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Structure and dynamics of electrorheological fluids
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We have used two-dimensional light scattering to study the structure and dynamics of a single-scattering
electrorheological fluid in the quiescent state and in steady and oscillatory shear. Studies of the quiescent fluid
show that particle columns grow in two stages. Particles first chain along the electric field, causing scattering
lobes to appear orthogonal to the field, and then aggregate into columns, causing the scattering lobes to move
to smaller angles. Column formation can be understood in terms of a thermal coarsening model we present,
whereas the early-time scattering in the direction parallel to the field can be compared to the theory of line
liquids. In simple shear the scattering lobes are inclined in the direction of fluid vorticity, in detailed agreement
with the independent droplet model of the shear thinning viscosity. In oscillatory shear the orientation of the
scattering lobes varies nonsinusoidally. This nonlinear dynamics is described by a kinetic chain model, which
provides a theory of the nonlinear shear rheology in arbitrary shear flows.@S1063-651X~97!10112-X#

PACS number~s!: 47.50.1d
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I. INTRODUCTION

Electrorheological~ER! fluids @1,2# are made by suspend
ing particles in a liquid whose dielectric constant or cond
tivity @3–5# is mismatched in order to create dipolar partic
interactions in the presence of an ac or a dc electric field.
fluids rapidly solidify, or at least increase their viscosity dr
matically, in response to an electric field, due to the form
tion of particle chains that bridge the electrodes. The m
second response of ER fluids has piqued the interes
engineers, who are now trying to incorporate these fluids
practical fast electromechanical actuators, such as fiber s
ning clutches and active shock absorbers.

To predict the behavior of ER fluid-based devices a
signer must have a good understanding of the both the
lidification kinetics and the response of the activated fluid
mechanical stress, especially when flow is induced. We h
previously reported preliminary light-scattering studies
the evolution of structure in a quiescent fluid@6#, the steady-
state structures that form in shear@7#, and the nonlinear dy-
namics of chain structures in oscillatory shear@8#. In this
paper we extend those investigations and give a comp
account of the light-scattering studies we have made as
as the theoretical ideas that can be invoked to understan
data.

The first experiments we report concern the evolution
structure after an electric field is applied to a quiescent
fluid. This occurs in two principal phases: the fast aggre
tion of particles into chains, which occurs in millisecond
and the slow coalescence of chains into columns, which
curs in minutes. Chain formation has been studied by tim
resolved studies of the transmission of light through
opaque ER fluid@9#, birefringence and dichroism@10#, and
fluid permittivity @11#. The light-scattering measurements w
571063-651X/98/57~1!/756~20!/$15.00
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report compliment these measurements since they allow
termination of the slow column formation as well.

In the Halsey-Toor theory of column formation@12# it is
shown that after particle chains form and span the electro
the long-range dipolar interactions between vicinal cha
are screened by the image dipoles created by the condu
electrodes and the chains then interact via a short-ran
potential that arises from one-dimensional Landau-Pei
charge-density fluctuations. The chains then coalesce in
plane orthogonal to the field to form a three-dimensio
solid @13#. Our measurements of the power-law growth
columns as a function of applied voltage and fluid conc
tration support this general description of coarsening, but
observed voltage dependence has led to the consideratio
the case wherein column coalescence occurs before a ch
density fluctuation can relax.

The anisotropic ‘‘bow tie’’ light-scattering pattern we ob
serve is similar in appearance to that predicted by the the
of line liquids. By analyzing our data in ways suggested
this theory we show that there is a strong correspondenc
the predictions of line liquid theory to scattering data tak
shortly after the quench.

For completeness we mention that within the columns
colloids eventually form a crystalline solid@13# that recent
calculations show is body-centered tetragonal@14#. This bct
structure has been observed in a laser diffraction experim
from a column of large silica spheres@15#. Of course, a
glassy structure may result from a rapid, deep quench.

When an initially quiescent ER fluid is subjected to stea
or oscillatory shear, the electrode-spanning columns br
into volatile structures that continuously fragment and agg
gate, and generally tilt away from strict field alignment in t
direction of fluid vorticity. There are two fundamentally di
ferent theoretical models of structure and rheology in she
756 © 1998 The American Physical Society
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57 757STRUCTURE AND DYNAMICS OF . . .
the equilibrium droplet model@16# and thekinetic chain
model@17#. In both of these models we use the point dipo
approximation, which is reasonably accurate for our coll
dal silica fluid, which has negative dielectric contrast. In t
droplet model, which was developed for stationary shea
free energy is minimized in order to compute the equilibriu
size, shape, and orientation of particle structures that are
sumed to be ellipsoidal. In the kinetic chain model, whi
can be applied to both stationary and non-stationary she
mechanical stability condition determines the metastable
and orientation of structures that are presumed to be cha
The predictions of these models are contrasted as we c
pare them to our light-scattering data.

Light-scattering measurements in steady shear@7# show
how the steady-state size and orientation of these par
structures depends on the shear rate, with the size decre
and the tilt angle increasing as the shear rate increases. T
changes are responsible for the shear thinning of the vis
ity of ER fluids @16#. We have extended these measureme
to include the voltage dependence.

We report light-scattering studies of the structural dyna
ics in oscillatory shear flow. These measurements should
of special interest to those interested in modeling the fl
stress response to nonstationary shear flows. Direct rheo
cal studies@18,19# have been complicated by the difficulty i
finding a linear-response regime. It has been shown that
strict linear viscoelastic regime exists at all, it is confined
strain amplitudes smaller than 1022. Thus the framework of
linear viscoelasticity, a phase-shifted stress in response t
applied strain, is of limited utility for ER fluids. Powell@20#
has presented rheological data that demonstrate the nonl
nature of the stress response and these agree quite well
the light-scattering data we present here.

In our measurements of the orientation dynamics in os
latory shear we find a quasilinear response regime at s
strain amplitudes and are able to determine experime
conditions where the droplet orientation is in or out of pha
with the strain. This quasilinear regime is successfully
scribed by the independent droplet model, wherein the dr
let size does not change during a shear cycle. Howeve
strain amplitudes larger than about 0.25, chain volatility d
ing a single strain cycle becomes significant and the orie
tion dynamics becomes strongly nonlinear. In this regime
kinetic chain model gives a very reasonable description
the observed dynamics and agrees well with direct rheol
cal measurements@20# of the stress.

II. EXPERIMENT

A. Sample preparation

The sample used in this study is a model ER fluid
developed for light scattering@6#, microscopy, and elec
trorheological measurements@16#. The colloids in our model
fluid are synthesized by the base-catalyzed nucleation
growth of monodisperse silica spheres from tetraethoxy
con ~TEOS!. To reduce the Keesom interactions that lead
aggregation, this synthesis was conducted in a mixed org
solvent that index matches the growing spheres. Specific
to prepare a 200-ml solution we combine 21.2 ml of 29
wt. % NH3 with 39.2 ml of formamide, 117.2 ml of benzy
alcohol, and 22.4 ml TEOS. The solution is mixed but n
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shaken and allowed to react without stirring for 2 h. T
hydrophilic silica spheres are then coated with 5.0 ml of
organophilic silane coupling agent 3-~trimethoxysilyl! propyl
methacrylate via a condensation reaction@21#. After a 24-h
vacuum distillation of water and ammonia at 50 °C t
spheres are centrifuged at low acceleration~;35 g for 7 h,
the supernatant decanted, and the soft colloidal solid is
dispersed in 4-methylcyclohexanol, again chosen to clos
index match the spheres. The sample is centrifuged aga
35 g for 16 h, the supernatant decanted, and the solid re
pended in 4-methylcyclohexanol. To prevent settling the
nal sample is rotated slowly until used.

Scanning electron microscopy and elastic and quasiel
tic light-scattering measurements indicate that 0.7-mm-diam
silica spheres are easily formed at high silica concentrati
under mild hydrolysis with 0.5M NH4OH. The elastic light-
scattering data are consistent with a Gaussian sphere ra
R distribution havingsR /R of 10.5%. Light-scattering inten
sity measurements indicate a refractive index incremen
dn/dc50.0017 ml/g, which is small enough to ensure sing
scattering from concentrated dispersions: Indeed, depola
tion of the scattered light was negligible.

To measure the surface charge of the colloids, elec
phoresis measurements were made in a Pen Kem Laser
microelectrophoresis apparatus. Since we were unable to
serve any electrophoresis with this apparatus we simply
plied a 1-kV/mm electric field to the particles and observ
their behavior through a Nikon Microphot-FXA optical m
croscope. Even at these high electric fields we were unab
observe electrophoresis of these particles, although at
applied frequencies field-induced particle chaining was
served and found to be reversible by Brownian motion alo
indicating that contact interactions between these parti
are much smaller thankBT.

The two samples used in the study measured 20 and
wt. % by thermal gravimetric analysis, although the hig
concentration sample was diluted to 11 wt. % for the kinet
studies. The fluid used in the oscillatory shear study is 7
wt. % silica, which is 3.0 vol %, assuming a silica speci
gravity of 2.5. This corresponds to a mean separation
tween silica sphere centers of;6R and a spacing of;11R
between initially formed chains.

