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Invasion percolation with viscous forces
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We study invasion percolation in the presence of viscous forces, as a model of the drainage of a wetting fluid
from a porous medium. Using concepts from gradient percolation, we consider two different cases, depending
on the magnitude of the mobility ratioM . WhenM is sufficiently small, the displacement can be modeled by
a form of gradient percolation in astabilizinggradient, involving a particular percolation probability profile.
We develop the scaling of the front width and the saturation profile, in terms of the capillary number. In the
opposite case, the displacement is described by gradient percolation in adestabilizinggradient and leads to
capillary-viscous fingering. This regime is identified in the context of viscous displacements and in general
differs from diffusion-limited aggregation, which also describes displacements at largeM . Constraints for the
validity of the two regimes are developed. Limited experimental and numerical results support the theory of
stabilized displacement. The effect of heterogeneity is also discussed.@S1063-651X~97!08812-0#

PACS number~s!: 47.55.Mh, 0.5.40.1j, 47.55.Kf
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I. INTRODUCTION

The displacement~drainage! of a wetting fluid~subscript
w! in a porous medium by the injection of another nonw
ting fluid ~subscriptnw!, immiscible to the former, has bee
analyzed in great detail in past studies. In the absenc
viscous or gravity forces, slow drainage is controlled sol
by the capillary pressurePc5Pnw2Pw ~the difference in
pressure between the two fluids!, which is spatially uniform.
At the pore-network level, this problem can be modeled
invasion percolation~IP!, in which the front separating th
two fluids advances by penetrating the pore throat at
front with the largest size~smallest capillary resistance!. The
properties of IP and its close connection to ordinary per
lation ~OP! have been extensively studied@1–4#.

In the presence of gravity@5–7#, or of a gradient in the
average pore size~permeability! @8#, and in the absence o
viscous forces, slow drainage has been modeled with in
sion percolation in a gradient~IPG!, which is a modified
version of gradient percolation~GP!. Here the capillary pres
sure varies linearly~or almost linearly! in the direction of
displacementx. Because of their direct relationship~see be-
low!, this gradient also results in a gradient in the percolat
probabilityp, usually expressed in terms of the bond numb
B ~whereB;2dp/dx!. For example, in invasion in a hy
drostatic gradient,B5Drgxr m

2 /g, whereDr is the density
difference,gx is the gravity component in the direction o
displacement,r m is a typical throat size, andg is the inter-
facial tension between the two fluids. For invasion in a p
meability gradient,B52dk1/2/dx, wherek is the permeabil-
ity @8#. In IP (B50), the entire displacement pattern is
percolation cluster. However, in IPG, one needs to dis
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guish two different cases, depending on whether percola
is in a stabilizing or a destabilizing gradient.

In the first case (B.0), for example in the downward
displacement at capillary control of a heavier fluid by t
injection of a lighter fluid or in drainage in a field of decrea
ing permeability, the percolation probability decreases in
direction of displacement. The region where the invasion
the characteristics of a percolation cluster is only of a fin
extents, which was shown in@5,6,9# to scale as

s;B2n/~n11!, ~1!

where n is the correlation length exponent of percolatio
@10,11#. Heres denotes the width of the front~in two dimen-
sions! or of the front tail~in three dimensions! ~see@6# for
the necessity for this distinction!, where the displacing pat
tern has the structure of the percolation cluster and fra
concepts apply. Equivalently,s measures the maximum ex
tent of the correlation length, which in gradient percolati
problems becomes finite due to the applied gradient. Vari
properties of GP and IPG have been studied in consider
detail @5,8,12–14#. In invasion in a destabilizing gradien
(B,0), for example, in the downward displacement at ca
illary control of a lighter fluid by the injection of a heavie
fluid or in drainage in a field of increasing permeability, th
percolation probability increases in the direction of displa
ment. Then the displacement proceeds in the form of ca
lary fingers, the scaling of the average thickness of wh
with ~the absolute value of! the Bond number also satisfie
Eq. ~1! @14–16#.

In the presence of both viscous and capillary forces,
displacement is characterized by three dimensionless n
bers: the capillary number Ca5qmnw /g, whereq is the in-
jection velocity andmnw the viscosity of the displacing
phase; the viscosity ratioM5mw /mnw , wheremw is the vis-
cosity of the displaced phase; and the dimensionless sys
739 © 1998 The American Physical Society
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740 57B. XU, Y. C. YORTSOS, AND D. SALIN
sizeL ~expressed in units of the average pore lengthl !. As
Ca orL increases, the viscous pressure drop in the two flu
becomes comparable to capillarity and one expects that s
form of gradient percolation would also describe this p
cess. Work in this direction was reported in the followin
three studies.

Wilkinson @9# proposed concepts of GP for modeling vi
cous displacements. He assumed a stabilized displace
and developed a power-law scaling between the front ex
and the capillary number, of the forms;Ca2a, wherea
5n/(t2b111n) andt andb are the OP exponents scalin
conductivity and percolation probability, respectively@10#.
In a somewhat related study of the drainage of a wetting fl
in an L3L square lattice, Lenormand@17# delineated the
limiting domains in parameter space (Ca,M ,L), where frac-
tal patterns~including percolation! apply. His phase diagram
in (Ca,M ) space, with the present convention forM , is
shown schematically in Fig. 1. Lenormand found that
power law relates the domain boundaries to the system
and obtained the exponentsn/(t111n) and n/(11n) for
the percolation-to-compact and the percolation-to-visc
fingering boundaries, respectively. It will be shown belo
that Lenormand’s work is essentially a study in GP~in both
a stabilizing and a destabilizing gradient!, even though his
problem does not involve the propagation of a front or
saturation profile. Blunt, King, and Sher@18# provided argu-
ments about the extent of the frontal region similar
Wilkinson’s, but proposed the different exponentn/(t2n
11) for the scaling with the capillary number. Interesting
all these exponents differ from one another, suggesting th
general consensus on this issue has not yet been reach

The effect of viscous forces on displacements in por
media is of obvious importance to process scale-up
large-scale simulations. As length scales increase, visc
effects are increasingly dominant over capillarity. An und
standing of this competition at the pore-network scale is n
essary to provide insight into the validity of the convention
continuum description using relative permeabilities, which
standard practice in commercial simulations@19#. Although

FIG. 1. Phase diagram for drainage~adapted from@17#!. Arrows
indicate the transition from percolation to viscous-dominated
gions.
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conventionally used, the very concept of relative permeab
ties still remains a subject of debate, particularly in conn
tion to displacements in heterogeneous media@20# and vis-
cous fingering. For example, it is known that und
conditions of sufficiently largeM and Ca, immiscible dis-
placement becomes unstable~see, e.g.,@21,22#! and in the
large-M and -Ca limit can be described by diffusion-limite
aggregation~DLA ! ~see also Fig. 1!. In this paper we attemp
to provide some insight into these problems. We consi
fully developed drainage in uncorrelated random media
the presence of viscous forces and proceed by postulatin
analogy with IPG. Depending on the relative magnitude
M , we anticipate the existence of two different regimes,
scribed by IPG in astabilizing or a destabilizinggradient,
respectively. These two regimes dictate the developmen
the saturation profiles in the respective displacements.
related sense, they also characterize, under dynamic
placement conditions, the percolation-to-compact a
percolation-to-DLA transitions described in Lenormand
@17# phase diagram~Fig. 1!.

