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We study invasion percolation in the presence of viscous forces, as a model of the drainage of a wetting fluid
from a porous medium. Using concepts from gradient percolation, we consider two different cases, depending
on the magnitude of the mobility ratid. WhenM is sufficiently small, the displacement can be modeled by
a form of gradient percolation in stabilizing gradient, involving a particular percolation probability profile.

We develop the scaling of the front width and the saturation profile, in terms of the capillary number. In the
opposite case, the displacement is described by gradient percolatiodestabilizinggradient and leads to
capillary-viscous fingering. This regime is identified in the context of viscous displacements and in general
differs from diffusion-limited aggregation, which also describes displacements atNargeonstraints for the
validity of the two regimes are developed. Limited experimental and numerical results support the theory of
stabilized displacement. The effect of heterogeneity is also discUssE63-651X97)08812-7

PACS numbgs): 47.55.Mh, 0.5.40tj, 47.55.Kf

I. INTRODUCTION guish two different cases, depending on whether percolation
is in a stabilizing or a destabilizing gradient.
The displacemenfdrainage of a wetting fluid (subscript In the first case B>0), for example in the downward

w) in a porous medium by the injection of another nonwet-displacement at capillary control of a heavier fluid by the
ting fluid (subscriptw), immiscible to the former, has been injection of a lighter fluid or in drainage in a field of decreas-
analyzed in great detail in past studies. In the absence dRg permeability, the percolation probability decreases in the
viscous or gravity forces, slow drainage is controlled solelydirection of displacement. The region where the invasion has
by the capillary pressur®.=P,,— P, (the difference in the characte_rlstlcs of a perqolatlon cluster is only of a finite
pressure between the two flujdsvhich is spatially uniform. ~ €Xt€nto, which was shown iif5,6,9 to scale as

At the pore-network level, this problem can be modeled by
invasion percolatior(IP), in which the front separating the
two fluids advances by penetrating the pore throat at the

: : ; : here v is the correlation length exponent of percolation
front with the largest sizésmallest capillary resistancelhe w i ) .
properties of IP and its close connection to ordinary perco[lo’lﬂ' Hereo denotes the width of the frofin two dimen-

lation (OP) have been extensively studig¢t4]. sri]ons or of_the fron.t tai_l (in three dimensior)g(see[@] for
In the presence of gravitjs—7], or of a gradient in the the necessity for this dlstlncu()nwhere_the displacing pat-

. - . tern has the structure of the percolation cluster and fractal
average pore sm(spermez_ablllty [8], and in the absen_ce _Of concepts apply. Equivalently; measures the maximum ex-
viscous forces, slow drainage has been modeled with inVag .y of the correlation length, which in gradient percolation
sion percolation in a gradierdPG), which is a modified 5 5plems becomes finite due to the applied gradient. Various
version of gradient percolatioi@P). Here the capillary pres-  properties of GP and IPG have been studied in considerable
sure varies linearlyor almost linearly in the direction of  §etajl [5,8,12—14. In invasion in a destabilizing gradient
displacemenk. Because of their direct relationshipee be- (B<0), for example, in the downward displacement at cap-
low), this gradient also results in a gradient in the percolationjiary control of a lighter fluid by the injection of a heavier
probability p, usually expressed in terms of the bond numbefluid or in drainage in a field of increasing permeability, the
B (whereB~ —dp/dx). For example, in invasion in a hy- percolation probability increases in the direction of displace-
drostatic gradientB=Apg,r%/y, whereAp is the density ment. Then the displacement proceeds in the form of capil-
difference,g, is the gravity component in the direction of lary fingers, the scaling of the average thickness of which
displacementr , is a typical throat size, angt is the inter-  with (the absolute value pthe Bond number also satisfies
facial tension between the two fluids. For invasion in a per£q. (1) [14-18.
meability gradientB= —dkY%dx, wherek is the permeabil- In the presence of both viscous and capillary forces, the
ity [8]. In IP (B=0), the entire displacement pattern is a displacement is characterized by three dimensionless num-
percolation cluster. However, in IPG, one needs to distinbers: the capillary number Gaqu,,,/y, whereq is the in-

jection velocity andu,,, the viscosity of the displacing
phase; the viscosity rati®l = w,, / wnw, Whereuw,, is the vis-
* Author to whom correspondence should be addressed. cosity of the displaced phase; and the dimensionless system

O_NB*V/(V‘F].), (1)
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i conventionally used, the very concept of relative permeabili-
ties still remains a subject of debate, particularly in connec-
tion to displacements in heterogeneous meai@ and vis-
. Ca cous fingering. For example, it is known that under
conditions of sufficiently largegM and Ca, immiscible dis-
placement becomes unstaliee, e.g.[21,22) and in the
largeM and -Ca limit can be described by diffusion-limited
M aggregatioDLA) (see also Fig. 1L In this paper we attempt
D to provide some insight into these problems. We consider
fully developed drainage in uncorrelated random media in
the presence of viscous forces and proceed by postulating an
analogy with IPG. Depending on the relative magnitude of
M, we anticipate the existence of two different regimes, de-
c scribed by IPG in astabilizing or a destabilizinggradient,
respectively. These two regimes dictate the development of
the saturation profiles in the respective displacements. In a
related sense, they also characterize, under dynamic dis-
placement conditions, the percolation-to-compact and
FIG. 1. Phase diagram for drainagelapted fronj17]). Arows  percolation-to-DLA transitions described in Lenormand’s
indicate the transition from percolation to viscous-dominated re{17] phase diagrantFig. 1).
gions. In the stabilized case, the saturation profiles approach a
well-known traveling-wave state. As in standard GP, we an-

sizeL (expressed in units of the average pore lerigttAs ticipate the existence of a frontal region with the structure of

Ca orL increases, the viscous pressure drop in the two fluid§ Percolation cluster, but of a finite extent, here limited by
becomes comparable to capillarity and one expects that som@dScous pressure gradients, where fractal behavior applies,
form of gradient percolation would also describe this pro-followed by an upstream region with the characteristics of a
cess. Work in this direction was reported in the following €ompact pattern. This is the percolation-to-compact transi-
three studies. tion of Lenormand’s phase diagrai@rrowAB in Fig. 1). To
Wilkinson [9] proposed concepts of GP for modeling vis- describe the frontal region, we will propose an extgnsion of
cous displacements. He assumed a stabilized displacemdfG; based on viscous forces, from which the scaling of the
and developed a power-law scaling between the front exterffont width with the capillary number can be derived. We
and the capillary number, of the form~Ca 2, wherea show that the exponent obtained is identical to W|Ik|_nson's
=/(t— B+ 1+ v) andt and3 are the OP exponents scaling [9], although the two approaches are conceptually different.