B. Two-dimensional light scattering

To study the kinetics of phase separation requires the a
ity to determine structure as a function of time. Tradition
one-dimensional light-scattering instruments must rep
tively scan through a sequence of angles, with the result
data are acquired in an interval during which the structure
evolving, so that temporal resolution is severely comp
mised. Furthermore, the ER phase transition gives rise
anisotropic scattering and therefore a two-dimensional de
tor is required. To meet these demands we have develop
light-scattering instrument that is based on readily availa
video and computer technology.

A 454.5-nm argon-ion laser beam, focused with a 40-
focal length lens, illuminates the sample, the scattered l
impinges on an opaque diffusing screen, is collected b
fixed-gain Pulnix video camera, and is stored on a vid
cassette recorder at a spatial resolution of 6403480. The
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758 57MARTIN, ODINEK, HALSEY, AND KAMIEN
video frames are then grabbed from the tape and eigh
digitized by a Perceptics PixelBuffer card on a Macinto
Quadra 950. The frame grabber card immediately trans
these images to a 32-Mbyte dual-ported PixelStore mem
board that resides on both the slow computer bus and a
fast direct bus from the frame grabber that can support
data transfer rate of 10 Mbyte/s. The digitized images hav
dynamic range of 256, a spatial resolution of 5123480, and
a temporal resolution of130 s.

The length scale regime that can be studied w
454.5-nm light is from 2p/q522 to 0.95 mm, where q
54p sin(u/2)/l is the scattering wave vector,u is the scat-
tering angle, andl is the wavelength in the scattering m
dium.

The scattered light that ultimately arrives at the cha
coupled device array is not the true scattered intensity
emerges from the scattering volume. In fact, the measu
scattered intensity increasingly underestimates the true in
sity as the scattering angle increases. The loss of scatt
light is due to a number of causes and although each of th
is small, they combine to give a correction factor of almo
two at the highest measured wave vector, relative to z
angle. We correct for the incident polarization of the las
the polarization and incident-angle-dependent cell and s
tering screen reflectances, the angular distribution of
emerging light from the diffusing screen, camera vignetti
the Jacobian for light refraction, and the Jacobian of the p
jection of a sphere onto a flat screen~twice!.

We calculate each of these corrections analytically a
apply these to a 5123480 constant intensity image to crea
a 5123480 ‘‘template.’’ Each scattering image was then co
rected by multiplying by the template on a pixel-by-pix
basis. Calibration runs with a uniform scatterer yielded
essentially constant scattering image after these correc
were applied, with only a small drop in the intensity at hi
q.

C. Scattering cells

The scattering cell for the quiescent fluid studies cons
of a black nylatron body with a cylindrical cavity into whic
1.0-mm-diam black anodized cylindrical aluminum ele
trodes were threaded. Flat glass microscope slides w
pressed against rubberO rings to provide a seal. A 12.0-kH
sine wave was applied to the 0.72-mm electrode gap to
duce particle chaining.

The scattering cell for the shear studies consists of
inner ~4032!-mm flat circular electrode that is concentric
a 42-mm hole in an outer electrode, creating a radial elec
field in a 1.0-mm gap. The outer electrode is sandwich
between plastic and both electrodes are embedded bet
glass plates, with a fluid-filled 2.0-mm gap between the in
circular electrode and each glass plate. The radial elec
field is parallel to the shear gradient in the fluid.

For the steady shear studies a dc servo motor was us
drive a pulley on the inner electrode. In the oscillatory sh
studies the inner electrode was caused to oscillate sinu
dally by a long rod connected to a 25-mm lever on the el
trode shaft, which is driven open loop by an adjustable
centric shaft on a powerful 300-oz-in. microstepping mot
The strain amplitude can be varied by adjusting the eccen
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and the strain frequency can be varied by adjusting the
crostepping controller speed. The detector response time
its the maximum frequency to;1 Hz.

The electric field is supplied by a square wave from
Trek power supply driven by Wavetek signal generat
Voltages are reported peak to peak. The dielectric constan
4-methylcyclohexanol is 13.5 and silica is;4.

D. Strain phase determination

One problem in this experiment is the phasing of the
plied strain with the scattering data. To solve this proble
we devoted a small corner of the scattering screen to
optical ‘‘strain phase clock.’’ This clock was created by ru
ning a second pulley, whose rotational axis is orthogona
the scattering screen, synchronously with the stepping mo
Inside this second pulley is mounted a prism that deflects
several degrees a He-Ne laser beam directed toward the
tering screen. As the pulley turns, the laser beam scribe
small circle on the scattering screen. The strain phase c
can be set by means of a rotational adjustment of the pri
Each image thus contains both the scattering data and
absolute strain phase.

III. QUIESCENT FLUID

The first measurements we report concern the growth
structure of the fluid in the quiescent state. Preliminary m
surements of the structure orthogonal to the field were
ported earlier@6#, here we extend those results and presen
analysis of the structure parallel to the field.

A. Domain structure orthogonal to the field

Scattering data taken shortly after an electric-field quen
shown in Fig. 1, demonstrate an unstable concentration fl
tuation orthogonal to the electric-field lines in the fluid. Th
two scattering lobes have an intensity maximum at so

FIG. 1. Within milliseconds of an electric-field quench into th
two-phase region the scattered intensity from an electrorheolog
fluid shows two distinct lobes~the maximum scattering angle i
;8° here!. These lobes, which are orthogonal to the electric fie
indicate the presence of an unstable concentration fluctuation th
due to column formation. This scattering pattern is the tw
dimensional analog of the ‘‘spinodal ring’’ commonly observed
the first-order phase separation of three-dimensional systems.
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57 759STRUCTURE AND DYNAMICS OF . . .
nonzero wave vector, indicating strong spatial correlatio
between initially formed chains in the plane orthogonal
the field. The scattering patterns fades when the field
turned off, indicating the reversibility of particle chainin
~The Bragg scattering one would expect from chains of re
larly spaced particles is at values ofq larger than observable
with our instrument, but can be seen on the image scre!
Reversible chaining is also observed in direct optical im
ing.

The distinctive scattering lobes are superficially the tw
dimensional counterpart to the spinodal ring observed
three-dimensional systems and thus compel a compariso
this model. In fact, if the laser beam is directed along
field lines, by using transparent electrodes, a scattering
can be observed. We will show that more information can
obtained in our scattering geometry.

The time evolution of the structure factor can be analyz
by taking a slice through a lobe in the direction orthogona
the electric field lines, as shown in Fig. 2. Each of the
single video frames is intrinsically noisy because the num
of chains in the scattering volume is small, but it is nonet
less clear that the scattered light increases in intensity and
peak position moves to smallerq as time evolves.

An elementary question is whether or not the dom
structures scale, i.e., merely enlarge with time while ma
taining the same morphology. In a scattering experiment
fundamental quantities are obtained: a characteristic dom
length L and the domain mass within a volume of sizeLd,
whered is the spatial dimension. In our case the charac
istic length can be identified with the inverse peak posit
L(t)52p/qmax(t) and the characteristic mass is the peak
tensityI max. The collapse obtained by plotting the scatteri
data against axes normalized by these quantities~Fig. 3!
demonstrates that the domains scale.

FIG. 2. Intensity slices through the lobes, i.e., orthogonal to
electric field, indicate that the peak intensity increases with t
and moves to larger length scales~smallerq!. The scattering func-
tions are noisy because fluctuations are slow; the number of
ticles in the scattering volume is small.
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We can analyze the data further to understand the st
ture of the domains. For example, if the aggregating cha
stick upon contact, without rearranging to minimize the
electrostatic energy, then one might expect mass fractal, t
dimensional cluster-cluster aggregation to describe the st
ture of a cross section of a column. It is also possible t
sheetlike cross sections evolve or even surface fractals
fact, the scaled and averaged scattering data~inset in Fig. 3!
have a high-q shoulder that decays asq23, which isPorod’s
law for two dimensions. Porod’s law indicates the presen
of sharp nonfractal interfaces, as expected for a system
is spinodally decomposing. By comparison, mass frac
scattering would yield a high-q decay that is slower thanq22

for a two-dimensional system.
It is also possible to test for the formation of fractal d

mains by the relationship of the characteristic mass
length. The data in Fig. 4 demonstrate thatI max;qmax

22.25, sug-
gesting that within experimental error the standard sca
relation for spinodal decomposition

I ~ t !;qmax
2d ~ t ! f „q/qmax~ t !…,

~1!

f ~x!;x2d21 for x@1

applies sinced52. However, this result is simply a conse
quence of the growth of nonfractal domains that have a s
independent morphology and so is more general than s
odal decomposition.

e
e

r-

FIG. 3. A master curve is obtained when the scattered inten
data are plotted on dimensionless axes, indicating scaling of
domains. Averaging these data results in the inset scattering cu
which demonstrates aq23 fall off the data on the high-q side of the
peak. This falloff, which is Porod’s law for a two-dimensional sy
tem, indicates sharp nonfractal interfaces on the columns. The
tering function on the low-q side of the peak increase asq22. This
is expected for spinodal decomposition and is a consequence
conservation law.
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760 57MARTIN, ODINEK, HALSEY, AND KAMIEN
B. Domain growth

Experimental studies of the domain growth kinetics we
complicated by the intrinsically noisy scattering sign
which led to unacceptable errors in judging the peak posi
and intensity from the scattering data. To reduce the nois
the characteristic lengthL(t)52p/qmax(t) we computed the
moments

I k~ql ,qu![E
ql

qu
qkI ~q!dq. ~2!