In the stabilized case, the saturation profiles approac
well-known traveling-wave state. As in standard GP, we
ticipate the existence of a frontal region with the structure
a percolation cluster, but of a finite extent, here limited
viscous pressure gradients, where fractal behavior app
followed by an upstream region with the characteristics o
compact pattern. This is the percolation-to-compact tran
tion of Lenormand’s phase diagram~arrowAB in Fig. 1!. To
describe the frontal region, we will propose an extension
IPG, based on viscous forces, from which the scaling of
front width with the capillary number can be derived. W
show that the exponent obtained is identical to Wilkinso
@9#, although the two approaches are conceptually differe
In the destabilized case, IPG in a destabilizing gradient
plies @15# and the displacement should proceed in the fo
of fingers, the size of which depends on the capillary-visco
competition, in analogy to the case of gravity-unstable c
illary invasion. This is the percolation-to-viscous fingerin
transition of Lenormand’s phase diagram~arrow CD in Fig.
1!. We will show that under certain conditions, the expone
scaling the size of the fingers is identical to that obtained
Lenormand@17# for the size dependence of the percolatio
to-DLA boundary. We comment on the conditions that d
lineate the validity of these scalings in the two differe
cases, which is described in more detail in@23#. As the sta-
bilized displacement is also described in a continuum form
lation by the Buckley-Leverett equation~see standard texts
and also@9,24#!, the constraints developed are essentia
those for the validity of the Buckley-Leverett formalism. Th
scaling theory is partially tested with numerical simulati
using pore networks and with experiments conducted
model porous media. We conclude with some discussion
the effect of heterogeneity on the continuum description.

II. THEORY

We consider drainage in a rectilinear porous mediu
which is conventionally represented as a random, spati
uncorrelated network of pores~e.g., a rectangular lattice o
sizeL3N in two dimensions or a lattice of sizeL3L3N in
three dimensions, whereN is variable!. We take sufficiently
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57 741INVASION PERCOLATION WITH VISCOUS FORCES
largeL to suppress finite-size effects at the front, which a
particularly important at low rates. We assume a cons
lattice spacingl , a variable pore throat size distribution wit
probability density functiona(r ), meanr m , and standard
deviationSr m , whereS is a dimensionless standard devi
tion, and we take sites of equal volume. The drainage o
fluid of viscositymw by another fluid of viscositymnw at the
constant volumetric flow rateQ is considered. The fluids ar
incompressible, thus the total flow rate across any cross
tion is constant and equal to the injectedQ. However, this
rate is partitioned differently in the two different phases
different places, namely,Qw5FwQ and Qnw5(12Fw)Q,
respectively, where the fractional flow termFw is a function
of distance and also must be determined.

In the absence of viscous forces, the capillary pressur
spatially uniform and the displacement proceeds by follo
ing the usual rules of IP, namely, by successively invad
the perimeter pore with the largest size. In the presence
viscous pressure drop, a gradient in the capillary press
~negative or positive! is generally expected to develop. I
view of the relations

Pc5
2g

r
~2!

and

p5E
r

`

a~r !dr ~3!

@more correctlyp5* r min

` a(r)dr, wherer min is the minimum

throat size invaded#, this in turn implies a gradient in the
percolation probability. Problems involving a constant gra
ent in p are amenable to GP and IPG, thus we expect th
similar description would also be applicable in the pres
case involving viscous forces. For example, Fig. 2 sho
typical patterns of viscous displacements forM50.1, ob-
tained from pore-network simulation in the absence of tr
ping ~details of the simulation can be found in@25,26#!.
When Ca is low@Fig. 2~a!#, viscous forces are negligible an
the pattern has the fractal structure of the IP cluster. As
cous forces increase at larger Ca@Figs. 2~b!–2~d!#, however,
the front takes the appearance of a rough~self-affine!, rather
than self-similar, curve and has an extent that decreases
increasing Ca. These trends are consistent with a grad
percolation description.

Following GP notions, we will distinguish two differen
cases: one in which the percolation probabilityp ~hencePc!
decreases in the direction of displacement and that has
tures similar to GP in a stabilizing gradient and another
which p ~hencePc! increases in the direction of displac
ment, with features similar to GP in a destabilizing gradie
Because in our problem the capillary pressurePc is con-
trolled by the viscous pressure drop~rather than gravity, as in
the case of buoyancy@9#!, the viscosity ratioM is expected
to be an important parameter in delineating these two
gimes.
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A. Stabilized displacement

In the case of a stabilized displacement, we follow@6# and
define the locationXc(t), as the place where the transvers
average of the percolation probability is equal to the perc
lation thresholdpc , namely,

p~Xc!5pc . ~4!

In two-dimensional~2D! lattices, Xc represents the mean
front position. The regions on either side ofXc of an extents
~namely, betweenXc2s andXc1s! have the fractal prop-
erties of the percolation cluster@6#. In 3D lattices, however,
due to the higher connectivity,Xc does not represent the
mean front position~here the front extends far upstream!, but
rather denotes a mean leading edge. Nonetheless, a perc
tion pattern is also expected aroundXc . Following @6#, we
will focus on the front-tail region (X.Xc), the extent of
which we will also denote bys. As in the corresponding IPG
problem,Xc(t) varies linearly with time in either 2D or 3D
geometries, with a velocityv, to be determined. In both
cases, the fractal regions are followed by an upstream reg
~which also includes the ‘‘critical region’’ in the terminology
of @9#!, where both invading and invaded phases are comp
@6# and the conventional continuum description is valid. A
qualitative sketch of the two regions along with the notatio
used is shown in Fig. 3. These two regions will be analyze
separately. We note in advance that Wilkinson’s@9# analysis
~using a continuum description! was based on the compac
regime only, while Lenormand’s@17# is on the fractal regime
~but only for a 2D geometry!. For convenience, we will use
the term ‘‘frontal region’’ to denote the region where fracta
behavior applies in both 2D and 3D geometries and we w
uses to denote, in units of lattice spacing, its extent, namel
the front width or the front-tail width in the respective ge
ometries. In this context,s also represents the maximum

FIG. 2. Displacement patterns from numerical simulation o
drainage in a 1003100 lattice, withM50.1 and different values of
the capillary number:~a! Ca53.231028 ~IP!, ~b! Ca53.231026,
~c! Ca53.231025, and~d! Ca53.231024.
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742 57B. XU, Y. C. YORTSOS, AND D. SALIN
extent of the correlation length, which in gradient percolatio
is ‘‘trapped’’ in a region of finite extent. Our emphasis will
be on 3D problems to avoid unnecessary complications d
to trapping issues associated with 2D displacements@27#.