conductivity and percolation probability, respectivéyo]. N the destabilized case, IPG in a destabilizing gradient ap-

In a somewhat related study of the drainage of a wetting fluidP!ies [15] and the displacement should proceed in the form
in an LxL square lattice, Lenormanid7] delineated the of fingers, the size of which depends on the capillary-viscous

limiting domains in parameter space (®8L), where frac-  COMPpetition, in analogy to the case of gravity-unstable cap-
tal patterngincluding percolationapply. His phase diagram |IIary_|_nvaS|on. This is the percola}tlon—to-wscous_ flngermg
in (CaM) space, with the present convention fbt, is transition of Lenormand’s phase _dlagrziqr_rOWCD in Fig.
shown schematically in Fig. 1. Lenormand found that al)- We will show that ur)der ceyta_m co_ndltlons, the exponent
power law relates the domain boundaries to the system sizfaling the size of the fingers is identical to that obtame_d by
and obtained the exponenté(t+ 1+ ») and v/(1+ v) for Lenormand17] for the size dependence of thg_ percolation-
the percolation-to-compact and the percolation-to-viscouf2-DLA boundary. We comment on the conditions that de-

fingering boundaries, respectively. It will be shown below!inéate the validity of these scalings in the two different

that Lenormand’s work is essentially a study in GPboth  cases, which is described in more detai[28]. As the sta-
a stabilizing and a destabilizing gradignéven though his bilized displacement is also described in a continuum formu-

problem does not involve the propagation of a front or glation by the Buckley—Levere.tt equatiqsee standard texts,

saturation profile. Blunt, King, and ShEE8] provided argu- and also[9,24]),. the constraints developed are e_ssentlally
ments about the extent of the frontal region similar tothos_e for the va_l|d|ty o_f the Buckley-_Leverett fprmal_lsm. T_he
Wilkinson's, but proposed the different exponest(t— v scaling theory is partially tested with numerical simulation

+1) for the scaling with the capillary number. Interestingly, USiNg pore networks and with experiments conducted in

all these exponents differ from one another, suggesting that #°de! porous media. We conclude with some discussion of

general consensus on this issue has not yet been reachedN€ effect of heterogeneity on the continuum description.
The effect of viscous forces on displacements in porous

media is of _obviogs importance to process scale-up and Il. THEORY

large-scale simulations. As length scales increase, viscous

effects are increasingly dominant over capillarity. An under- We consider drainage in a rectilinear porous medium,

standing of this competition at the pore-network scale is necwhich is conventionally represented as a random, spatially

essary to provide insight into the validity of the conventionaluncorrelated network of porgg.g., a rectangular lattice of

continuum description using relative permeabilities, which issizeL X N in two dimensions or a lattice of sizex L XN in

standard practice in commercial simulatidd®]. Although  three dimensions, whed is variablg. We take sufficiently
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largeL to suppress finite-size effects at the front, which are n,
particularly important at low rates. We assume a constan [
lattice spacind, a variable pore throat size distribution with
probability density functiona(r), meanr,, and standard
deviationXr ,,, whereZ is a dimensionless standard devia-
tion, and we take sites of equal volume. The drainage of i £3
fluid of viscosity u,, by another fluid of viscosity,,,, at the T
constant volumetric flow rat® is considered. The fluids are
incompressible, thus the total flow rate across any cross se
tion is constant and equal to the inject®d However, this
rate is partitioned differently in the two different phases at _,
different places, namelyQ,=F,Q and Q,,=(1-F,)Q,
respectively, where the fractional flow teif, is a function

of distance and also must be determined.

In the absence of viscous forces, the capillary pressure i §
spatially uniform and the displacement proceeds by follow- F&
ing the usual rules of IP, namely, by successively invading kX
the perimeter pore with the largest size. In the presence of |3
viscous pressure drop, a gradient in the capillary pressur
(negative or positiveis generally expected to develop. In
view of the relations

FIG. 2. Displacement patterns from numerical simulation of
drainage in a 108100 lattice, withM =0.1 and different values of
2y the capillary numberta) Ca=3.2x1078 (IP), (b) Ca=3.2x10°®,

Pe=—" @ (0) Ca=3.2¢10°5, and(d) Ca=3.2x10"*

A. Stabilized displacement

and In the case of a stabilized displacement, we fol[@&vand

define the locatiorX.(t), as the place where the transverse
w average of the percolation probability is equal to the perco-
p:J a(r)dr (3 lation thresholdp., namely,

P(Xc)=Pc- 4

[more correctlyp=J _a(r)dr, wherer y;, is the minimum  |n two-dimensional(2D) lattices, X, represents the mean
throat size invadeld this in turn implies a gradient in the front position. The regions on either sideXy of an extentr
percolation probability. Problems involving a constant gradi-(namely, betweeiX;— ¢ and X.+ o) have the fractal prop-
ent inp are amenable to GP and IPG, thus we expect that arties of the percolation clusté]. In 3D lattices, however,
similar description would also be applicable in the presentiue to the higher connectivity{. does not represent the
case involving viscous forces. For example, Fig. 2 showsnean front positiorihere the front extends far upstregarut
typical patterns of viscous displacements fdr=0.1, ob- rather denotes a mean leading edge. Nonetheless, a percola-
tained from pore-network simulation in the absence of trapiion pattern is also expected arouXd. Following [6], we
ping (details of the simulation can be found [25,26)).  will focus on the front-tail region X>X.), the extent of
When Ca is low Fig. 2(a)], viscous forces are negligible and which we will also denote by. As in the corresponding IPG
the pattern has the fractal structure of the IP cluster. As visproblem,X(t) varies linearly with time in either 2D or 3D
cous forces increase at larger [Fags. 2b)—2(d)], however, geometries, with a velocity, to be determined. In both
the front takes the appearance of a rodggif-affing, rather  cases, the fractal regions are followed by an upstream region
than self-similar, curve and has an extent that decreases witlwhich also includes the “critical region” in the terminology
increasing Ca. These trends are consistent with a gradiewnf [9]), where both invading and invaded phases are compact
percolation description. [6] and the conventional continuum description is valid. A
Following GP notions, we will distinguish two different qualitative sketch of the two regions along with the notation
cases: one in which the percolation probabifityhenceP,) used is shown in Fig. 3. These two regions will be analyzed
decreases in the direction of displacement and that has feaeparately. We note in advance that Wilkinsd®$analysis
tures similar to GP in a stabilizing gradient and another in(using a continuum descriptiprwas based on the compact
which p (henceP,) increases in the direction of displace- regime only, while Lenormandldl7] is on the fractal regime
ment, with features similar to GP in a destabilizing gradient.(but only for a 2D geometiy For convenience, we will use
Because in our problem the capillary pressirgis con- the term “frontal region” to denote the region where fractal
trolled by the viscous pressure dr@pther than gravity, as in  behavior applies in both 2D and 3D geometries and we will
the case of buoyandyg]), the viscosity ratidV is expected useo to denote, in units of lattice spacing, its extent, namely,
to be an important parameter in delineating these two rethe front width or the front-tail width in the respective ge-
gimes. ometries. In this contexty also represents the maximum
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Compact whereA is a dimensionless constant of order 26(28], we