This integral converges only fork,2, so we used the zerot
and first moments. In our experiment the lower integrat
limit ql50.3331023 nm21 is determined by the beam sto
radius and the upper limitqu50.52931022 nm21 is set by
the camera position. These experimentally fixed integra
limits cause truncation errors in the determination of the m
ments, a point that deserves some consideration.

Truncation errors are of no consequence in determin
the functional form of the growth kinetics, provided that t
relative error is independent of the domain size. For
ample, the moments can be determined self-consistentl
taking advantage of the domain scaling implied by Eq.~1!.
This is accomplished by scaling the integration limits w
the domain size, so thataql5bqu5qmax(t), wherea and b
are arbitrarily chosen to maximally exploit the available da
To do this we fixeda andb, determined an initial value fo
qmax by integrating over all of the data, computed a newql
and qu , recomputedqmax and continued to iterate. Thes
partial scaled moments are strictly proportional to the t
moments, but in practice we found that simply integrati
over the finite data gave moments that scaled similarly to
partial scaled moments, i.e.,qmax(t);I 1(aqmax,bqmax)/
I 0(aqmaxbqmax).

FIG. 4. The peak intensityI max scales with the peak position a
I max;qmax

22.25. Within the errors of this experiment this indicates th
the scaling relationI max;qmax

2d is obeyed since the dimensiond of
this system is 2.
e
,
n
in

n

n
-

g

-
by

.

e

e

The time dependence of the characteristic length is sho
in Fig. 5 for peak-to-peak voltages of 0.56, 1.25, and 2.5
across the 0.72-mm gap. At the earliest times the charac
istic length is aboutL(0)51.9 mm, after which a linear in-
crease ofL(t) with t2/5 is then observed at all voltages, wit
the growth rate increasing with voltage. In fact, a nonline
least-squares fit toL(t)5L(0)@11(t/t)a# gives an average
exponent ofa50.42, but we plot against 2/5 since this
close. For spinodal decomposition in a system with a c
served order parameter it is thought that after a linear, Ca
Hilliard-Cook regime there is a nonlinear growth regim
with a characteristic length that increases likeqmax

21 ;t1/3.
Thus, although the electrorheological phase transition
many of the salient features of two-dimensional spinodal
composition with a conserved order parameter, the gro
kinetics appears to be somewhat faster thant1/3.

The dependence of the growth rate on voltage is show
the inset graph in Fig. 5. The rate increases slightly less t
linearly with voltage and so rules out the field-squared
pendence one might naively expect by noting that the solv
friction is field independent and that a dipole attraction sca
as the field squared. However, these observations can be
derstood within the framework of fluctuation-induced co
pling between columns, discussed below.

Finally, we completed studies of the dependence of c
umn formation on the colloid volume fractionfc . The re-
sults in Fig. 6 show that the initial length scaledecreases
with increasing concentration, but that the growth ratein-
creases with concentration, causing a crossover in t
growth curves. These curves were best linearized wit
growth exponent of 0.6, the disparity between this expon
and the 0.4 value in Fig. 5 being due to the intrinsic noise
the experiment. To first order the initial length scale sho

FIG. 5. The kinetics of structural coarsening is well describ
by the power lawL(t)5L(0)@11(t/t)2/5#, whereL(t)52p/qmax

is the characteristic length. For spinodal decomposition in a sys
with a conserved order parameter one expectsL(t);t1/3. An im-
portant conclusion of these experiments is that the rate of coar
ing is voltage dependent, as quantified in the inset.
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57 761STRUCTURE AND DYNAMICS OF . . .
decrease as 1/fc
1/2, the mean separation between sing

chains that span the electrodes, and the data roughly bea
out. The faster growth rate occurs because closer ch
‘‘feel’’ a greater attraction.

C. Thermal theory of coarsening

The roughly linear dependence of the coarsening rate
electric field and the approximately root time dependence
the length scale of the condensed phase can be accounte
semiquantitatively if we suppose that coarsening is driven
thermally generated dipole moments. The electric field
perfectly ordered chains or columns of dipoles is sh
ranged, decaying exponentially as one moves away from
column in a transverse direction, with a range that is of
order of magnitude of the lattice spacing of the particles
the column. However, chains or columns of dipoles are
sentially one-dimensional solids and are thus subject
strong Landau-Peierls fluctuations. If the phonon field~lon-
gitudinal or transverse! of a column isu(k), with k the wave
vector along the column, then equipartition implies that@22#

uu~k!u2;
kBT

b2E2R3 , ~3!

where R is the radius of the column andb2E2R3 is the
energy scale for density fluctuations of the column.

These density fluctuations lead to the appearance
fluctuating electric field near the column. It is easy to sh
that this electric field is of the order of magnitude@12#

FIG. 6. The coarsening kinetics was also determined as a f
tion of the initial particle volume fraction~the legend gives the
colloid concentration in wt. %!. As expected, the initial column
spacingL(0) decreases with increasing concentration, whereas
column growth rate increases with increasing concentration, c
ing a crossover in the growth curves. The best power-law fit
these data isL(t)5L(0)@11(t/t)3/5#. This coarsening exponent o
3/5 is greater than the value of 2/5 obtained in our first experime
This variation is due to the large intrinsic noise in the experimen
realistic estimate of the growth exponent is 0.560.1.
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^E2&;
kBTR

r4 ~4!

at a transverse distancer from the column. Thus there is
fluctuating forceEdip per unit length between columns o
radius R separated by a distancer, which may be either
attractive or repulsive and is of the order of magnitude

Fdip;
AkBTbER3/5

r3 ~5!

since the dipole moment per unit length of a column
bER2.

The dominant force for columns separated by a distancr
comes from fluctuations withk;r21, thus the coherence
length of these fluctuations will be;r. Now adjacent sec-
tions of lengthr, which will be pulled in different directions
by this force, cannot move independently of one another
cause there is a strong restoring force, on the energy sca
b2E2R3, which keeps the columns parallel to the field. W
do expect, however, that sections of lengthj@r can move
independently, wherej is determined by balancing this re
storing force with the statistical average of the thermal fo
for a column of lengthj. We thus conclude thatj satisfies

AjrFdip;b2E2R3S r

j2D , ~6!

which leads immediately toj;r(l/f)1/5.
The time scale for the columns to be drawn together

this force can be obtained by balancing this thermal fo
~for a column of lengthj! against the viscous forceFvis
;Cm0vj, wherem0 is the solvent viscosity,v is the veloc-
ity of the column, andC is a drag coefficient at most loga
rithmically dependent onR @23#. We thereby obtain a colli-
sion time

tc;
m0r3/2Cl1/10

AkBTbEf27/20
. ~7!

We should compare this time to the coherence time of
fluctuations of the dipole moment on a scalek5r21. By the
fluctuation-dissipation theorem we expect that the time
these fluctuations to dissipate ist f;1/Dk2, where D
;kBT/m0R is a characteristic diffusion coefficient for th
particles@24#. We thus conclude that for largel we will
havet f@tc and the fluctuations will persist long enough
drive coarsening. We now obtain the estimate

r~ t !;~At!5/9, ~8!

with A;(bE)4/5, in qualitative agreement with the resul
above.

We conclude that the evolution of structure in an ER flu
proceeds by an unstable concentration fluctuation wh
characteristic size scale increases with a power of time.
observed growth exponent of 0.560.1 is slightly larger than
the 1/3 value expected for spinodal decomposition and so
what smaller than the 5/9 value predicted by extending
Halsey-Toor theory to account for electric-field-depend
fluctuations in interchain interactions. However, the fact t
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the characteristic growth rate increases almost linearly w
the field is further evidence that the modified Halsey-To
theory accounts for the structural evolution in this system

D. Structure parallel to the field

We have thus far limited our discussion to the scatte
intensity as a function of the wave vectorq' in the direction
parallel to the scattering lobes, which is perpendicular to
electric field. Nelson and Seung@25# have studied the statis
tical mechanics of line liquids and have noted a striking
semblance of the shape of our scattering images to pre
tions for line liquids. In this section we explore the
connections quantitatively. Before we start our discussio
is useful to examine Fig. 7 to see how a wave vectorqi that
is parallel to the applied field for each value ofq' is defined.

There are several experimental issues to address. Is
shape of the scattering lobes scale invariant? How does
width of a scattering lobe vary along its length? What is
functional form of the scattered intensity in the parallel
rection, that is,I (qi ,q'5c)? We will examine each of thes
issues experimentally and then will compare our results
theory.

The first issue we will investigate is the variation of th
scattering width parallel to the field as a function of the sc
tering wave vectorq' . To do this it is useful to define the
parallel moment

^qi
1/2&5E

0

`

qi
1/2I ~qi ,q'!dqiY E

0

`

I ~qi ,q'!dqi .

We have chosen to work with root moment to eliminate co
vergence problems with the integrals, as the intensity fal
is expected to be Lorentzian in the direction parallel to
field. The results are shown in Fig. 8 for a sample subjec
to a 0.56-kV/mm field at various aging times. A deep mi
mum in the width of the scattering function is observed a
value of q' that decreases with time and a master cu
appears to be developing for values ofq' past the minimum.
The minimum scattering width occurs at the value ofq' that
maximizes the scattered intensityI (qi50,q') and this value
of q' is proportional to the moment^q'& defined previously.