1. Frontal region

Consider the frontal region of widths and lateral extent
Ld21, whered is the embedding dimension. We will focus
on two main properties: the scaling ofs and the saturation
profile. It is necessary that an estimate of the viscous pre
sure drops in the two phases be derived. Although straig
forward when fluids occupy a compact pattern, the proble
is more complex when they occupy a fractal pattern, as is t
case with the nonwetting phase in this region.

To estimate the pressure drop of thenw phaseDPnw , we
partition the region in equal size ‘‘boxes’’ of sizesd and
consider the pressure drop across such a box. This partiti
ing is necessary for the application of percolation scalin
laws and was also used in@6# to estimate the number of sites
on the front. Because the displacement pattern is part o
percolation cluster, the dimensionless conductance of t
nonwetting phase in the boxGnw has the scaling@10#

Gnw;s2z/n, ~5!

wherez is the conductance exponent~z51.30 or 1.12 in two
or three dimensions, respectively@10,11#! and it was as-
sumed thats is sufficiently large for these scalings to be
applicable. The exponentz is simply related to the conduc-
tivity exponent t used in the previous studies,t5z1(d
22)n ~the two coincide in 2D geometries!. The volume flow
rate of thenw phase across each boxQi ,nw is determined
from the overall volume flow rateQnw by a simple mass
balance

Qi ,nw5
Qnwsd21

Ld21 . ~6!

Combining Eqs.~5! and~6! gives the following estimate for
the pressure drop of thenw phase across the frontal region

FIG. 3. 2D schematic of the 3D front region and the notatio
used.
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DPnw5
AQnwmnw

Ld21r m
3 sz/n1d21 ~7!

whereA is a dimensionless constant of order 200@5,28#, we
implicitly used a Poiseuille-type model for the conductan
across a pore and we also assumed that the lattice spacl
is proportional to the average throat sizer m .

For further progress, an expression forQnw is required.
We postulate that quantities at the front reach a steady s
in a coordinate system moving with the front velocityv. The
fact that stabilized immiscible displacements reach
traveling-wave state is well known and has been establis
theoretically ~e.g., see@9,29#! and experimentally. Then a
mass balance on thenw phase in the frontal region leads t

Qnw5fvLd21l 2Snw , ~8!

wheref is porosity and the saturationSnw is the transverse
average of the fraction of sites occupied by thenw phase.
Now, in the region under consideration, the displacing ph
consists of a part of the percolation cluster, thusSnw;sD2d,
whereD is the mass fractal dimension, and Eq.~8! becomes

Qnw5BvLd21l 2sD2d, ~9!

where B a dimensionless constant. At this point, we mu
emphasize the difference between this approach and Le
mand’s@17#, where the entire rateQ was used in the calcu
lation of the pressure drop~see also below!. By contrast, Eq.
~9! implies that only a fraction ofQ actually reaches the
frontal region, at least under conditions of a traveling state
constant velocity. This difference will be ultimately reflecte
in the scaling exponents to be derived.

Determining the magnitude of the velocity requires t
solution of the overall problem, including the considerati
of the region away from the front. This approach involv
the solution of the Buckley-Leverett problem, discussed
various standard references~see also@8,22#!. For the pur-
poses of this section, however, we will only note the sim
scaling resultv;Q/Ld21l 2, which to leading order is inde
pendent of the capillary number. Thus, using Eq.~9! we may
express Eq.~7! as

DPnw5
Cv l 2mnw

r m
3 s@z1n~D21!#/n, ~10!

whereC5AB. Equation~10! shows that because of the fra
tal nature of the displacing phase, the viscous pressure
in the nw phase scalesnonlinearlywith its extent.

Estimating the pressure drop of the wetting phase
straightforward. The displaced phase is compact, hence
can use continuum theory. Making use of Eq.~6!, with an
obvious change in notation, and of the continuum scal
Gw;sd22 and taking, to leading order in this region, th
approximationQw'Q gives the estimate

DPw5
Eqlmw

r m
2 s, ~11!
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57 743INVASION PERCOLATION WITH VISCOUS FORCES
where the constantE is of the same order asC and we also
introduced the mean flow velocityq5Q/Ld21l 2. Combining
Eqs.~10! and ~11! gives the variation ofPc across the front

DPc5DPnw2DPw5
Cv l 2mnw

r m
3 s~s@z1n~D22!#/n2bM!,

~12!

where we introduced theO(1) constantb[qrmE/v lC. We
recall that the ratioq/v is O(1) and decreases withM , as
dictated by the Buckley-Leverett solution. Note that f
the stabilized displacements assumed in this section,
right-hand side of Eq.~12! must be positive, namely
s@z1n(D22)#/n2bM.0 ~see below!.