implicitly used a Poiseuille-type model for the conductance
across a pore and we also assumed that the lattice splacing
is proportional to the average throat sizg.

For further progress, an expression 19y, is required.
We postulate that quantities at the front reach a steady state
in a coordinate system moving with the front veloaity The
fact that stabilized immiscible displacements reach a
traveling-wave state is well known and has been established
theoretically (e.g., se€/9,29]) and experimentally. Then a
mass balance on thew phase in the frontal region leads to

¢ Qnw= ¢ULdill 2Snw: 8

FIG. 3. 2D schematic of the 3D front region and the notationwhere ¢ is porosity and the saturatidg,,, is the transverse
used. average of the fraction of sites occupied by the phase.
Now, in the region under consideration, the displacing phase
extent of the correlation length, which in gradient percolationconsists of a part of the percolation cluster, tSjg~ o° ¢,

is “trapped” in a region of finite extent. Our emphasis will whereD is the mass fractal dimension, and E8). becomes
be on 3D problems to avoid unnecessary complications due

to trapping issues associated with 2D displacemg2its Quu=BuLd 12501, 9)

1. Frontal region . . . .
where B a dimensionless constant. At this point, we must

Consider the frontal region of widtlr and lateral extent emphasize the difference between this approach and Lenor-
L9™%, whered is the embedding dimension. We will focus mand's[17], where the entire rat® was used in the calcu-
on two main properties: the scaling ofand the saturation |ation of the pressure drofsee also beloy By contrast, Eq.
profile. It is necessary that an estimate of the viscous presg) implies that only a fraction ofd actually reaches the
sure drops in the two phases be derived. Although straightrontal region, at least under conditions of a traveling state of
forward when fluids occupy a compact pattern, the problengonstant velocity. This difference will be ultimately reflected
is more complex when they occupy a fractal pattern, as is thg, the scaling exponents to be derived.
case with the nonwetting phase in this region. Determining the magnitude of the velocity requires the
To estimate the pressure drop of the phaseAP,,,, we  solution of the overall problem, including the consideration
partition the region in equal size “boxes” of size’ and  of the region away from the front. This approach involves
consider the pressure drop across such a box. This partitiofhe solution of the Buckley-Leverett problem, discussed in
ing is necessary for the application of percolation scalingyarious standard referencg¢see alsd8,22)). For the pur-
laws and was also used [ifi] to estimate the number of sites poses of this section, however, we will only note the simple
on the front. Because the displacement pattern is part of gcaling resulv ~Q/L9 2, which to leading order is inde-

perCOlation cluster, the dimensionless conductance of thsendent of the Capi”ary number. ThUS, using Bj_we may
nonwetting phase in the bd,,,, has the scalingi10] express Eq(7) as

Ghw™~ Uﬁg/v, ) 2
Ap. SR -1 (10)
where( is the conductance expondigt=1.30 or 1.12 in two nw rf‘n '

or three dimensions, respective]§0,11]) and it was as-

sumed thato is sufficiently large for these scalings to be \yherec=AB. Equation(10) shows that because of the frac-

applicable. The exponertis simply related to the conduc- 5 hature of the displacing phase, the viscous pressure drop
tivity exponentt used in the previous studie$=¢+(d i the nw phase scalesonlinearlywith its extent.

—2)v (the two coincide in 2D geometrigsThe volume flow Estimating the pressure drop of the wetting phase is

rate of thenw phase across each b@ , is determined  giraightforward. The displaced phase is compact, hence we

balance obvious change in notation, and of the continuum scaling
G,~ 092 and taking, to leading order in this region, the

Q O'd71 . . ~ . .
Qinn= %T (6) approximationQ,,~Q gives the estimate
Combining Eqs(5) and(6) gives the following estimate for AP, = quz’u"" o, (1D

the pressure drop of thew phase across the frontal region: Mm
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where the constari is of the same order & and we also 10°
introduced the mean flow velocity=Q/L%*I2. Combining
Egs.(10) and(11) gives the variation oP across the front

Cul?
AP= APy~ AP, =~ ool 10207 —p), o}

" (12)

where we introduced th®(1) constanb=qrE/vIC. We
recall that the ratiay/v is O(1) and decreases withl, as
dictated by the Buckley-Leverett solution. Note that for
the stabilized displacements assumed in this section, the
right-hand side of EQ.(12) must be positive, namely,
g{tv@=21Y _phM>0 (see below

10° ¢

Consider next the variation ip. From Egs.(2) and (3) 107 - - - - - .
we have 10 10 10 10 10 10 10
CapC/(2%)
AP .~ — 2yAr ~ 2y2Ape (13 FIG. 4. Numerical solution of Eq(16) vs modified capillary
¢ I’2m Mm number for three different values .