FIG. 7. This diagram shows the definition of scattering wa
vectorsqi and q' used to describe the detailed shape of the tw
dimensional scattering function. The contour lines are from r
scattering data.
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We can determine whether the shape of the scatte
function, hence the column structure, is scale invariant
scale-invariant scattering function will have a minimu
width ^qi

1/2&2 proportional to the peak position. It is conve
nient to define the lengthL i52p/^qi

1/2&2 and determine if
this is proportional to our previously defined lengthL' .
Data for a fluid subjected to a 0.56-kV/mm field are show
in Fig. 9. Despite the noise these data convincingly show
L i}L' . Similar results are obtained at larger fields, so

-
l

FIG. 8. The width of the scattering lobe in theqi direction is a
minimum at the value ofq' where the intensity is a maximum. Th
scattering width is apparently time independent for values ofq'

.q',max. The solid lines are the data smoothed by Fourier filteri

FIG. 9. The lengthL' is proportional toL i , indicating that the
shape of the scattering data, and thus the domain structure, is
independent. Note that there is roughly a one-decade differenc
length scales, however, with correlations along the chains exten
much further.
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experimental grounds we conclude that the scattering fu
tion and column structure are scale invariant.

According to theory of line liquids, the integrated sca
tered intensity* 0

`I (qi ,q')dqi should increase linearly with
q' for q',q',max. The data shown in Fig. 10 bear this ou
This result is due to an underlying conservation law, as d
cussed below.

Finally, the theory of line liquids predicts that the lin
shape in theqi direction is Lorentzian. Determining the lin
shape is difficult in such a noisy system, so we tried to ta
full advantage of our data in order to reduce the noise.
average the signal we~i! chose a value ofq' , ~ii ! computed
the width ^qi

1/2&2 and heightI (qi50,q') of a 1-pixel-wide
slice in the qi direction at thisq' , and ~iii ! nonlinearly
binned the normalized dataqi /^qi

1/2&2 versusI (qi ,q')/I (qi

50,q') ~the nonlinear bin widths were chosen to keep
signal-to-noise ratio fixed!. This was repeated for each valu
of q' to obtain a signal-averaged data set at one partic
coarsening time. In Fig. 11 we show the resultant time
pendence of the line shapes. At early times the data are
described by a Lorentzian, but at later times they decre
more rapidly than Lorentzian for largeqi /^qi

1/2&2. This may
indicate that the line liquid theory only holds shortly aft
chain formation. Taken as a whole, the agreement betw
the experimental data and the line liquid theory is compell
at short times.

E. Line liquid theory

The intensity plots of the structure function of the E
fluid at short times after the field is applied is reminiscent
the equilibrium structure factors of line liquids@25,26#.
However, since the interactions between the chains of
poles are attractive@12#, it is clear that once the dipole chain
are formed there is no equilibrium state until the dipo
spheres condense into their final crystalline form@13–15#.

Let us first review some generic features of an ensem
of directed lines. Most notably, if the lines go from the top

FIG. 10. The intensity integrated in theqi direction should in-
crease linearly withq' , and this is found at all times. The sam
result is found at all voltages.
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the bottom of the sample, there is an equation of continu
for the areal densityr(x,y,z), defined so that in anxy cross
section at heightz0 ,

E r~x,y,z0!dx dy5N~z0!, ~9!

whereN(z0) is the number of dipole spheres in that sectio
If the chains are continuous from one electrode to the oth
then it is clear thatN(z0) will be independent ofz0 . As with
the continuity of charge this implies that

]r

]z
1¹W'• tW50, ~10!

where tW(x,y,z) is a vector in thexy plane and can be inter
preted as thexy projection of the local tangent vector to th
chains at (x,y,z) @26#. The conservation law implies tha
when qx5qy50, ]z50 or, in other words,dr(0,0,qz)50,
where r(qW )5r01dr(qW ). This implies that the structure
function

S~qW !5^dr~qW !dr~2qW !& ~11!

will vanish whenqx5qy50. This is a generic feature of line
liquids, independent of equilibrium, and is seen here in
data. Of course if the chains are broken or contain branc
the continuity equation will be modified by the addition of
source term. For large values ofqW the dipole chains will
appear to be unbroken if the density of chain ends a
branch points is low enough. At smallerqW the structure func-
tion will cross over to that of an isotropic liquid, at lon
enough length scales even extended~but finite! objects will
appear as points@26#.

Equally generic to the structure function of line liquids
a peak at some value ofq' corresponding to the averag

FIG. 11. The line shape of the scattering data in theqi direction
is fit to a Lorentzian~dashed lines! at various times after the field
quench. At early times the fit is quite good, but at late times
scattered intensity decreases more rapidly than a Lorentzian.
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interchain spacing. This is simply due to the incipient liqu
or crystalline order that will emerge at lower temperatur
Again, the data show these peaks.

To consider the dynamics of the coarsening, we note
the chains form almost immediately. Thus we can view
coarsening of the dipole fluid as the coarsening of a line
suddenly quenched into the crystal phase and ignore
complication of chain formation. Note that although t
number of dielectric spheres is constant with time, the nu
ber of chains need not be as they can join and coalesce
in the absence of chain ends and branch points. Thus
suggest a nonconserved coarsening dynamics. We mode
change in areal density according to the Langevin equat

]r~x!

]t
52G

dF@r#

dr~x!
1h~x,t !, ~12!

whereh(x,t) is a noise term with correlation chosen to e
sure that the system comes to thermal equilibrium, name

^h~x,t !h~x8,t8!&5GkBTd3~x2x8!d~ t2t8!. ~13!

Using the model free energy@26# for a line liquid, we are led
to the linearized equation for the structure function@27#:

]S~qW ;t !

]t
'22GFCq'

2 1K
qz

2

q'
2 1r GS~qW ;t !12GkBT,

~14!

wherer ,0 andC andK are constants related to the stiffne
and density of the dipole chains@26#. The nonlocal nature o
the kernel in Eq.~14! is a consequence of the conservati
law. For short times Eq.~14! can be solved and we find tha

S~qW ;t !'e2w~qW !tS~qW ;0!1@12e2w~qW !t#S~qW ;`!, ~15!

with w(qW )52G@Cq'
2 1K(qz

2/q'
2 )1r #. Thus the structure

function will have the form of a line gas with an exponent
qW -dependent decay. ForCq'

4 1Kqz
2.2rq'

2 the modes de-
cay, while forCq'

4 1Kqz
2,2rq'

2 the modes grow. Thus we
expect that for very smallqz there will be a regime ofq' for
which the scattered intensity will grow at early times.

The structure function at zero time should be that of a l
gas, namely,

S~qW ;0!}
r0

2q'
2

Bq'
2 1Cq'

4 1Kqz
2 , ~16!

whereB.0 is related to the average spacing and this exp
sion is valid for smallqW . At largerqW there will be additional
terms leading to the peak that represents the average c
spacing. This form also predicts that at fixedq' the structure
function will fall off along qz with a Lorentzian line shape
in agreement with the data.

The three-dimensional structure function gives us inf
mation about the two-dimensional structure as well. Sin
the two-dimensional structure functionS2(x,y)5S(x,y,z
50) we have
.
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S2~qW !5E ei ~qxx1qyy!S~x,y,z50!dx dy

5E ei ~qxx1qyy!S~x,y,z!d~z!dx dy dz

5E S~qx ,qy ,qz!
dqz

2p
, ~17!

where the last equality comes from the convolution theore
The data have been reduced to this form by integration al
qz . We see again two generic features of the line liquid. T
plot of I (q')5q'

2 /S2(q') versusq' should rise linearly at
small q' and then have a dip atq'

* , the wave vector of the
incipient crystalline order at the relevant density. Accordi
to the model outlined above,I (q')}ABq'

2 1Cq'
4 , in agree-

ment with the data for smallq' . We may also look at the
time dependence ofI (q' ;t). Using Eqs.~15! and ~17! we
have

I ~q' ;t !}e2G~r 2B!tI ~q' ;0! ~18!

for small times.
While there is no time at which an equilibrium line liqui

exists, at short enough times the system is not far from
dilute gas that it started as on its way to a crystal. A mo
detailed theory of the coarsening would require the introd
tion of nonlinearities along the lines of Langer, Bar-on, a
Miller @28#.

IV. STEADY SHEAR

The shear thinning of the fluid viscositym is perhaps the
most basic aspect of electrorheology. For the colloidal sil
fluid studied here we found@16# that at low applied fields the
viscosity shear thinned asm;ġ22/3, where ġ is the shear
rate, whereas at high applied fields the standard resum
;ġ21 was obtained. The discovery of the anomalous
shear thinning exponent prompted the development of
independent droplet model, which gives this exponent. T
model makes some very specific predictions about the d
let size and orientation as functions of the shear rate and
and these can be determined by light scattering. Likew
the kinetic chain model, originally developed to account
oscillatory shear, gives a shear thinning exponent of21 and
makes dramatically different predictions for the chain orie
tation. In the following we report measurements of the o
entation of particle structures and compare these to the
netic and equilibrium models.