Consider next the variation inp. From Eqs.~2! and ~3!
we have

DPc'2
2gDr

r m
2 '

2gSDpF

r m
, ~13!

where all increments express differences between upstr
and downstream quantities and we used subscriptF to de-
note the frontal region. The termDr indicates the difference
in the minimum size of pore throats penetrated by the n
wetting phase across this region. WhenDPc.0, then Dr
,0, which means that progressively smaller throats are p
etrated upstream~hence leading towards a more compact d
placement! and vice versa. Combining Eq.~13! with Eq.
~12!, we find

DpF'
CaFCl2

2Sr m
2 s~s@z1n~D22!#/n2bM!, ~14!

where we introduced the modified capillary number CF
[vmnw /g based on the front velocity~see also@9#!. Equa-
tion ~14! shows that in contrast to standard GP and IPG,
change in the overall percolation probability in the visco
problem isnot linearly related to the size of the overall in
crement. However, as will be shown below, the spatial pr
ability profile across this region of extents is linear. We can
obtain the scaling of the front width by applying the se
consistency argument of gradient percolation@6,9#. As s de-
lineates the extent over which percolation scalings apply,
also have

DpF;s21/n, ~15!

which, combined with Eq.~14!, yields the algebraic equatio

s1/n11~s@z1s~D22!#/n2bM!'
2S

CaFC
, ~16!

where we absorbed intoC a constant ofO(1). Thesolution
of Eq. ~16! provides the dependence of the front widths as
a function of Ca andM . For typical values in three dimen
sions, this equation reads

s2.14~s1.772bM!'
2S

CaFC
. ~17!
he

am

-

n-
-

e
s

-

e

It is important to note that Eq.~16! admits a unique solution
for all values ofM and CaF . This can be readily seen b
rearranging the equation in the form

s@z1n~D22!#/n2
2S

CaFC
s2~1/n11!'bM ~18!

and noting that its left-hand side is a monotonically incre
ing function ofs. This has relevance to the development
constraints for the validity of stabilized displacement, as d
cussed below and in@23#.

The solution of Eq.~16! increases with an increase inM
and decreases with an increase in the front capillary num
CaF . Figure 4 shows numerical results for typical parame
values in 3D geometries. The solution approaches a cons
value at large CaF and a power-law asymptote at small CaF .
Because the latter applies over a region of validity extend
over several decades in CaF it will be taken as the predomi
nant scaling result. The latter result would have been
tained also had we assumed that most of the pressure
occurs in the displacingnw phase and neglected the pressu
drop in the displaced phase. Such an assumption was m
by Lenormand@17# in delineating the percolation-to-compa
boundary and is also implicit in the analysis of Wilkinson
@9#. Then Eq.~14! becomes

DpF'
CaFC

2S
s@z1n~D21!#/n, ~19!

which, in conjunction with Eq.~15!, leads to the asymptotic
result

s;S CaFC

2S D 2n/@11z1n~D21!#

. ~20!

Equation~20! expresses the asymptotic scaling of the fro
~or front-tail! width with CaF at small CaF for the case of a
stabilized displacement.

As in previous studies@9,17,18#, the scaling~20! is a
power law. In fact, the exponentn/@11z1n(D21)# is
identical to Wilkinson’s n/(11t2b1n) ~substitutez in

FIG. 4. Numerical solution of Eq.~16! vs modified capillary
number for three different values ofM .
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744 57B. XU, Y. C. YORTSOS, AND D. SALIN
terms oft and make use of the well-known percolation re
tion D5d2b/n!. This exponent would also have coincide
with Lenormand’s for the scaling of the percolation-t
compact boundary had we assumedQnw5Q at the front,
which in the present context is tantamount to takingD52.
As shown below, however, Wilkinson’s result was obtain
differently, by extrapolating in the frontal region thecon-
tinuum solution valid behind the front. The fact that th
present work reproduces his result shows that the two
proaches are consistent in the case of stabilized displ
ments.

Using accepted estimates, the exponent in Eq.~20! is
equal to 0.382 or 0.25 in two or three dimensions, resp
tively. The rather small values suggest a weak sensitivity
s on CaF , C, andS. It should be kept in mind that the rat
dependence in CaF has entered through the front velocityv.
This can be of some significance in investigating the eff
of M , which also influencesv @24#. It is also interesting to
note that as the degree of heterogeneityS increases the fron
width increases. In fact, Eq.~20! suggests that for such dis
placements it is more appropriate to replace, in the defini
of the capillary number,g by the productgS. We finally note
that the scaling~20! can be also obtained by using a versi
of GP, termed viscous gradient percolation~VGP!, to be in-
troduced below for modeling the saturation profile. Althou
necessary for the saturation profile, VGP is not required
the derivation or the validity of the scaling~20!.

2. Compact region

Sufficiently behindXc , the previous theory is no longe
applicable, as the displacement patterns are compact
fractal notions do not apply. Locally, however, the displac
ment is still controlled by capillarity, assuming sufficient
low Ca. We proceed by assuming that the injection rates
sufficiently small for gradients in volume-averaged quan
ties to be small and volume averages to be meaningful. C
ditions for the validity of this assumption are developed in
later section. Here we can proceed with the standard c
tinuum description@9,29#, in which the individual phase ve
locities obey an extended Darcy law

qi52
kkri

m i
“Pi for i 5w,nw ~21!

and capillary equilibrium applies

Pnw2Pw5Pc~Snw!. ~22!

The relative permeabilitieskri and the capillary pressurePc
are functions of the saturationSnw , in principle computable
from the simulation of an IP process forp.pc . Using OP,
Heiba et al. @30# and Sahimi@31# evaluated such function
for Bethe and regular lattices, respectively, while Wilkins
@9# has described their asymptotic behavior using IP. In th
approaches, the relative permeability functions of the t
phases are computed as the relative conductances of
phases~‘‘occupied’’ and ‘‘empty’’!, randomly distributed
following the occupancy patterns of OP~although a more
appropriate description should be based on occupancy
terns involving IP with trapping@27#!. In either case, the
scales are separated and a standard continuum argumen
-
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be used to lead to the following well-known equation for t
description of 1D displacements:

f
]Snw

]t
1q

] f nw~Snw!

]x
5

]

]x S kkrw f nw

mw

]Pc

]x D , ~23!

where the fractional flow

f nw5S 11
krwmnw

krnwmw
D 21

~24!

and the capillary pressurePc5gJ(Snw)/Ak are functions of
Snw . For homogeneous systems, we further write

f
]Snw

]t
1q

] f nw~Snw!

]x
5

]

]x SD~Snw!
]Snw

]x D , ~25!

where we introduced the diffusion coefficientD
5(gAkkrw f nw /mw)(dJ/dSnw). A direct consequence of th
continuum description is that the relevant length scale
saturation changes, hence of the upstream region of the f
is Ak Ca21. The difference in the scaling exponents in t
two regions suggests a higher sensitivity of the satura
profiles in the compact regime compared to that in the fron
region.

In a region adjacent to the front~termed the ‘‘critical re-
gion’’ in @9#!, percolation theory can be applied to provid
the asymptotic behavior at smallSnw of the relative perme-
ability and capillary pressure functions. Based on this beh
ior and assuming a traveling-wave solution, Wilkinso
solved the continuum equation~25! to obtain the local satu-
ration profile aroundX0 , which he defined as the ‘‘leading
edge of the front’’ and denotes the place whereSnw vanishes.
In our notation, Wilkinson’s result reads

Snw;S CaFC

S
~X02X! D b/~11t2b!