where all increments express differences between upstrealhis important to note that Eq16) admits a unique solution
and downstream quantities and we used subséripp de-  for all values ofM and Ca. This can be readily seen by
note the frontal region. The terdir indicates the difference rearranging the equation in the form

in the minimum size of pore throats penetrated by the non- s

wetting phase across this region. Whair >0, thenAr glétvD=2)1v__ _~7  —(1v+1) M (18
<0, which means that progressively smaller throats are pen- CaC

etrated upstrearthence leading towards a more compact dis-

placement and vice versa. Combining Eq13) with Eq. and noting that its left-hand side is a monotonically increas-

ing function of o. This has relevance to the development of

(12), we find constraints for the validity of stabilized displacement, as dis-
CaCl? cussed below and if23].
Ape~ — a(oEt P2V [\, (14) The solution of Eq(16) increases with an increase i
2315, and decreases with an increase in the front capillary number

Ca . Figure 4 shows numerical results for typical parameter
where we introduced the modified capillary number:Ca values in 3D geometries. The solution approaches a constant
=vuny/y based on the front velocitisee alsd9]). Equa-  value at large Gaand a power-law asymptote at small.Ca
tion (14) shows that in contrast to standard GP and IPG, th@ecause the latter applies over a region of validity extending
change in the overall percolation probability in the viscousover several decades in i will be taken as the predomi-
problem isnot linearly related to the size of the overall in- nant scaling result. The latter result would have been ob-
crement. However, as will be shown below, the spatial probtained also had we assumed that most of the pressure drop
ability profile across this region of exteatis linear. We can  occurs in the displacingw phase and neglected the pressure
obtain the scaling of the front width by applying the self- drop in the displaced phase. Such an assumption was made
consistency argument of gradient percolatié®]. As o de- by Lenormand17] in delineating the percolation-to-compact
lineates the extent over which percolation scalings apply, wgoundary and is also implicit in the analysis of Wilkinson’s

also have [9]. Then Eq.(14) becomes
Apg~o ™1, (15 _CEC - ni

which, combined with Eq(14), yields the algebraic equation o o ) .
which, in conjunction with Eq(15), leads to the asymptotic

result

23,
v+l [{+o(D—=2)]v__ ~—
(o M)~ 5o (16)

(20

Ca:C —vI[1+{+v(D-1)]
e
where we absorbed int® a constant of0(1). Thesolution

of Eq. (16) provides the dependence of the front widtlas  £quation(20) expresses the asymptotic scaling of the front
a function of Ca andM. For typical values in three dimen- (or front-tail) width with Ca- at small Ca for the case of a

sions, this equation reads stabilized displacement.
As in previous studie$9,17,18, the scaling(20) is a
2 L TT—p M)~ 2% (17) power law. In fact, the exponent/[1+{+v(D—1)] is

CaC’ identical to Wilkinson's v/(1+t— B+ v) (substitute in
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terms oft and make use of the well-known percolation rela-be used to lead to the following well-known equation for the
tion D=d— B/v). This exponent would also have coincided description of 1D displacements:

with Lenormand’s for the scaling of the percolation-to-

compact boundary had we assum@g,=Q at the front, t?Snw+ Ifan(Saw) 9 [ kkewFrw IPc 03
which in the present context is tantamount to takine 2. ¢ a4 ax x|\ pw x|’ @3
As shown below, however, Wilkinson’s result was obtained

differently, by extrapolating in the frontal region tlmen-  where the fractional flow

tinuum solution valid behind the front. The fact that the 1

present work reproduces his result shows that the two ap- f :(1+ krwl’«nw) (24)
proaches are consistent in the case of stabilized displace- nw Kenwttw

ments.

Using accepted estimates, the exponent in &f) is and the capillary pressuie,= yJ(S,,)/Jk are functions of
equal to 0.382 or 0.25 in two or three dimensions, respecS,,,. For homogeneous systems, we further write
tively. The rather small values suggest a weak sensitivity of
oon Cg, C, and3. It should be kept in mind that the rate asnw+ Ifnw(Sow) _ J Shw
dependence in Gahas entered through the front velocity at q ox X X
This can be of some significance in investigating the effect
of M, which also influences [24]. It is also interesting to where we introduced the diffusion coefficientD
note that as the degree of heterogengityncreases the front = (v VKK F o/ ) (dJ/dS,,) . A direct consequence of the
width increases. In fact, Eq20) suggests that for such dis- continuum description is that the relevant length scale for
placements it is more appropriate to replace, in the definitiorsaturation changes, hence of the upstream region of the front,
of the capillary numbery by the productyS. We finally note  is \k Ca % The difference in the scaling exponents in the
that the scalind20) can be also obtained by using a versiontwo regions suggests a higher sensitivity of the saturation
of GP, termed viscous gradient percolatidGP), to be in-  profiles in the compact regime compared to that in the frontal
troduced below for modeling the saturation profile. Althoughregion.
necessary for the saturation profile, VGP is not required for In a region adjacent to the froftermed the “critical re-

(D(Snw) ) (29

the derivation or the validity of the scalin@0). gion” in [9]), percolation theory can be applied to provide
_ the asymptotic behavior at smd&),,, of the relative perme-
2. Compact region ability and capillary pressure functions. Based on this behav-

Sufficiently behindX., the previous theory is no longer 1°f and assuming a traveling-wave solution, Wilkinson
applicable, as the displacement patterns are compact ari@!Ved the continuum equatid@5) to obtain the local satu-
fractal notions do not apply. Locally, however, the displace-ation profile around,, which he defined as the “leading
ment is still controlled by capillarity, assuming sufficiently ©dge of the front” and denotes the place whegg vanishes.
low Ca. We proceed by assuming that the injection rates arl) 0ur notation, Wilkinson’s result reads
sufficiently small for gradients in volume-averaged quanti- Cac Bl(1+t-p)
ties to be small and volume averages to be meaningful. Con- S, N(i (Xo—X) (26)
ditions for the validity of this assumption are developed in a v 3 0 '
later section. Here we can proceed with the standard con- ) _ _
tinuum descriptior9,29], in which the individual phase ve- where we also included the heterogeneity fa8tot)sing the
locities obey an extended Darcy law percolation resulS,,,~Ap?, one further obtains the profile

of the percolation probability in this region

U(1+t—pB)

kk;
" VP, for i=w,nw (21 CgC
Mi Ap~

2

q=-

(Xo—X) (27

and capillary equilibrium applies

It should be remarked that if we adopt the above definition

Prw— Puw=Pc(Shw)- (220  for X,, it must follow thatXy> X, (in fact, Xo~X.+ o). But