A. Droplet fragmentation and orientation

When an ER fluid is subjected to shear, the columns fr
ment and tilt in response to the hydrodrodynamic forc
resulting in several changes in the light-scattering patt
~Fig. 12!. First, the coarsening of the lobes stops and
scattering pattern reaches a steady state, as shown in Fig
Second, the scattering pattern is rotated in the direction
fluid vorticity. Finally, the peak of the scattering lobes d
creases toq50 ~Fig. 14!, showing that the quasiperiodi
intercolumn correlations are destroyed. These observat
indicate rotated structures whose spatial correlations h
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been destroyed by shear. By measuring the degree of rota
as a function of shear rate, we can directly test models of
steady-state fluid structure.

To characterize the scattering data it is necessary to h
a systematic method of determining the angleumax by which
the scattering lobes of the sheared fluid are rotated relativ
those of the quiescent fluid. In the following, positiveumax
indicates a rotation in the direction of the fluid vorticity. T
determineumax we first divide a time-averaged scattering im
age into 360 wedges that each subtend 1° of arc. The s
tered intensity in each wedge is computed by integrating
intensity from the experimentally determined limitsql to qu .
We have termed this technique ‘‘longitudinal’’ scatterin
analysis@7# by analogy to the latitudes and longitudes of t

FIG. 12. When an ER fluid is subjected to steady shear
columns fragment into droplets that tilt in the direction of the flu
vorticity to some equilibrium angleumax relative to the electric
field. A more subtle change is that the maximum of the scatte
lobes moves to zero scattering wave vector, indicating a los
spatial correlation between droplets.

FIG. 13. In steady shear the scattering pattern reaches a s
state, in contrast to the coarsening that occurs in the quiescent
These data show how the scattered intensity approaches a s
state after the shear rate is increased from 0.89 to 1.04 s21. The
decay time of 33 s is quite large compared to the reciprocal s
rate, indicating that the droplet-droplet collision time may be
important time scale.
ion
e

ve

to

at-
e

Earth; if the laser beam is considered as the axis, then
have integrated over the latitudes to obtain the intensity a
function of longitude. Furthermore, the prime meridian
orthogonal to the direction of the electric field.

In Fig. 15 we contrast the longitudinal analysis for th
quiescent fluid with that of a fluid sheared at a rate
1.06 s21. The scattering maximum of the sheared sample
shifted to positiveu and the scattering half-widths is
broader than in the sheared fluid. The peak position and h
width were extracted by fitting the GaussianI (u)
5I (0)e2(u2umax)

2/2s2
to the data~Fig. 16!, which worked

well, despite the slight bilateral asymmetry of the scatter
lobes.

We first investigated the dependence of the droplet ori
tation on the applied electric-field frequency. This depe
dence is shown in Fig. 17 for a sample at 0.8 kV and a sh
rate of 1.4 s21. Because the angular displacement is nea
constant over this frequency regime, we can conclude
the polarizability is essentially frequency independent. W
arbitrarily chose 1.0 kHz as the standard operating freque
for our studies, although some shear rate studies were
done at 400 Hz. It is worth noting that because the part
polarizability is fast and the shear rate is slow, there is
chance of dephasing the particle dipoles by particle rotat
Particle dephasing would reduce the dipolar interactions
high shear rate.

The dependence of the droplet rotation angle with sh
rate is shown in Fig. 18. These data were taken at an app
frequency of 400 Hz and at a peak-to-peak voltage of 1.2
across the 1.0-mm gap. A nonlinear least-squares power
fit to the data givesumax;ġ0.326, so good linearity is obtained
by simply plottingumax againstġ1/3.

This cube-root dependence is much weaker than
might naively expect. For a rigid rod in shear the elect
static torque that tends to maintain field alignment increa

e

g
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dy
id.
ady

ar

FIG. 14. A radial slice of the scattered intensity taken throu
the center of the tilted lobes shows that the maximum scatte
intensity occurs at zero-scattering wave vector, unlike in the qu
cent fluid, where a peak occurs at finiteq.
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to first order as the tilt angleu, whereas the hydrodynami
torque increases as the shear rateġ. In steady state the drop
let velocity is zero, so a torque balance gives the linear r
tion umax;ġ1. The sublinear dependence actually observe

FIG. 15. The radially integrated intensity of scattered light, o
tained from the longitudinal analysis, is shown for an unsheared
sheared sample in the polar coordinates (I ,u). Positive angles are in
the direction of fluid vorticity and the small background scatter
has been subtracted for clarity. Note that for the sheared sampl
scattering pattern is angularly displaced, indicating column tilti
broadened, indicating a dispersity of column sizes; and skew
primarily because of the nonlinear dependence of the orienta
angle on droplet size.

FIG. 16. The column orientation can be obtained from a Gau
ian fit ~lines! to the data or from the position of the intensity max
mum. The Gaussian does not fit the wings of the data very well,
reliably finds the peak position, while being insensitive to noi
The intensity is radially integrated.
a-
is

due to the tendency of chains or droplets to fragment
response to flow, as discussed below.

The droplet or chain orientation angle can also be stud
as a function of the applied electric field at constant sh
rate. Stronger fields should align the structures more clos

-
nd

the
;
d,
n

s-

ut
.

FIG. 17. The dependence of the droplet orientation angle on
field frequency is shown for a 7.5-wt. % sample at 0.8 kV appl
across the 1.0-mm gap and a shear rate of 1.4 s21. The angular
displacement is nearly constant in this regime, indicating that
particle polarization is nearly frequency independent. Most of
shear and voltage studies were done at 1.0 kHz, although s
shear rate studies were done at 400 Hz. Because the particle p
izability is fast and the shear rate is slow, the particle dipoles w
not dephase by rotation in shear.

FIG. 18. The linear increase of the droplet orientation angle w
the cube root of the shear rate bolsters the independent dro
model of the shear thinning viscosity. This sample was 7.5-wt
silica and the applied voltage was 1.2 kV at 400 Hz across
1.0-mm gap.
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with the field. Because the fluid is non-Ohmic at high vo
ages, it is expected that the particle and fluid polarizabilit
may be field dependent, so the scaling is expected to
somewhat obscured. Still, Fig. 19 shows that the data
shear rate of 0.34 s21 are in good agreement with the cub
root law obtained in the shear-rate-dependent studies.
will now compare these observations with the predictions
the models.

B. Independent droplet model

Here we give a brief derivation of the independent drop
model first developed to describe the shear thinning visco
of an ER fluid. This model neglects droplet-droplet hydrod
namic and electrostatic interactions and so is most appro
ate for dilute suspensions at low Mason numbers, yet it
mains informative for larger values of the concentration.

This independent droplet model is based partly on
result of Halsey and Toor@13# for the shape of a particle
droplet. By balancing depolarization effects against surf
tension, one finds that such an independent droplet is rou
a prolate sphere, with the sizec of the droplet in the direction
parallel to the applied field related to the sizeb of the droplet
in the direction perpendicular to the field byb;r d

1/3c2/3,
wherer d is the radius of an colloidal particle.

In shear flow an ellipsoidal droplet will rotate so that
long axis is no longer parallel to the field. The larger t
droplet, the greater the rotation in a shear flow. This rotat
reduces the depolarization energy of a droplet and a bala
between depolarization energy and surface energy de
mines the characteristic droplet size. This size computa

FIG. 19. The orientation angle is shown as a function of
applied field, at constant shear rate, for a 7.5-wt. % silica flu
Because the fluid is nonohmic at high voltages, it is expected
the particle and fluid polarizabilities will be field dependent, th
obscuring the scaling. Still, at the lower shear rate of 0.34 s21 the
data are in good agreement with the expected cube root law. A
higher shear rate the data are better described by a smaller e
nent, near 0.2, perhaps due to the formation of a shear slip inst
ity.
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leads to a shear-rate-dependent ER fluid viscosity.
In the following the electric field is oriented along thez

direction and the shear flow isv(z)5ġzx̂. We also assume a
solvent dielectric constant«s51. The hydrodynamic torque
about they axis for a rigid ellipsoidal droplet rotating at
rate u̇ in a shear flowġ is given by@29#

L5
2m0V

b2nx1c2nz
@~c2cos2u1b2sin2u!ġ2~b21c2!u̇#,

~19!

where V is the spheroid volume andnx,y,z are the shape-
dependent depolarization factors of the spheroid. The de
larization factors of a prolate spheroidal droplet can be
pressed asnz[n andnx,y[(12n)/2. For extremely prolate
spheroids withc@b, we can defineg[b2/c2!1 to obtain
@29# n'2 1

4 g, where we have dropped a logarithmic term
Thus bothg andn are suitable small parameters for expa
sion.

If the droplet is in mechanical equilibrium, then the h
drodynamic torqueL must balance the electrical torqueK.
The electrostatic torqueK on a spheroid of dielectric con
stant« inclined at an angleu to the field is@30#

K>2
~«21!2

8p~«11!
E2V sin~2u!, ~20!

whereE is the applied electric field.
If we assume that the droplet angleu is small, then bal-

ancing the electrostatic and hydrodynamic torques gives

u'
16p~«11!m0ġ

~«21!2E2

1

g
}

Mn

g
. ~21!

Mn5m0ġ/2«0«cb
2E0

2 is the Mason number, which ex
presses the ratio of hydrodynamic to electrostatic forces
tween two vicinal spheres in shear in terms of the dielec
contrast factorb5(«p2«c)/(«p12«c), where«p is the par-
ticle dielectric constant,«c is the dielectric constant of the
continuous phase, and«058.854310214 F/cm is the
vacuum permittivity. Note that for a rigid droplet with
large aspect ratio in a large shear gradient, the tilt angle
be large, causing the droplet to gain polarization energy.
therefore reasonable to expect the droplet to attempt to m
mize its total energy by reducing its size, even at the expe
of increasing its surface energy per unit volume.