, ~26!

where we also included the heterogeneity factorS. Using the
percolation resultSnw;Dpb, one further obtains the profile
of the percolation probability in this region

Dp;S CaFC

S
~X02X! D 1/~11t2b!

. ~27!

It should be remarked that if we adopt the above definit
for X0 , it must follow thatX0.Xc ~in fact,X0'Xc1s!. But
then Eqs.~26! and ~27! would not be strictly valid, as the
region of integration would also include the front-tail regio
(Xc,X,X0), where the above continuum equations do n
apply. Thus it is more appropriate to takeX0[Xc instead and
to accept the validity of these equations only in the critic
region~whereX,Xc!. This is equivalent to shifting the trav
eling front by a constant and will be considered below
modeling the saturation profile. In their present form, E
~26! and ~27! must be viewed as an approximate compos
solution that spans both the fractal and the compact reg
and approaches asymptotically, in the far field, the c
tinuum scaling~26!.

Equation ~27! was used by Wilkinson@9# to obtain an
estimate of the front-tail width by proceeding essentially
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57 745INVASION PERCOLATION WITH VISCOUS FORCES
follows. Evaluating Eq.~27! at X5Xc , taking sC5X0
2Xc , and using subscriptC to denote the critical region
gives

DpC'S CaFCsC

S D 1/~11t2b!

, ~28!

which is the counterpart of our Eq.~19!. Both equations are
power laws, but with different exponents. In fact, the exp
nent of Eq.~19! is always greater than one, whereas that
Eq. ~28! is always smaller than one. Moreover, the dep
dence ofDp ~hence ofDPc! on CaF is different in the two
cases~linear vs nonlinear!. Next, the previous GP argumen
is applied by using Eq.~15! in Eq. ~28! to obtain the scaling
of sC with CaF . We find the result

sC'S CaFC

S D 2n/~11t2b1n!

, ~29!

which, in view of the relation betweent andz, is identical to
our Eq.~20!. The coincidence of the two exponents is rath
remarkable, given that one approach uses scaling laws
fractal region, while the other is based on a continuum
scription ~the solution of a differential equation, although
GP self-consistency argument was also used!, while at the
same time the various profiles are markedly different in
two cases. The reason for this coincidence is that in b
cases the front widths also happens to be the length of th
interval j, where the overall capillary pressure differen
DPc is the same for both approaches. Indeed, if we equ
the corresponding two expressions forDPc ~or, equivalently,
Dp! over an incrementj, we have

CaFj~ t2b1n!/n;~CaFj!1/~ t2b11!, ~30!

the solution of which isj;CaF
2v , wherev is the previous

exponentv5n/(11t2b1n); hence we havej;s;sC .

3. Saturation profile

Equation~20! provides the scaling of the front width wit
CaF . The other important quantity in gradient percolation
the saturation profile. Gouyet, Sapoval, and Rosso@6# and
Hulin et al. @13# discussed scaling properties of saturati
profiles for the classical GP and IPG problems, where
percolation probability increment across a region scales
early with its extent. In the case of a constant gradient,
scaling of the profile is given by@6#

Snw;pBb/~11n!P f S Xc2X

s D , ~31!

whereP f(u) is a scaling function that approaches the or
nary percolation scaling,P f(u);ub, when u.0, and it is
approximately described by the best-fit expression

log10 P f~u!521.1u210.48u10.10, ~32!

when u,0. For the case of viscous displacement, we fi
need to find the variation ofDp across an arbitrary~but
suitably constrained! incrementx within the fractal region
(x,s). This problem is equivalent to determining the var
tion of the transversely averaged pressure within a perc
-
f
-

r
a
-

e
th

te

e
-
e

-

t

-
a-

tion cluster, across which a fixed pressure difference is
plied. It can be deduced that this profile is linear; thus
have

Dp5
xDpF

s
~33!

and therefore

Dp'
CaFC

2S
x~s@z1n~D22!#/n2bM! ~34!

for the variation ofp across such an increment. The variati
in Eq. ~34! is linear with respect tox.

An approximate description of the saturation profile c
now be obtained by using a model GP in which the perco
tion probability has the profile suggested by Eq.~27! and
~34! on the respective sides ofXc . The resulting composite
profile of p is shown in Fig. 5. The percolation probabilit
gradient atpc is constant, as we approachXc from the right,
but diverges as we approach it from the left. This feature
different from the classical IPG, where the gradient atpc is
constant. In actuality, the dependence of the profile nearpc is
not as extreme as indicated and a more appropriate pr
should involve a composite curve that only asymptotica
approaches in the far field the respective limits. The parti
lar profile depicted in Fig. 5 gives rise to a different G
problem, to be termed viscous gradient percolation.

Viscous gradient percolation.We consider a static perco
lation problem in a lattice with a percolation probability gr
dient that is constant at the percolation threshold from
right and diverges from the left, namely,

p2pc5 H 2Ba~X2Xc!

@B~Xc2X!#c
for X.Xc

for Xc>X. ~35!

Here B.0 denotes an equivalent Bond number, expone
a.0 and 0,c,1 are arbitrary, and capital letters deno
distances in lattice units. In the specific problem under c
sideration, we havea5(11n)/@11z1n(D21)# and c
51/@11z1n(D22)#. We conducted numerical simulation
for this gradient percolation problem for values ofa and c
corresponding to three dimensions. Figure 5 shows proba
ity and saturation~transversely averaged occupancy! profiles
plotted vs normalized distance for two different values ofB.
The overall features of the saturation profiles are similar
GP: The profile decreases almost linearly with distance in
region upstream of the front and the front extent increase
B decreases.~The different lattice sizes used in the norma
ized plots of these figures should be noted.! The scaling of
the saturation profile is expected to have the general feat
of the scaling function~31! of the standard GP, with som
correction to account for the slightly different VGP profile

By applying the self-consistency argument of GP,
power-law scaling for the front width withB can be ob-
tained. Indeed, using the percolation scalingpc2p;s21/n

and substitutingX2Xc;s in the top member of Eq.~35!
leads to the power-law scaling

s;B2an/~11n!. ~36!