then Egs.(26) and (27) would not be strictly valid, as the
The relative permeabilitiek,; and the capillary pressu®.  region of integration would also include the front-tail region
are functions of the saturatid®,,,, in principle computable (X.<X<X,), where the above continuum equations do not
from the simulation of an IP process fpe>p.. Using OP, apply. Thus it is more appropriate to takg= X_ instead and
Heibaet al. [30] and Sahimi[31] evaluated such functions to accept the validity of these equations only in the critical
for Bethe and regular lattices, respectively, while Wilkinsonregion(whereX<X,). This is equivalent to shifting the trav-
[9] has described their asymptotic behavior using IP. In theseling front by a constant and will be considered below in
approaches, the relative permeability functions of the twanodeling the saturation profile. In their present form, Egs.
phases are computed as the relative conductances of tw@6) and(27) must be viewed as an approximate composite
phases(“occupied” and “empty”), randomly distributed solution that spans both the fractal and the compact regions
following the occupancy patterns of ORlthough a more and approaches asymptotically, in the far field, the con-
appropriate description should be based on occupancy pdinuum scaling(26).
terns involving IP with trappind27]). In either case, the Equation (27) was used by Wilkinsorj9] to obtain an
scales are separated and a standard continuum argument egtimate of the front-tail width by proceeding essentially as
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follows. Evaluating Eq.(27) at X=X., taking oc=X,  tion cluster, across which a fixed pressure difference is ap-
—X., and using subscrip€ to denote the critical region plied. It can be deduced that this profile is linear; thus we
gives have

Ca:CO-C) 1/(1+t—pB)
3

which is the counterpart of our E¢L9). Both equations are
power laws, but with different exponents. In fact, the expo-
nent of Eq.(19) is always greater than one, whereas that of
Eqg. (28) is always smaller than one. Moreover, the depen- Ap~ CaC (gl (P=21v_ (34)
dence ofAp (hence ofAP.) on Ca is different in the two 23
caseglinear vs nonlinear Next, the previous GP argument
is applied by using Eg.15) in Eqg. (28) to obtain the scaling for the variation ofp across such an increment. The variation
of o¢ with Ca-. We find the result in Eq. (34) is linear with respect tg.

An approximate description of the saturation profile can

( C&C) —vl/(1+t—B+v)
gc™~

, 28) Ap= XAPE (33

oa

Apc~

and therefore

now be obtained by using a model GP in which the percola-
S tion probability has the profile suggested by E®7) and

(34) on the respective sides of,. The resulting composite
which, in view of the relation betwednand{, is identicalto profile of p is shown in Fig. 5. The percolation probability
our Eq.(20). The coincidence of the two exponents is ra'[hergradient ap, is constant, as we approah from the right,
remarkable, given that one approach uses scaling laws ingut diverges as we approach it from the left. This feature is
fractal region, while the other is based on a continuum dedifferent from the classical IPG, where the gradienpais
SCI'iptiOﬂ (the solution of a differential equation, although a constant. In actua”ty, the dependence of the prof"e pew
GP self-consistency argument was also dsedile at the  not as extreme as indicated and a more appropriate profile
same time the various profiles are markedly different in th%homd involve a Composite curve that On|y asymptotica”y
two cases. The reason for this coincidence is that in botlypproaches in the far field the respective limits. The particu-
cases the front widtler also happens to be the length of the |ar profile depicted in Fig. 5 gives rise to a different GP
interval f, where the overall Capillary pressure differenceprob|em, to be termed viscous gradient perco|ation_
AP is the same for both approaches. Indeed, if we equate Viscous gradient percolatioWe consider a static perco-
the corresponding two expressions foP. (or, equivalently,  |ation problem in a lattice with a percolation probability gra-
Ap) over an incremeng, we have dient that is constant at the percolation threshold from the

Ca gt~ MIv_ (Capg)Ui=A+1) (30 right and diverges from the left, namely,

: (29

—B3(X—=X;) for X>X,

the solution of which is~Ca-“, wherew is the previous pP—Pe= < (35)
exponentw=v/(1+t— B+ v); hence we havé~o~o. ¢ [B(X=X)]" for X=X
3. Saturation profile Here B>0 denotes an equivalent Bond number, exponents

a>0 and O<c<1 are arbitrary, and capital letters denote
distances in lattice units. In the specific problem under con-
sideration, we havea=(1+v)/[1+{+v(D—-1)] and c
=1[1+ ¢+ v(D—2)]. We conducted numerical simulations

Equation(20) provides the scaling of the front width with
Ca-. The other important quantity in gradient percolation is
the saturation profile. Gouyet, Sapoval, and Ro€oand

Hulin et al. [13] discussed scaling properties of saturationg .o gradient percolation problem for values afand ¢

profiles for the cla§§|cgl GP and IPG problems, where t_h%orresponding to three dimensions. Figure 5 shows probabil-
percola_tlon_ probability increment across a region sc.ales Ilnl-,[y and saturatioritransversely averaged occupanpyofiles
early with its e’“ef“- ]n the case of a constant gradient, th‘f)lotted vs normalized distance for two different value8of
scaling of the profile is given bi6] The overall features of the saturation profiles are similar to
GP: The profile decreases almost linearly with distance in the
, (31)  region upstream of the front and the front extent increases as
B decreaseqThe different lattice sizes used in the normal-
ized plots of these figures should be noethe scaling of
the saturation profile is expected to have the general features
of the scaling function(31) of the standard GP, with some
correction to account for the slightly different VGP profile.
logyo IT(u)= — 1.1u+0.481+ 0.10, (32) By applying the self-consistency argument of GP, a
power-law scaling for the front width witlB can be ob-
whenu<0. For the case of viscous displacement, we firsttained. Indeed, using the percolation scalipg-p~o "
need to find the variation oAp across an arbitrargybut ~ and substituting— X,~ o in the top member of Eq(35)
suitably constrainedincrementy within the fractal region leads to the power-law scaling
(x<o). This problem is equivalent to determining the varia-
tion of the transversely averaged pressure within a percola- o~B (At (36)

X.— X

[oa

SnWN pBB/(l+ V)Hf(

wherell;(u) is a scaling function that approaches the ordi-
nary percolation scaling]I;(u)~u”?, whenu>0, and it is
approximately described by the best-fit expression
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FIG. 5. Percolation probabilitydashed ling and saturatior(solid line) profiles vs normalized length, for 3D VGPa) B=10 *in a
lattice of 200< 200X 65 and(b) B=10"% in a lattice of 200x 200x 500.