Having determined the tilt angleu as a function ofg
5b2/c2, we can now find the size and aspect ratio of
droplet that minimize its total energy. This is done by b
ancing the depolarization energy~which will be a function of
n andu, both small parameters! against the surface tension o
a droplet.

The depolarization energy of a spheroid is@30#

Fd'2
~«21!VE2

8p F12S «21

«11D u22~«21!nG , ~22!

where only the lowest-order terms inu andn have been kept.
This energy is minimized whenu50 andn50, so this term
favors long, thin columns aligned with the field. On the oth
hand, the surface energy term

e
.
at

he
po-
il-



s
en
n

e
w

th

is
a
a
in

a

m
en
n

fo
le
in
n
w

d
i

ce

a
n-

r
n

of
ole
ion

s

res
this
ob-
lar

-
the

ical

ng-
nds

ear

m
l
id

e on
w-
he
gle

sh-
is

-
at

768 57MARTIN, ODINEK, HALSEY, AND KAMIEN
Fs5
s̃~«21!E2S

4p
~23!

favors large spheroidal droplets. HereS54p(abc)2/3 is the
surface area of the spheroid and we expects̃;r d @13,31#.

Minimizing the total energyFd1Fs gives g}Mn2/3, b
}Mn22/3, andc}Mn21. The droplet width isb}c2/3, as in
the theory of the quiescent fluid@6#. Also, since Mn/g
}Mn1/3, Eq. ~4! indicates thatu}Mn1/3 for M!1, which
confirms thatu is small. Thus, as the shear rate increases~or
the electric field decreases! the droplet lengthc and its aspect
ratio c/b}Mn21/3 decrease while the tilt angle increases.

The dependence of the droplet orientation angle ha
direct bearing on the fluid viscosity. The field enhancem
of the viscosity is conveniently quantified by the dimensio
less field-specificviscosity mF[(m2mf )/fm0, wheremf
is the solution viscosity at infinite Mn. To determine th
droplet contribution to the shear part of the stress tensor
compute the hydrodynamic torque per unit volume in
fluid. If the volume fraction of droplets isf, then this isth
>f4m0ġ/g, which yields

mF}Mn22/3 ~24!

for the field-induced contribution to the shear-thinning v
cosity. This calculation applies only to the intermediate M
son number regime where the Mason number is sm
enough for chains to form, yet not so small that these cha
span the electrode gap.

C. Chain model

We have recently developed a simple chain model@17# of
electrorheology that is based on a balance of electrostatic
hydrodynamic forces. Thisathermal model was originally
based on the interaction between the induced dipole
ments of dielectric spheres in solution. The dipole mom
was originally computed for a single sphere in a liquid co
tinuum, but we have modified this model to account
local-field effects by self-consistently computing the dipo
moment on an enchained sphere. The presence of vic
spheres then alters the local field and this has a substa
effect on the agreement of the model with experiment, as
shall see.

In the chain model the particle structures are presume
be chains of spheres that interact through dipolar forces w
their neighbors. The self-consistent electrostatically indu
attractive dipolar force is@17#

Fsc5bz~3!@~3k1cos2u2k2! r̂1k3sin~2u!û#, ~25!

whereb53pa2m0ġ/8 Mn, z(3)>1.202 is the Riemann zet
function, andr̂ and û are unit vectors parallel and perpe
dicular to the line of centers between the spheres. The
maining constants have to do with the local-field effects a
are given by

k15
11x2/8

~12x/42x2/8!2,

k25
1

~11x/4!2, ~26!
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k35
1

12x/42x2/8
,

wherex5bz(3). To obtain some idea of the magnitude
the local-field correction, the enhancement, over the dip
approximation, of the breaking strength of a chain in tens
aligned along the field direction isz(3)(3k12k2)/2. For b
52 1

2 this factor is 0.71, but forb51 the enhancement i
7.54.

The fluid exerts a Stokes friction on each of the sphe
and thus a hydrodynamic torque on the chain. Balancing
hydrodynamic torque against the electrostatic torque,
tained by summing the tangential component of the dipo
force along the chain, givesk3z(3)tanu58 MnN2 for the tilt
angle of a chain of 2N11 spheres. Balancing the hydrody
namically induced tension at the chain center against
radial component of the dipolar force gives the mechan
stability constraint

z~3!
3k1cos2u2k2

sinu cosu
>16 MnN2. ~27!

The chain angle thus increases with chain length. The lo
est stable chain will have a critical chain angle that depe
on the dielectric contrast through

tanuc5A3k12k2

2k31k2
5A2

3

11x/4

A12x/2
. ~28!

~Note that the singularity is outside the physical range ofb.!
The chain angle is also closely approximated by the lin
relation sinuc>A2/5(113x/10). As b increases over its
maximum physical range of2 1

2 to 1, the critical chain angle
increases from 31.3° to 59.3°. A stable chain of maximu
length N}Mn21/2 will be oriented at exactly the critica
angle uc . By contrast, the droplet model gives a ellipso
length L}Mn21/3 and an orientation angle increasing asu
}Mn1/3.

The data clearly show a dependence of the chain angl
the cube root of Mn and so support the droplet model. Ho
ever, electrode friction can affect the simple prediction of t
chain model to give a linear increase of the critical an
with Mn.

Rheology

The viscosity can be computed in a straightforward fa
ion. The electrostatic torque on a single-particle pair
2aFe,u52az(3)k3b sin2u. There are 2N such pairs in a
chain so the electrostatic torque per chain iste

5 3
2 pa2«0«cb

2E0
2Lz(3)k3sin2u. In terms of the volume

fraction f of spheres the stresss in the sample is thuss
5 9

8 «0«cb
2E0

2fz(3)k3sin2uc . Using our result for the criti-
cal angle gives the shear field specific viscosity

mF>c Mn21, ~29!

where to a good approximationc5 1
5 ( 3

2 )5/2z(3)(11 4
10b

1 3
20b21 1

6 b3) over the physical range ofb.
The scalingm2mf}ġ21 has been obtained in many ex

periments, including those conducted on our silica fluid
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FIG. 20. A typical scattering image contains a pair of scattering lobes and the strain clock. These scattering lobes are tilte
direction of fluid vorticity by some angleu relative to the orientation of the scattering lobes obtained for the quiescent fluid, whic
orthogonal to the electric-field vector.
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high fields@16#. However, for the silica fluid at low fields we
find m2mf}ġ22/3, a result consistent with the elliptica
droplet model@16#.

V. OSCILLATORY SHEAR

We have reported preliminary measurements of ER flu
in oscillatory shear flow that demonstrate that the chain
namics is highly nonlinear. The nonlinear dynamics was r
sonably well described by a simplekinetic chain model, in
which the nonlinear response is caused by large variation
the chain length during an oscillation. These chain len
variations are caused by aggregation and fragmentation
cesses that occur during each cycle. At the time these re
were reported we did not understand why the simple mo
we presented did not agree more quantitatively with exp
ment, nor did we have direct experimental evidence for
chain length variations assumed to drive the nonlinear
sponse. In the time hence we have thoroughly examined
chain model, including such effects as local-field correctio
multipolar interactions, and hydrodynamic screening. E
perimentally, we have now determined the chain size va
tions that occur during each cycle. We will first reexami
the kinetic chain model, showing how it can be modified
take into account these effects and then we will reanal
previously reported data and present data on the fluctuat
in chain size during a shear cycle.

We have previously generalized the droplet model to
cillatory shear at small strain amplitudes, where aggrega
and fragmentation effects that occur during a cycle can
ignored. This model gives a sinusoidal response, but
single characteristic relaxation time of the system depe
on the strain amplitude and shear frequency.

A. Data analysis

A scattering image contains a pair of scattering lobes a
of course, the strain phase clock, as in Fig. 20. These s
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tering lobes are tilted by an angleu relative to the orientation
of the scattering lobes obtained for the quiescent fluid. T
angleu was then obtained by one of two methods: locati
the intensity maximumumax or finding the medianum , de-
fined as that angle that divides the integrated scattered in
sity into equal halves, so*um

90°I (u)du5*
290°
um I (u)du. The lat-

ter method is used when the strongly nonlinear dynamic
characterized by twin peaks. Under these circumstances
ply locating the maximum peak causes discontinuities in
data.

B. Measurements

At relatively low strain amplitudes the response
the orientation angleumax to the sinusoidal shear strai
g5g0 sin(2pnt) was nearly linear, demonstrating that fra
mentation and aggregation effects may be not be impor
in perturbative flows whereg0!1. This quasilinearity is ex-
emplified in Fig. 21, where Lissajous plots of tan(umax)
againstg are shown to be nearly elliptical. At the low she
frequency the chain orientation leads the strain by 57°. Si
a 90° phase shift would put the droplets in phase with
strain rate, we conclude that the polarization coupling to
electric field, which tends to align the chains, dominates
hydrodynamic forces, so the chains deviate from field alig
ment only at the highest shear rates.