746 57B. XU, Y. C. YORTSOS, AND D. SALIN
FIG. 5. Percolation probability~dashed line! and saturation~solid line! profiles vs normalized length, for 3D VGP:~a! B51024 in a
lattice of 2003200365 and~b! B51026 in a lattice of 20032003500.
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Since in this limit Ba5(CaFC/2S)s@z1n(D22)#/n, Eq. ~36!
leads to the same scaling as Eq.~20!. An identicalpower law
would have also been obtained had we used the lower m
ber of Eq.~35!, namely, had we extended the definition ofs
upstream ofXc and made use of the scaling~15! in the re-
gime upstream ofXc . Essentially, this was the approac
taken by Wilkinson@9#. Again, this coincidence is due to th
specific relation betweena andc and has the same interpre
tation given above.

We summarize this section by emphasizing the differ
description of percolation processes involving viscous for
in the two regions, near and away from the front, at least
relatively low Ca. The different scalings CaF

2n/@11z1n(D21)#

and Ca21 obtained indicate that near the front, the continuu
description~25! for the profile should be replaced with th
more appropriate VGP equation~31!. Either theory suggest
an advancing front. In the VGP model, the profile is a fun
tion of X2Xc , CaF , andM , the time dependence enterin
throughXc , which varies with time. A traveling state wit
constant velocity is also contained in the continuum desc
tion ~25!. However, the latter predicts ahypodiffusivebehav-
ior @29#, namely, a profile with a divergent derivative at th
front ~a sharp ‘‘knee’’!, in contrast to the tail involved in
VGP. Thus appropriate caution must be exercised in us
the continuum approach in this region.

4. Region of validity of stabilized displacements

The above scaling was obtained under the assumption
the fully developed displacement is stabilized. This requi
that the percolation probability decreases in the direction
displacement for all incrementsx,s, namely, that the right-
hand sides of Eqs.~12! and ~14! are positive. However, in
the preceding section it was shown that provided that
displacement is stabilized, a solution fors always exists and
thus the right-hand sides of Eqs.~12! and ~14! are always
positive. Therefore, in order to establish a condition for
existence of a stabilized displacement, we must address
initial phase of the displacement, before a saturation pro
m-
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or a traveling-wave solution develops. This problem is
variation of the problem treated by Lenormand@17#.

Consider, then, the pattern at the onset of displacem
which will be assumed to be of the percolation type and
an extentx3Ld21, where x is an increasing function o
time, until a saturation profile starts developing. The lat
will occur at x,xe , wherexe(Ca,M ) is the limiting size,
above which the displacement ceases to be a percolation
cess. Lenormand has determinedxe in two limiting cases,
where pressure drops occur only in one of the two pha
respectively. For the solution of the present problem,
more general case needs to be considered. Because o
considerable details involved, the results are presented
separate study@23#. Here we simply note that the differenc
in capillary pressure can be evaluated as before, except
now Qnw5Q, since a traveling-wave solution or a fully de
veloped displacement has not yet developed~this was also
taken by Lenormand@17#!. Assuming that percolation sca
ings apply, the capillary pressure drop over this region
sizex3Ld21 at the entrance of the displacement reads

DPc5
Aqmnw

r m
x~x@z1n~D22!#/n2eM!, ~37!

wheree is anotherO(1) constant. It is apparent that for th
formation of a stabilized displacement, the right-hand side
Eq. ~37! must be positive for allx,xe . Clearly, this re-
quires thatM be sufficiently small. This condition is implied
in Lenormand’s@17# description of the validity of the perco
lation regime, which indicates a transition aroundM;1. It is
shown in@23# that the displacement isunconditionallystabi-
lized if M,M* , whereM* '1, andconditionallystabilized
in the opposite case. In the latter, stabilized displacemen
still possible, however, provided

Ca

S
M @z111n~D21!#/@z1n~D22!#!1 ~38!
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57 747INVASION PERCOLATION WITH VISCOUS FORCES
~see@23# for details!. Equation~38! shows that the displace
ment is stabilized even ifM is large, provided the capillary
number is sufficiently small. In such a case, a stabilized
placement would develop for values ofM larger thanM
51. This supports the validity of the Buckley-Leverett d
scription for a wide range of parameter values, as commo
practiced in applications.

B. Capillary-viscous fingering

When condition~38! is violated, for example, when th
nw fluid has a much smaller viscosity, most of the press
drop occurs within the displaced phase. In such casesp in-
creasesin the direction of displacement. IPG problems wi
spatially increasing percolation probability involve a neg
tive Bond number and describe invasion in a destabiliz
gradient@14,15#. In particular, capillary invasion in a desta
bilizing gravity field, for example, corresponding to the r
lease of a lighter fluid at the bottom of a porous column fill
with a heavier fluid, was studied in considerable detail@15#
~see also the related problems of@8,16#!. It was found that
the displacement occurs in the form of distinct capillary~but
not DLA-type! fingers. For a sufficiently long column, on
single finger emerged. Figure 6, reprinted from@8#, shows
the structure of such a finger for capillary invasion in a fie
of increasing permeability. Scaling arguments similar to
self-consistency arguments of GP can be used here@9,15# to
show that the finger consists of a string of beads of aver
width s with the scaling behavior.

s;uBu2n/~n11!. ~39!

To apply these findings to the viscous problems of inter
here, an expression forB is needed.

ConsiderDPc ~andDp! across an element of sizesd in
the geometry of Fig. 6. In contrast to the stabilized displa
ment, where it spans the entire cross section of the samp

FIG. 6. Single finger in GP in a destabilizing gradient~from
@8#!.
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area;Ld21, here thenw phase occupies narrow finger
Thus the appropriate expression corresponding to Eq.~7! is

DPnw5
AQnwmnw

r m
3 sz/n, ~40!

where Qnw5Q5qLd21l 2. The equation for the pressur
drop of thew phase remains the same as Eq.~11!. After
some manipulations we obtain the equation for the variat
of p across an increment of sizes,

Dp'
A Cal 2

2Sr m
2 sS Ld21s~z2n!/n

n
2b8M D , ~41!

where b85Erm /Al is anotherO(1) constant andn is the
number of fingers that develop. Now, if we further assu
that the last term in large parentheses on the right-hand
of Eq. ~41! is the dominant term, we can identify a suitab
bond number for this problem, namely,

B52
E CaMl

2Sr m
'2

E CaM

2S
. ~42!

This assumption is equivalent to neglecting the pressure d
in the displacing phase~as also done by Lenormand@17#!.
Using this definition, a direct comparison with Eq.~39! gives
the result for the finger width

s;S E CaM

2S D 2n/~n11!

. ~43!

In the more general case where the second term on the r
hand side of Eq.~41! is not necessarily dominant, the depe
dence ofs on the parameters is different and would be o
tained by solving the equation

A Cal 2

2Sr m
2 sS Ld21s~z2n!/n

n
2b8M D;2s21/n. ~44!