Since in this limitB3=(Ca-C/23)glét*(P-21» Eq. (36) or a traveling-wave solution develops. This problem is a
leads to the same scaling as E2Q). An identicalpower law  variation of the problem treated by Lenormgid].

would have also been obtained had we used the lower mem- Consider, then, the pattern at the onset of displacement,
ber of Eq.(35), namely, had we extended the definitioncof ~which will be assumed to be of the percolation type and of
upstream ofX, and made use of the scalirig)5) in the re- an extentyX L971 where y is an increasing function of
gime upstream ofX.. Essentially, this was the approach time, until a saturation profile starts developing. The latter
taken by Wilkinsor{9]. Again, this coincidence is due to the will occur at y<x., where yo(CaM) is the limiting size,
specific relation betweea andc and has the same interpre- above which the displacement ceases to be a percolation pro-
tation given above. cess. Lenormand has determingg in two limiting cases,

We summarize this section by emphasizing the differentvhere pressure drops occur only in one of the two phases,
description of percolation processes involving viscous forcesespectively. For the solution of the present problem, the
in the two regions, near and away from the front, at least fomore general case needs to be considered. Because of the
relatively low Ca. The different scalings g4!1*¢*»(P~D]1  considerable details involved, the results are presented in a
and Ca ! obtained indicate that near the front, the continuumseparate studj23]. Here we simply note that the difference
description(25) for the profile should be replaced with the in capillary pressure can be evaluated as before, except that
more appropriate VGP equatigB1). Either theory suggests Now Qn,,=Q, since a traveling-wave solution or a fully de-
an advancing front. In the VGP model, the profile is a func-veloped displacement has not yet develogiis was also
tion of X— X, Ca, andM, the time dependence entering taken by Lenormand17]). Assuming that percolation scal-
through X, which varies with time. A traveling state with ings apply, the capillary pressure drop over this region of
constant velocity is also contained in the continuum descripsize xX L * at the entrance of the displacement reads
tion (25). However, the latter predictsteypodiffusivebehav-
ior [29], namely, a profile with a divergent derivative at the AQuny
front (a sharp “knee’), in contrast to the tail involved in AP.=
VGP. Thus appropriate caution must be exercised in using
the continuum approach in this region.

x(x1erP=2lv—eMm), (37

M'm

wheree is anotherO(1) constant. It is apparent that for the

4. Region of validity of stabilized displacements formation of a stabilized displacement, the right-hand side of
Eq. (37) must be positive for ally<y.. Clearly, this re-
ahires thatM be sufficiently small. This condition is implied

Lenormand’q 17] description of the validity of the perco-
ation regime, which indicates a transition arouvid- 1. It is
shown in[23] that the displacement isnconditionallystabi-
lized if M<M*, whereM* ~ 1, andconditionallystabilized
§n the opposite case. In the latter, stabilized displacement is
still possible, however, provided

The above scaling was obtained under the assumption th
the fully developed displacement is stabilized. This require
that the percolation probability decreases in the direction o
displacement for all incremenjs< o, namely, that the right-
hand sides of Eq9.12) and (14) are positive. However, in
the preceding section it was shown that provided that th
displacement is stabilized, a solution f@ralways exists and
thus the right-hand sides of Eg&l2) and (14) are always
positive. Therefore, in order to establish a condition for the
existence of a stabilized displacement, we must address the E"M[ﬁlw(ml)y[“ »D-2)]¢q (39)
initial phase of the displacement, before a saturation profile
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area~LY"! here thenw phase occupies narrow fingers.
Thus the appropriate expression corresponding to(Bgs

AQnym
nvs\)/ nw O_g/v,

AP.w= ;

(40

m

where Q,,,=Q=qL% 2. The equation for the pressure
drop of thew phase remains the same as Efjl). After
some manipulations we obtain the equation for the variation
of p across an increment of size

A Cd2 Ld*lo,(§fv)lv
p~ erﬁq T = b'M |, (41

whereb’ =Er /Al is anotherO(1) constant and is the
number of fingers that develop. Now, if we further assume
that the last term in large parentheses on the right-hand side
of Eq. (41) is the dominant term, we can identify a suitable
bond number for this problem, namely,

E Cavli E Cav
2>r, 23

(42)

FIG. 6. Single finger in GP in a destabilizing gradigfitom

8]). . L . .
[8) This assumption is equivalent to neglecting the pressure drop

: : - _in the displacing phaséas also done by Lenormand7]).
(see[23] for detaily. Equation(38) shows that the displace Using this definition, a direct comparison with E§9) gives

ment is stabilized even i is large, provided the capillary : ;
number is sufficiently small. In such a case, a stabilized dis'Ehe result for the finger width
placement would develop for values M larger thanM E CaM |~ V(r+1)
=1. This supports the validity of the Buckley-Leverett de- o ( )
scription for a wide range of parameter values, as commonly 2%

practiced in applications.

(43)

In the more general case where the second term on the right-
_ _ S hand side of Eq(41) is not necessarily dominant, the depen-
B. Capillary-viscous fingering dence ofo on the parameters is different and would be ob-

When condition(38) is violated, for example, when the tained by solving the equation
nw fluid has a much smaller viscosity, most of the pressure 5 d-1 ((—m)lv
drop occurs within the displaced phase. In such cases ACd ('— g
creasesn the direction of displacement. IPG problems with ZErﬁ1 7
spatially increasing percolation probability involve a nega-
tive Bond number and describe invasion in a destabilizingThe power law of Eq(43) has the familiar GP exponent,
gradient[14,15. In particular, capillary invasion in a desta- with values 0.571 or 0.469 in the respective geometries
bilizing gravity field, for example, corresponding to the re- (compared to 0.382 or 0.25 of the previous gaséis expo-
lease of a lighter fluid at the bottom of a porous column fillednent is identical to Lenormand{d7] for the scaling of the
with a heavier fluid, was studied in considerable detaf] percolation-to-viscous fingering boundagrrow CD in Fig.

