fluid in the quiescent state, steady shear, and
oscillatory shear. Studies of the coarsening of the quiescent
, fluid after a field quench show that the growth of structure in
many ways mimics the spinodal decomposition of a binary

FIG. 32. As the voltage is increased the scattering pattern bifurﬂu'd' The analogy with spinodal decomposition is strong; a

cates into two pairs of lobes that oscillate at about 90° out of phasQe"?‘k appears in the Stru?ture factor, the fugbhoulder of
with one another. When the applied strain is at half maximum onhich conforms to Porod’s law of scattering from sharp in-
the return strokeéi.e., at 150° and 330the two lobes can easily be terfaces while the lovet shoulder increases ag, and the
resolved, as shown here. We attribute this phase bifurcation to thdomain size increases as a power of time. However, close
onset of a shear slip instability, with free droplets in the shear zon€xamination reveals that the domain growth exponent is
and bound chains attached to the electrodes. Direct microscopymaller than the 1/3 value predicted for spinodal decompo-
studies on this fluid support this conclusion. sition in a system with a conserved order parameter. We find
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the kinetics data are better described by a thermal model dinear. We have described a simple kinetic chain model of
hierarchical clustering of columns into successively largethe dynamics that describes the approach of a chain to its
columns. The interaction between columns is presumed tmaximum stable size by a kinetic equation. Much of our
arise from one-dimensional charge-density fluctuations in thexperimental data can be described by taking the instanta-
columns that persist long enough to allow columns to colmeous approach to stability; however, at low fields strong
lide. This model also gives a good account of the increase ionlinearities suggest that the approach to stability is slow
the growth kinetics with applied voltage. compared to the shear period. This model is then used to
Studies Of an ER f|UId in Steady Shear ShOW that the StrUCCompute the nonlinear rheo|ogy of an ER fluid and it is con-
ture reaches a steady state wherein droplets are rotated in thgided that light scattering is an indirect probe of stress.
direction of fluid vorticity at some anglé relative to the At high voltages we observe a phase bifurcation in the
applied electric field. This angle is found to increase as thgcattering pattern that we attribute to the onset of a shear slip
cube root of the shear rate, in agreement with a model Wgone. Free droplets in the shear slip zone oscillate out of

originally proposed for the shear thinning viscosity. In this phase with bound chains attached to the electrodes.
model the equation of motion of elliptical droplets is found

by balancing the hydrodynamic and electrostatic torques.
The droplets reach their free-energy minimum by fragment-
ing to align with the electric field until exposing more sur-
face finally becomes too energetically costly. The work of J.E.M. and J.O. was performed at Sandia
Our studies of ER fluids in oscillatory shear demonstrateNational Laboratories and was supported by the U.S. Depart-
that the chain dynamics, and thus the electrorheology, is nomment of Energy under Contract No. DE-AC04-94AL85000.
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