The power law of Eq.~43! has the familiar GP exponen
with values 0.571 or 0.469 in the respective geometr
~compared to 0.382 or 0.25 of the previous case!. This expo-
nent is identical to Lenormand’s@17# for the scaling of the
percolation-to-viscous fingering boundary~arrow CD in Fig.
1!, although his exponent did not pertain to the width of
finger or to the particular regime of destabilizing GP d
cussed here.~However, it was pointed out that the transitio
would eventually result in fingers continuously thinning
the DLA regime is approached.! A comparison with Eq.~20!
shows that the scaling exponent almost doubles as the
bility ratio increases from the one limiting regime to th
other, implying a higher sensitivity on the capillary numbe
Equation~43! also shows that the finger width decreases w
an increase in the capillary number Ca and the mobility ra
M and that it eventually reduces to a single thin finger of
size of a single pore~and where the above scaling fails and
DLA regime emerges!. This behavior is as expected.

We also note that Eq.~43! can be approximated rathe
well ~at least in three dimensions! with the expression

s;Ca20.5. ~45!
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748 57B. XU, Y. C. YORTSOS, AND D. SALIN
This scaling is consistent with that of the fastest~most dan-
gerous! growing finger predicted by the linear stabilit
analysis of Chuoke, van Meurs, and van der Poel@21,32#,
which suggests an exponent equal to1

2 . However, the two
should not be confused. The present analysis is base
finger widths of the order of the pore scale, while the line
stability analysis of@21# is actually based on a continuum
description of stabilized displacements, using anad hocex-
pression for the interfacial behavior in the form of an effe
tive macroscopic interface.

A necessary condition for the validity of Eq.~43! is Dp
,0 in Eq. ~41!. This is automatically satisfied, provided E
~44! has a solution. This equation can be rearranged to r

b8M'
Ld21s~z2n!/n

n
1

FSs21/n

Ca
, ~46!

where F is a positive constant. Contrary to the previo
problem of stabilized displacement, however, it can
shown that a solution of the abovedoes notexist for an
arbitrary value of M ~at least under the conditio
that the finger spacing remains constant!. Indeed, the
right-hand sideG(s) of Eq. ~46! goes through a minimum
at the value s* ;(n/Ld21Ca)n/(z11), where G(s* )
;(Ld21/n)(n11)/(z11)Ca2(z2n)/(z11). Thus a condition for
the existence of the fingering regime is that a solution exi
namely, that

M.S z11

z2n D S n11

z2n D 2~n11!/~z11!S Ld21

n D ~n11!/~z11!

3S Ca

FS D 2~z2n!/~z11!

. ~47!

Based on Eq.~47! we can make the following remarks:~i!
For fixed finger spacingLd21/n, this fingering regime is
reached at smaller values ofM as Ca/S increases~although
one should note that the exponent of Ca is rather small
equals 0.11!; this is as expected. However,~ii ! the spacing
between the fingersLd21/n enters explicitly in the above
condition, thus the utility of Eq.~47! is unclear at present
One could advance the argument that Eq.~47! actually de-
fines the finger spacing, namely, that

Ld21

n
;M ~z11!/~n11!Ca~z2n!/~n11!. ~48!

Such a conjecture would mean that the percolation proba
ity always remains nearpc , an idea consistent with self
organized criticality arguments, and would indicate a d
crease in the number of fingers with an increase inM and or
Ca. Additional work is needed to test this hypothesis, ho
ever.

The above analyses show that the displacement beha
is different depending on the relative magnitude ofM . This
is a direct consequence of the pressure drop in the fro
region in the two cases of low or highM , respectively. In
either case, the pressure drop is associated with the hi
flow resistance. In the first case, it is due to the invad
phase, which near the front occupies a percolationlike c
ter. In the second case, it is due to the displaced phase, w
on
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near the front occupies a compact region. The different
havior in these two limits is the origin of the difference in th
scaling exponents in the two limits. Such a distinction w
made by Lenormand@17#, but not by Wilkinson@9# or Blunt,
King, and Sher@18#. This explains why our exponent agree
with Wilkinson’s only in the first case, but not in the secon
where instead we agree with Lenormand. The difference
tween our exponent and Lenormand’s@17# for the case of
low M is due to the fact that Lenormand@17# used the entire
injection rateQ, while here we assumed that only a sm
fraction ofQ actually reaches the frontal region. This diffe
ence is ultimately reflected in the scaling exponents.
must point out, however, that Lenormand’s assumption
correct for the specific problem he considered, which is
evaluation of the departure from percolation in a displa
ment in a square lattice, where traveling fronts and grad
percolation concepts are not involved.

III. EXPERIMENTS

The VGP theory at smallM was partially tested by con
ducting some experiments and pore-network simulatio
Immiscible displacement experiments were conducted i
long sample, consisting of a vertically placed rectangu
glass bead pack of dimensions 303432 cm3, filled with
100-mm glass beads, with porosity and permeability equa
;40% and;40310212 m2, respectively. Gravitational ef
fects were avoided by using matched-density fluids~r
51.153103 kg m23, dr,10 kg m–3!. A water-sucrose mix-
ture was used as the wetting fluid (mw5531023 Pa s) and
dibutyl phtalate was used as the nonwetting fluid (m0514
31023 Pa s), resulting in a viscosity ratio ofM50.3. The
interfacial tension between the fluids wasg;25
31023 J m22.

Experiments corresponded to primary drainage and
volved the displacement of the wetting fluid from an initial
water-sucrose-saturated sample by the nonwetting fluid.
flow rateq varied between 1026 and 1024 m/s, correspond-
ing to a capillary number variation in the interval betwe
531027 and 531025. An acoustic technique, describe
elsewhere@33#, was used to determine the saturation profi
Saturation measurements were indirectly obtained from
velocity variations of a sound wave along the sample. Fr
the calibration curve@33# and the accuracy of the relativ
velocity measurements (1024) we estimate the overall accu
racy in saturation as better than 1%. A spatial resolution o
mm was implemented in order to keep track of precise va
tions along the length of the sample.

Figure 7 shows a log-log plot of the front extent vs ca
illary number obtained experimentally. The extent of t
front was obtained by using the scaling function of GP
detailed in @8#. The data show that the relationship is
straight line, although there is some scatter. The data ca
fitted quite well with a straight line of slope of20.25 in
good agreement with the theoretical prediction. Even thou
the agreement is good, additional experiments would
needed for a more rigorous test of the theory.