(see also the related problems[&16]). It was found that 1), although his exponent did not pertain to the width of a
the displacement occurs in the form of distinct capilldsyt ~ finger or to the particular regime of destabilizing GP dis-
not DLA-type) fingers. For a sufficiently long column, one cussed hergHowever, it was pointed out that the transition
single finger emerged. Figure 6, reprinted fr¢&], shows would eventually result in fingers continuously thinning as
the structure of such a finger for capillary invasion in a fieldthe DLA regime is approachedA comparison with Eq(20)

of increasing permeability. Scaling arguments similar to theshows that the scaling exponent almost doubles as the mo-
self-consistency arguments of GP can be used [f%i&)] to bility ratio increases from the one limiting regime to the
show that the finger consists of a string of beads of averagether, implying a higher sensitivity on the capillary number.

—b'M

~—o . (49

width ¢ with the scaling behavior. Equation(43) also shows that the finger width decreases with
) an increase in the capillary number Ca and the mobility ratio
o~|B| : (39 M and that it eventually reduces to a single thin finger of the

size of a single poréand where the above scaling fails and a
To apply these findings to the viscous problems of interespLA regime emerges This behavior is as expected.
here, an expression f@ is needed. We also note that Eq43) can be approximated rather
ConsiderAP, (andAp) across an element of sizé in  well (at least in three dimensionwith the expression
the geometry of Fig. 6. In contrast to the stabilized displace-
ment, where it spans the entire cross section of the sample of o~Ca %5 (45)



748 B. XU, Y. C. YORTSOS, AND D. SALIN 57

This scaling is consistent with that of the fast@siost dan- near the front occupies a compact region. The different be-
gerous growing finger predicted by the linear stability havior in these two limits is the origin of the difference in the
analysis of Chuoke, van Meurs, and van der H@4dl,32, scaling exponents in the two limits. Such a distinction was
which suggests an exponent equalstoHowever, the two made by LenormanflL7], but not by Wilkinsor(9] or Blunt,
should not be confused. The present analysis is based dfing, and Shef18]. This explains why our exponent agrees
finger widths of the order of the pore scale, while the linearwith Wilkinson’s only in the first case, but not in the second,
stability analysis off21] is actually based on a continuum where instead we agree with Lenormand. The difference be-
description of stabilized displacements, usingaghhocex-  tween our exponent and Lenormandik/] for the case of
pression for the interfacial behavior in the form of an effec-low M is due to the fact that Lenormandl7] used the entire
tive macroscopic interface. injection rateQ, while here we assumed that only a small
A necessary condition for the validity of E¢3) is Ap  fraction of Q actually reaches the frontal region. This differ-
<0 in Eq.(41). This is automatically satisfied, provided Eq. ence is ultimately reflected in the scaling exponents. We
(44) has a solution. This equation can be rearranged to reaohust point out, however, that Lenormand’s assumption is
correct for the specific problem he considered, which is the
evaluation of the departure from percolation in a displace-
ment in a square lattice, where traveling fronts and gradient
percolation concepts are not involved.
where F is a positive constant. Contrary to the previous
problem of stabilized displacement, however, it can be
shown that a solution of the abowdoes notexist for an
arbitrary value of M (at least under the condition The VGP theory at smalM was partially tested by con-
that the finger spacing remains consjanindeed, the ducting some experiments and pore-network simulations.
right-hand sideG(o) of Eq. (46) goes through a minimum Immiscible displacement experiments were conducted in a
at the value o*~(n/L9 Ca)’¢*Y where G(o*) long sample, consisting of a vertically placed rectangular
~ (L9 YY) DI DCg (-nIEr ) Thus a condition for  glass bead pack of dimensions>38x 2 cn®, filled with
the existence of the fingering regime is that a solution exists]00-um glass beads, with porosity and permeability equal to

Ld—lo.({—v)/v on.—l/ll
+

b’M~ n Ca '’

(46)

Ill. EXPERIMENTS

namely, that ~40% and~40x 10 2 m?, respectively. Gravitational ef-
fects were avoided by using matched-density fluigs
41\ [v+1| DD [ dm1) (v DI(EFD) =1.15x 10° kg m~3, 5p<10 kg nT3). A water-sucrose mix-
M> (—v)\{—v n ture was used as the wetting fluigl(=5% 103 Pa's) and
WD) dibutyl phtalate was used as the nonwetting fluich€ 14
% E @7 X103 Pas), resulting in a viscosity ratio ®=0.3. The
F3 interfacial tension between the fluids wag~25
X103 Jm2
Based on Eq(47) we can make the following remark§) Experiments corresponded to primary drainage and in-

For fixed finger spacind.9~/n, this fingering regime is volved the displacement of the wetting fluid from an initially
reached at smaller values bf as Cak increasegalthough  water-sucrose-saturated sample by the nonwetting fluid. The
one should note that the exponent of Ca is rather small anflow rateq varied between 1% and 10 # m/s, correspond-
equals 0.1} this is as expected. Howevd(i) the spacing ing to a capillary number variation in the interval between
between the finger&®~1/n enters explicitly in the above 5x10 7 and 5<10 °. An acoustic technique, described
condition, thus the utility of Eq(47) is unclear at present. elsewherd33], was used to determine the saturation profile.
One could advance the argument that Et}) actually de- Saturation measurements were indirectly obtained from the
fines the finger spacing, namely, that velocity variations of a sound wave along the sample. From
the calibration curvd33] and the accuracy of the relative
~MUEFDI+D gL (v+1) 49) veloc_ity measurements (16) we estimate th_e overall accu-
n racy in saturation as better than 1%. A spatial resolution of 1
mm was implemented in order to keep track of precise varia-
Such a conjecture would mean that the percolation probabitions along the length of the sample.
ity always remains neap., an idea consistent with self- Figure 7 shows a log-log plot of the front extent vs cap-
organized criticality arguments, and would indicate a de-llary number obtained experimentally. The extent of the
crease in the number of fingers with an increasblimnd or  front was obtained by using the scaling function of GP as
Ca. Additional work is needed to test this hypothesis, how-detailed in[8]. The data show that the relationship is a
ever. straight line, although there is some scatter. The data can be
The above analyses show that the displacement behaviditted quite well with a straight line of slope of 0.25 in
is different depending on the relative magnitudeMbf This  good agreement with the theoretical prediction. Even though
is a direct consequence of the pressure drop in the frontdhe agreement is good, additional experiments would be
region in the two cases of low or highl, respectively. In needed for a more rigorous test of the theory.
either case, the pressure drop is associated with the higher The predictions for the smdlll case were also tested with
flow resistance. In the first case, it is due to the invadingesults from 2D pore-network simulations using the drainage
phase, which near the front occupies a percolationlike cluspetwork model described by Xi25]. Simulations in a 40
ter. In the second case, it is due to the displaced phase, whick100 network, withM =0.1 and Ca varying in the interval

Ld—l
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10 A TrT— eral, this quantity is a random variable with a deterministic
' . mean and a standard deviation that, in the |axgdimit,

scales a& N 2, as dictated by the law of large numbers
[34]. This property is shared by all volume-averaged quanti-
| - ties, such as pressure and permeability. The conventional
continuum description above relies on the existence of deter-
ministic volume averages and hence on the requirement that
the standard deviation of the volume averages does not ex-
110_6 - "'1'8_5 — "'1'(')_4 ceed a small positive numbéy namely, that

2 Ca

width
T
L1

E 2
3> : (49)

Ng=
FIG. 7. Plot of the front width vs Ca from experimental results.