Conversely, at high frequencies the shear rateġ
52png0sin(2pnt) is much larger and the droplet orientatio
is nearly in phase with the fluid shear since the hydro
namic torque dominates the electrostatic torque. Note
under this condition the affine deformation limit is near
achieved, as shown by the dashed line.

At higher strain amplitudes the motion becom
‘‘clipped’’ as the droplets fragment and aggregate during
cycle in order to maintain good electric-field alignment. Th
nonlinear motion is evidenced by the parallelogram-sha
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Lissajous plots in Fig. 22. The dashed lines represent th
retical curves computed from the theory developed below

At lower voltages we observe a different nonlinear flu
response, as shown in a Lissajous plot in Fig. 23, and aga
time in Fig. 24. The droplet motion leads the strain, indic
ing that electrostatic interactions dominate. This may se
surprising, given that the field is small, but we have a
reduced the strain frequency to 0.075 Hz.

Another way to appreciate the nonlinear behavior of t
system is the noncircular Lissajous plot of the chain angu

FIG. 21. Clockwise Lissajous plots of tan(umax) againstg are
virtually elliptical ~lines! when the strain amplitude is small. A
high strain frequency hydrodynamic forces dominate and the
tion is nearly in phase with the strain. At low frequency the ele
trostatic forces dominate and the chains deviate from field al
ment in proportion to the instantaneous strain rate, thus be
almost out of phase with the strain.

FIG. 22. Lissajous plots at strain amplitudes ofg050.5, 1.6, and
3.2 have parallelogram shapes that indicate a ‘‘clipping’’ of t
angular motion as chains fragment and align with the field at h
strains. The theoretical curves~dashed lines! are computed in the
instantaneous ‘‘equilibrium’’ limit wherek is large.
o-

st
-
m
o

s
r

velocity versus the chain angle~Fig. 25!. Again, the theoret-
ical prediction is shown for comparison.

Starting at maximum positive strain, the droplet half cyc
can be described as follows. As the strain reverses, the d
lets corotate with the fluid and tilt to a maximum angle
roughly half the maximum strain on the return stroke, whe
upon they fragment and undergo retrograde motion to rea
with the electric field. If inertial effects are neglected th
the hydrodynamic torque equals the electrostatic torque, s
zero tilt angle the droplets corotate with the fluid. Becau
the hydrodynamic torque is thus proportional to the drop
tilt angle, the large area within the Lissajous loop indica
that this nonlinear response is dissipative.

o-
-
-
g

h

FIG. 23. At low voltages a different nonlinear response of t
fluid can be observed, with retrograde motion of fragment
chains. The dashed line is a theoretical curve. The amplitude
motion is sensitive to the dipolar model and the method of d
reduction.

FIG. 24. The ‘‘dogbone’’ nonlinearity shown in Fig. 23 is plo
ted against time. The strain data are fit to a sinusoid~solid line! and
the chain orientation data are connected by a dashed line. The
rograde motion is quite evident in this representation.
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Finally, we observed that the scattering lobes brigh
considerably as they swing back through zero angle, indi
ing droplet aggregation. Likewise, as the lobes swing to th
maximum tilt they diminish in intensity, indicating drople
fragmentation. All of these observations of the droplet m
tion point the way to the simple model of the dynamics th
we shall now present.

C. Kinetic chain model

The salient features of experimental results we h
shown can be understood in terms of a kinetic model of
dynamics of volatile chains. We have presented this mo
elsewhere@17# for the case of fixed induced dipolar intera
tions: Here we modify the basic model to account for loc
field corrections. Local-field corrections have the importa
consequence of changing the critical chain angle from a fi
value of;39.2° to a range from 31.3° to 59.3°, dependi
on the dielectric contrast factorb.

We consider a linear chain of 2N11 spheres of radiusa
labeled from2N to N in a coordinate system (x,z), the
origin of which is centered on the zeroth sphere~Fig. 26!.
The z axis is in the direction of the electric field and thex
axis is in the direction of fluid vorticity. The chain makes a
angle u to the x axis, so the position of thekth bead is
~2ak sinu,2ak cosu!. The fluid velocity is given byv(z)
5ġzx̂, wherex̂ is a unit vector, and the velocity of thekth
bead isvk52aku̇(cosux̂2sinuẑ) for a chain rotating at an
gular velocityu̇.

The shearing fluid exerts a hydrodynamic forceFk
56pm0@v(z)2vk# on thekth bead, wherem0 is the liquid
viscosity. This hydrodynamic force can be decomposed
a tangential component that causes chain rotation and a c
ponent that causes tension or compression. The tange
component of the hydrodynamically induced force betwe
the kth and (k11)th spheres is

FIG. 25. The nonlinear response is shown as a Lissajous plo
chain angle versus angular velocity. The solid line is the theoret
prediction of the chain model and is plotted against the top and r
axes; the data are plotted against the bottom and left axes.
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Fh,u5 (
k11

N

Fk•~cosu,2sinu!

>6pm0a2~ ġ cos2u2 u̇ !~N22k2!.

This tangential force is a maximum at the chain cent
where in low-Reynolds-number flow it is balanced solely
the tangential component@Eq. ~25!# of the dipole-dipole in-
teraction force

Fsc,u5z~3!~3pa2m0ġ/8 Mn!k3sin2u.

Balancing the tangential hydrodynamic and electrosta
forces at the chain center gives the damped oscillator eq
tion

u̇1vdsin2u5ġ cos2u where vd5
z~3!k3ġ

16 MnN2 . ~30!

The characteristic oscillator frequencyvd depends
strongly on chain size. Physically acceptable valuesN must
correspond to mechanically stable chains or fragmenta
will occur. The radial component~directed along the chain
axis! of the hydrodynamic force is

Fh,r5 (
k11

N

Fk•~sinu,cosu!53pm0a2ġ sin~2u!~N22k2!.

This force, which again is a maximum at the chain cen
puts the chain in tension whenuġ.0, since the chain is
tilted in the direction of shear, and in compression wh
uġ,0. For the chain to be stable to fracture this hydrod
namically induced force must be smaller than the radial co
ponent of the electrostatic interaction

Fsc,r5z~3!~3pa2m0ġ/8 Mn!~3k1cos2u2k2!.

The maximum stable chain number is determined by bala
ing these forces at the chain center

Nmax5HAz~3!

8 Mn

3k1cos2u2k2

sin2u
, ġu>0

`, ġu,0.

~31!

The maximum stable chain length is extremely dependen
chain orientation and strain rate, especially when driven

of
al
ht

FIG. 26. The coordinate system used in the kinetic chain mo
The number of spheres in the chain is 2N11, vk is the velocity of
the 1kth bead, andv f is the fluid velocity.
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oscillatory shear. The maximum stable chain length diver
when the chain is aligned with the field, when the instan
neous strain rate is zero, and when the chain is under c
pression.

If a chain is far from its maximum stable size then its s
will adjust by aggregation or fragmentation. We will d
scribe the kinetics of aggregation and fragmentation by
phenomenological formula

dN~ t !

dt
5

k

N~ t ! F12
N~ t !2

Nmax
2 ~ t !G , ~32!

where because induced dipolar forces drive aggregation
rate constant it is useful to write k
5k0@z(3)k3«0«cb

2E0
2/8m0#, where k0 is a concentration-

dependent constant with no implicit field or viscosity depe
dence. The reasons for this definition ofk0 will become ob-
vious in the following.

This kinetic equation gives very different time depe
dences for aggregation and fragmentation. When the cha
much smaller than its maximum stable length, slow, pow
law aggregation will occur withN(t)5AN(0)212kt, in
agreement with the root time prediction of See and Doi@32#,
which they developed for the quiescent fluid. If the chain
much larger than its stable length then fragmentation w
occur exponentially quickly according to N(t)

5N(0)e2kt/Nmax
2

. Note that the fragmentation ratek/Nmax
2 is

proportional to the strain rate and isindependentof the elec-
tric field and viscosity. Of course, when the chain is at
maximum length no aggregation or fragmentation occ
sincedN(t)/dt50. Thus the phenomenological rate equati
gives physically reasonable behavior while avoiding
complexities of the Smoluchowski equation.

Equations~30!–~32! now comprise a set of coupled non
linear equations that can be solved to model the dynamic
chains in shear flow. However, at this point there are f
independent parameters in the system: the Mason num
Mn, the strain frequencyn and amplitudeg0 and the rate
constant prefactork0 . A considerable simplification occur
by recognizing that solutions to the kinetic equation are
the formN(t)5@z(3)k3ġ/16n Mn#1/2n(nt). If all functions
are expressed in terms of the dimensionless times5nt this
leads to the reduced damped nonlinear oscillator equatio

u̇1
1

n2 sin2u5ġ cos2u, ṅ5
k0

n F12
n2

nmax
2 G ,

~33!

nmax5HA2

ġ

3k1cos2u2k2

k3sin2u
, ġu>0

`, ġu,0.

The reduction to a three-parameter (g0 ,k0 ,b) model is a
result of the particular form of the rate equation we ha
chosen. The strain amplitude is fixed in the experiment anb
can be computed, so this is really a single free param
model. Finally, it is interesting to note that the chain orie
tation dynamicsu(t) is independent of Mason number, a
though the chain length dynamicsN(t) is not.
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1. Electrorheology

Before we discuss the behavior of these equations
would like to discuss the predicted rheology. In terms of t
volume fractionf of spheres the field-induced contributio
to the fluid stress is

s56m0N2f~ġ cos2u2 u̇ !5 9
8 «0«cb

2E0
2fz~3!k3sin2u.