The predictions for the smallM case were also tested wit
results from 2D pore-network simulations using the draina
network model described by Xu@25#. Simulations in a 40
3100 network, withM50.1 and Ca varying in the interva



e
of
te
th
su
e
ls
x

o
o

tl
ll
of

-
ne

tic

rs
nti-
onal
ter-
that
ex-

e-
of
atu-
s-
lly
hat
gion

m-
n-

e

el-
edia:

ter

ase,
ude
gra-

nal
by
dis-
hen
e-
ity,

p-
ith
nce

ts

ris

u-
f

o

57 749INVASION PERCOLATION WITH VISCOUS FORCES
between 1024 and 1025, showed a power-law scaling of th
front width with the capillary number, with a best-fit slope
20.34 ~Fig. 8!, in reasonable agreement with the expec
value20.382. Given the various finite-size effects due to
small sizes of the network, this agreement is somewhat
prising. A more stringent test should involve much larg
lattices and much smaller Ca. Work in this direction is a
currently under way. Additional work is also needed to e
plore the fingering regime and to test the constraints~38! and
~47! and the conjecture~48!.

IV. REMARKS ON THE EFFECT OF HETEROGENEITY

We conclude this paper by making additional remarks
the validity of the continuum theory. The latter was based
the assumption that expressions such as Eq.~21!, are deter-
ministic, namely, that saturation gradients are sufficien
small for volume-averaged quantities to be statistica
meaningful. To set a quantitative condition for the validity
this assumption we proceed as follows.

Consider a 3D volume containingNs occupied and uncor
related pores with the statistics described before and defi
volume-averaged quantitŷC&Ns

over this volume. In gen-

FIG. 7. Plot of the front width vs Ca from experimental resul
The solid line is the theoretical prediction of slope20.254. The
front width is dimensionless using the bead size as the characte
size.

FIG. 8. Plot of the front width vs Ca from pore-network sim
lations with M50.1 in a lattice of 603100. The best-fit slope o
20.34 compares reasonably well with the theoretical prediction
20.384.
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eral, this quantity is a random variable with a determinis
mean and a standard deviation that, in the large-Ns limit,
scales asSNs

21/2, as dictated by the law of large numbe
@34#. This property is shared by all volume-averaged qua
ties, such as pressure and permeability. The conventi
continuum description above relies on the existence of de
ministic volume averages and hence on the requirement
the standard deviation of the volume averages does not
ceed a small positive numberd, namely, that

Ns>S S

d D 2

. ~49!

Condition~49! shows that, as expected, more disordered m
dia require a larger averaging volume for the definition
meaningful averages. For quantities that depend on the s
ration ~such as relative permeabilities and capillary pre
sures!, however, deterministic volume averages additiona
require that saturations are spatially uniform, namely, t
the scaled saturation gradient in the volume-averaged re
g52dSnw /dX is sufficiently small,

g<
e

Ns
1/3, ~50!

wheree is the allowed standard deviation ofSnw ~e.g., of the
order of 1023!. In the continuum description above,g was
shown to scale with Ca. The two inequalities can be co
bined to lead to the condition for the validity of the co
tinuum description

Ca<OXeS d

S D 2/3C. ~51!

Typical displacements are usually conducted at Ca51026,
which appears to be within the range defined by Eq.~51!.
However, it becomes more difficult for this condition to b
satisfied as the disorderS increases.

The previous theory identified three length scales of r
evance to drainage processes in uncorrelated random m
In dimensionless terms, they are proportional toL ~the lateral
extent!, to CaF

2n/@11z1n(D21)# ~case 1! or Ca2n/(11n) ~case
2!, and to Ca21. Heterogeneity in the pore structure can en
either through gradients in the mean pore size~in which case
the pore size becomes a nonstationary variable! or through
stationary, but spatially correlated, pore sizes. In either c
its effect on the saturation profile depends on the magnit
of the appropriate length scale. In the case of pore size
dients, the heterogeneity Bond number@8# Bk52drm /dx
introduces a corresponding length scale that is proportio
to Bk

21. Here effects of heterogeneity can still be captured
continuum equations provided the relevant length scales
cussed above are smaller than this scale, which would t
impose upper bounds on Ca. In addition, use of volum
averaged quantities requires sufficiently weak heterogene
namely,

Bk,d2/3. ~52!

Otherwise, heterogeneity would interfere with the develo
ment of the saturation profile. This can still be handled w
the pervious approach, however. For example, in the abse
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of viscous forces it is known that gradients in the mean p
size lead to a stable form of IPG whenBk.0 and to an
unstable form of IPG~capillary fingering! in the opposite
case@8#. Thus, when viscous forces are also considered,
can combine heterogeneity and viscous gradients in anaddi-
tive operation, the resulting scaling with respect to Ca n
being accordingly different.

Different considerations apply when the local pore size
stationary but spatially correlated, with a dimensionless c
relation lengthl. Here the previous theory is still applicabl
provided the corresponding viscous lengths exceedl signifi-
cantly. Otherwise, the displacement would be affected by
heterogeneity. Recent work@35# has studied effects of spatia
correlations~involving fractal statistics! on IP.

When, as result of increased Ca, conditions such as
~51! are violated, many of the previous postulates, for
ample, the concept of deterministic volume averages,
come questionable. In this case, suitable alternatives to
above must be sought. One approach could involve defin
area ~instead of volume! averages, transverse to the ma
direction of displacement, provided the lateral extent is s
ficiently large. Here some form of IPG is also expected to
applicable since the displacement remains a percolation
cess, but with a gradient in the percolation probability. Wo
in this direction is currently in progress.

V. CONCLUSIONS

In this paper the effect of viscous forces on drainage d
placements in porous media was studied. We recognized
J
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the process, at least near the front, shares common as
with IPG. WhenM is sufficiently small, the displacemen
can be modeled by a form of gradient percolation in astabi-
lizing gradient. We developed the scaling of the front wid
and the saturation profile, in terms of the capillary numb
As the stabilized regime is described by the Buckle
Leverett equation, the two share the same constraints
their validity. In the opposite case, the displacement is
scribed by gradient percolation in adestabilizinggradient
and leads to fingering. The particular regime involves a co
petition between capillary and viscous forces. Limited e
perimental and numerical results support the theory. The
fect of heterogeneity was also discussed and upper bo
conditions on Ca for the validity of the continuum approa
were developed. The theory shows that the conventional c
tinuum approach should be used with caution near the fr
Similar results are also expected for imbibition~displace-
ment of a nonwetting phase! provided that injection rates ar
sufficiently high@36#.
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