The solid line is the theoretical prediction of slope0.254. The

front width is dimensionless using the bead size as the characteristgondltlon(49) shows that, as_ expected, more dlsorc.ie'r.ed me-
size. ia require a larger averaging volume for the definition of

meaningful averages. For quantities that depend on the satu-
between 104 and 10°5, showed a power-law scaling of the ration (such as relative permeabilities and capillary pres-
front width with the capillary number, with a best-fit slope of sures, however, deterministic volume averages additionally

—0.34 (Fig. 8), in reasonable agreement with the expectedequ"e that saturations are spatially uniform, namely, that
value — 0.382. Given the various finite-size effects due to thel '€ Scaled saturation gradient in the volume-averaged region

small sizes of the network, this agreement is somewhat suf™ —0dS,/dXis sufficiently small,

prising. A more stringent test should involve much larger E

lattices and much smaller Ca. Work in this direction is also 9< —ma. (50)
currently under way. Additional work is also needed to ex- N

plore the fingering regime and to test the constraid8 and
(47) and the conjecturé48).

IV. REMARKS ON THE EFFECT OF HETEROGENEITY

10’

wheree is the allowed standard deviation 8f,, (e.g., of the
order of 10°%). In the continuum description aboveg,was
shown to scale with Ca. The two inequalities can be com-
bined to lead to the condition for the validity of the con-
We conclude this paper by making additional remarks orfinuum description
the validity of the continuum theory. The latter was based on 5|23
the assumption that expressions such as(Et), are deter- Ca< O(E<— ) (51)
ministic, namely, that saturation gradients are sufficiently D
smalll for volume—averaggd quantities to be Stat'.SJ[.'Ca"yTypicaI displacements are usually conducted at=Q@a °,
meaningful. To set a quantitative condition for the validity of hich to be within the range defined by &)
this assumption we proceed as follows. which appears to be ne range oe Y :
) - . However, it becomes more difficult for this condition to be
Consider a 3D volume containing occupied and uncor- - . .
related pores with the statistics described before and define® tisfied as _the dlsord& Increases.
volume-averaged quantig)y, over this volume. In gen- The previous theory |dent|f|gd three length scales of reI-.
Ns ' evance to drainage processes in uncorrelated random media:
In dimensionless terms, they are proportional tGhe lateral
exteny, to Cg 127 ¢+"(P~1I (case 1 or Ca ”**") (case
2), and to Ca*. Heterogeneity in the pore structure can enter
either through gradients in the mean pore ginevhich case
the pore size becomes a nonstationary varjabiethrough
stationary, but spatially correlated, pore sizes. In either case,
its effect on the saturation profile depends on the magnitude
_ of the appropriate length scale. In the case of pore size gra-
o o dients, the heterogeneity Bond numhé&] B,=—dr,/dx
introduces a corresponding length scale that is proportional
toB, 1. Here effects of heterogeneity can still be captured by
continuum equations provided the relevant length scales dis-
cussed above are smaller than this scale, which would then
impose upper bounds on Ca. In addition, use of volume-
averaged quantities requires sufficiently weak heterogeneity,
1o1°° - namely,
Ca

B < 62°. (52)
FIG. 8. Plot of the front width vs Ca from pore-network simu-
lations withM=0.1 in a lattice of 6& 100. The best-fit slope of Otherwise, heterogeneity would interfere with the develop-
—0.34 compares reasonably well with the theoretical prediction ofnent of the saturation profile. This can still be handled with
—0.384. the pervious approach, however. For example, in the absence
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of viscous forces it is known that gradients in the mean porehe process, at least near the front, shares common aspects
size lead to a stable form of IPG whé®h >0 and to an with IPG. WhenM is sufficiently small, the displacement
unstable form of IPG(capillary fingering in the opposite can be modeled by a form of gradient percolation stabi-
case[8]. Thus, when viscous forces are also considered, wézing gradient. We developed the scaling of the front width
can combine heterogeneity and viscous gradients iadai+  and the saturation profile, in terms of the capillary number.
tive operation, the resulting scaling with respect to Ca nowAs the stabilized regime is described by the Buckley-
being accordingly different. Leverett equation, the two share the same constraints for
Different considerations apply when the local pore size igheir validity. In the opposite case, the displacement is de-
stationary but spatially correlated, with a dimensionless corscribed by gradient percolation in destabilizinggradient
relation length\. Here the previous theory is still applicable, and leads to fingering. The particular regime involves a com-
provided the corresponding viscous lengths excesnifi-  petition between capillary and viscous forces. Limited ex-
cantly. Otherwise, the displacement would be affected by th@erimental and numerical results support the theory. The ef-
heterogeneity. Recent wofR5] has studied effects of spatial fect of heterogeneity was also discussed and upper bound
correlations(involving fractal statisticson IP. conditions on Ca for the validity of the continuum approach
When, as result of increased Ca, conditions such as Egvere developed. The theory shows that the conventional con-
(51) are violated, many of the previous postulates, for extinuum approach should be used with caution near the front.
ample, the concept of deterministic volume averages, beSimilar results are also expected for imbibitiddisplace-
come questionable. In this case, suitable alternatives to thment of a nonwetting phaserovided that injection rates are
above must be sought. One approach could involve definingufficiently high[36].
area(instead of volumg averages, transverse to the main
direction of displacement, provided the lateral extent is suf-
ficiently large. Here some form of IPG is also expected to be ACKNOWLEDGMENTS
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