~34!

From the right-hand side of this equation it is clear that
fluid stress increases with the chain orientation angle. W
u50, the chain contribution to the fluid stress is zero and
chain comoves with the fluid soġ cos2u5u̇. Because Eq.
~33! shows that the dynamics of chain orientation is indep
dent of electric field and shear frequency, we conclude fr
Eq. ~34! that the stress scales purely as the square of
electric field.

2. Numerical results

We can now compare the predictions of this model w
our experimental results. For this purpose we have used
dielectric constant of 13.5 for 4-methylcyclohexanol and
for silica, giving a negative value ofb. For small strains the
response is sinusoidal, as expected, but for large str
~Figs. 27 and 28! Lissajous plots are nonelliptical and depe
dent on the rate constantk. For k50 the oscillator reorien-
tation rateva is a simple constant and the remaining nonl
earities in Eq.~30! are small enough that a nearly elliptic
response is observed. Ask increases, the chains fragme
and aggregate to achieve mechanical stability while trying
maximize their length and Lissajous plots approach a pa
lelogram. The instantaneous response limit~large k! of the
local-field-corrected model is in good agreement with t
data in Fig. 22. This agreement is much better than the b
model because of the reduced orientation angle. Finally,

FIG. 27. Lissajous plots change unexpectedly as the rate
stantk is varied. Fork50 the oscillator reorientation ratevd is a
simple constant and the remaining nonlinearities are small eno
that a nearly elliptical response is observed. For largek Lissajous
plots approach a parallelogram, whereas for intermediate-k values
retrograde motion is observed.
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57 773STRUCTURE AND DYNAMICS OF . . .
intermediate values ofk an interesting crossover is observ
wherein humps appear in the Lissajous plots. This hum
commonly observed in our data at low fields, as illustrated
Figs. 23 and 24.

The nonlinear behavior of this system is also shown a
Lissajous plot of the chain angular velocity versus the ch
angle ~Fig. 27!. Again, the detailed shape of the theory
somewhat different from the data, but the overall agreem
is quite good.

The chain orientation dynamics is a somewhat indir
test of the kinetic chain model since it is conceivable that o
could construct another set of equations that gives the s
overall behavior. However, the nonlinear behavior of t
model is ultimately driven by the fragmentation and agg
gation phenomena that occur during each shear cycle.
dynamics of fragmentation, which occurs at twice the os
lation frequency, is shown in Fig. 29. Chain aggregation
very pronounced just as the electrode is about to retur
zero angle, with chains reaching a maximum size just a
the maximum strain. During this time interval the chain
more or less comoving with the flow. Fragmentation occ
much before the electrode returns to zero angle becaus
chain is nearly 90° ahead of the strain and thus is alread
its maximum tilt angle in the opposite direction. The powe
law aggregation and exponential fragmentation leads to
obvious asymmetry in the chain size peaks.

Large aggregates cause intense light scattering, so to m
sure the chain size we determined the wedge integr
maximum intensityI max ~as opposed to the peak positio
umax! for each scattering image. The peak intensity is plot
against time in Fig. 30 and against chain orientation in F
31. There is a very close correspondence between these
and the prediction~Fig. 29! of the kinetic chain model. The
peak position relative to the applied strain is about right a
even the peak asymmetry, due to slow aggregation and
fragmentation, can be seen. Moreover, this pattern was
served in all of the data sets, except those taken at a s
amplitude of 0.25, despite the tremendous variations in L
sajous plots of the orientational dynamics.

FIG. 28. The orientational dynamics shown in Fig. 27 are pl
ted as functions of the strain rate. As the rate constantk increases,
the nonlinear dynamics becomes more pronounced.
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D. Phase bifurcation

The oscillatory shear measurements we have repo
thus far have been at low to moderate fields. When the v
age is turned up to greater than about 1.0 kV we found t
the scattering lobes split into two pairs. Direct observat
indicated that the phase and amplitude of motion of the t
pairs differed. After digitizing the scattering data we foun
that, due to the finite lobe width, the pairs of lobes could
distinguished from each other only when the strain amplitu

- FIG. 29. The chain length varies considerably during the str
cycle due to fragmentation at large chain angles and aggregatio
small angles. The asymmetry of the peaks is due to the power
aggregation kinetics being slower than the exponential fragme
tion. The sinusoid is the strain.

FIG. 30. When the maximum intensity~solid line, plotted
against the first left axis! is plotted against time, the resulting curv
is very similar to the chain length fluctuations of Fig. 29. The str
is the sinusoid~plotted against the right axis! and the chain orien-
tation is the small dashed line plotted against the second left a
These data, taken at a strain amplitude of 3.2, are representati
data taken at strain amplitudes down to 0.5. Intensity fluctuati
are small when the strain amplitude is 0.25.
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is roughly half maximum on the return stroke~i.e., at strain
phase angles of about 150° and 330°, where 0° is define
the zero strain amplitude on the positive outgoing strok!.
The resolved peaks are shown in Fig. 32. We attribute
phase bifurcation to the onset of a shear slip instability@33#,
with one population of chains growing out from each ele

FIG. 31. The data of Fig. 30 are used to make a Lissajous plo
chain size versus orientation. The inset is a typical computed
sajous plot of chain length versus orientation for the kinetic ch
model. The asymmetry in the data is exaggerated in this repre
tation.

FIG. 32. As the voltage is increased the scattering pattern b
cates into two pairs of lobes that oscillate at about 90° out of ph
with one another. When the applied strain is at half maximum
the return stroke~i.e., at 150° and 330°! the two lobes can easily b
resolved, as shown here. We attribute this phase bifurcation to
onset of a shear slip instability, with free droplets in the shear z
and bound chains attached to the electrodes. Direct microsc
studies on this fluid support this conclusion.
as

is

-

trode and a second population of free droplets in a cen
high shear rate slip zone. If a shear slip instability is inde
the cause of phase bifurcation, then the free droplets in
shear slip zone should be subject to a large hydrodyna
torque and should thus be nearly in phase with the str
whereas the bound chains should feel little hydrodynam
torque and should be out of phase with the strain.

Because the scattering lobes cannot be resolved thro
out most of the strain cycle, it is not possible for us to d
rectly determine the phase of each component. Instead
generated the response functionsu in(t) for in phase and
uout(t) for out of phase oscillators and plotted the differen
Du(t)5uout(t)2u in(t) between these functions in Fig. 33.
is apparent that the scattering lobes will be resolved w
Du.su , wheresu is the width of the lobes. Thus, whenDu
is a maximum we have the best chance of resolving
peaks, and this does indeed occur at the half maximum st
on the return stroke. This is strong evidence in support
two structural components~free droplets and bound chains!
that arise due to the formation of a shear slip zone.

VI. CONCLUSIONS

We have presented light-scattering studies of an e
trorheological fluid in the quiescent state, steady shear,
oscillatory shear. Studies of the coarsening of the quiesc
fluid after a field quench show that the growth of structure
many ways mimics the spinodal decomposition of a bin
fluid. The analogy with spinodal decomposition is strong
peak appears in the structure factor, the high-q shoulder of
which conforms to Porod’s law of scattering from sharp
terfaces while the low-q shoulder increases asq2, and the
domain size increases as a power of time. However, c
examination reveals that the domain growth exponen
smaller than the 1/3 value predicted for spinodal decom
sition in a system with a conserved order parameter. We

of
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n
n-

r-
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n
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e
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FIG. 33. The difference between the tilt angle of scattering lo
that are in phase and out of phase with the applied strain reach
maximum when the strain is at half maximum on the return stro
i.e., 150° and 330°.
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the kinetics data are better described by a thermal mode
hierarchical clustering of columns into successively lar
columns. The interaction between columns is presumed
arise from one-dimensional charge-density fluctuations in
columns that persist long enough to allow columns to c
lide. This model also gives a good account of the increas
the growth kinetics with applied voltage.

Studies of an ER fluid in steady shear show that the st
ture reaches a steady state wherein droplets are rotated i
direction of fluid vorticity at some angleu relative to the
applied electric field. This angle is found to increase as
cube root of the shear rate, in agreement with a model
originally proposed for the shear thinning viscosity. In th
model the equation of motion of elliptical droplets is foun
by balancing the hydrodynamic and electrostatic torqu
The droplets reach their free-energy minimum by fragme
ing to align with the electric field until exposing more su
face finally becomes too energetically costly.

Our studies of ER fluids in oscillatory shear demonstr
that the chain dynamics, and thus the electrorheology, is n
r-
s

of
r
to
e

l-
in

c-
the

e
e

s.
t-

e
n-

linear. We have described a simple kinetic chain model
the dynamics that describes the approach of a chain to
maximum stable size by a kinetic equation. Much of o
experimental data can be described by taking the insta
neous approach to stability; however, at low fields stro
nonlinearities suggest that the approach to stability is s
compared to the shear period. This model is then used
compute the nonlinear rheology of an ER fluid and it is co
cluded that light scattering is an indirect probe of stress.

At high voltages we observe a phase bifurcation in
scattering pattern that we attribute to the onset of a shear
zone. Free droplets in the shear slip zone oscillate ou
phase with bound chains attached to the electrodes.
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