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Dynamical heterogeneity in the Ising spin glass
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We investigate the relationship between bulk and local relaxation in the Ising spin glass~in two and three
dimensions! for temperatures above but approaching the glass transition temperature, using Monte Carlo
computer simulations. We find that the stretched exponential form of the bulk spin autocorrelation function
results from a spatial average over a broad range of behavior, from strongly nonexponential to nearly expo-
nential, for the local autocorrelation functions. The spatial correlation of single-site relaxation times obtained
from these functions provides a length scale for dynamical heterogeneity that grows with decreasing tempera-
ture. @S1063-651X~98!10806-1#

PACS number~s!: 64.70.Pf, 75.50.Lk, 75.10.Nr
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As a disordered system is cooled toward a glass transit
equilibrium relaxation functions decay in a complex way.
liquids with self-induced frustration@1# and in spin glasses
with quenched disorder@2,3#, the density autocorrelation
function and spin autocorrelation function, respectively,
cay nonexponentially. These autocorrelation functions
well approximated for large timet by a stretched exponentia
or Kohlrausch-Williams-Watts function exp(2t/t)b, wheret
andb are temperature-dependent fit parameters.

The relationship of this bulk late-time behavior to rela
ation at a local, microscopic level is not understood.
widely debated open question concerns whether individ
microscopic regions of a glass-forming system relax ‘‘hom
geneously’’ or ‘‘heterogeneously’’ above the glass transit
temperature@1,4,5#. In the homogeneous scenario, an au
correlation function of a microscopic region of the syste
decays as a stretched exponential and all microscopic reg
decay similarly with the same values oft and b as for the
bulk behavior. In one widely discussed heterogeneous
nario, autocorrelation functions for different microscopic r
gions decay as simple exponentials but with different val
of t, the average of these local exponential relaxations yie
ing the observed stretched exponential behavior of the b

A model system for which this question is readily a
dressed is the6J Ising spin glass@2#. For this system, the
disorder is quenched and it is therefore expected that l
relaxation will vary as a function of position, i.e., dynamic
heterogeneity will occur. This has been confirmed for sho
time-scale dynamics through the observation of spatial va
tions in the equilibrium spin-flip rates forT.TSG @6#. How-
ever, a detailed characterization of long-time loc
relaxation, required to elucidate the behavior of the bulk
laxation function, has not been reported. Furthermore
should be possible in the Ising spin glass to explicitly m
sure a length scale for dynamical heterogenity, that is
length scale over which the local spin relaxation is spatia
correlated. This quantity is currently of great interest to
glass community@1,4,5#. Here we evaluate and characteri
the range of functional behavior for local relaxation in t
571063-651X/98/57~6!/7350~4!/$15.00
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Ising spin glass. We thereby elucidate the relationship
tween bulk and local relaxation and identify a length sc
for dynamical heterogeneity.

We perform simulations of the Ising spin glass in dime
sionsd52 and 3 in the paramagnetic phase at temperatu
T above the spin-glass transition temperatureTSG. The sys-
tem is described by the HamiltonianH52(^ i j &siJi j sj , on a
square (d52) or simple cubic (d53) lattice. In our simula-
tions the external magnetic field is zero. Exchange inter
tions Ji j 56J are randomly assigned to the edges of t
lattice and Ising spinssi561 are placed on each sitei . The
sum inH is taken over all nearest-neighbor pairs of sites. W
use the heat-bath Monte Carlo algorithm@7# with periodic
boundary conditions for lattices of size 642 (d52) and 163

(d53). Our simulations are performed for several values
kT/J. In d52, kT/J51.6, 1.8 and 2.0; ind53, kT/J52.5,
3.0, and 3.5. SincekTSG/J50 and 1.17560.025 in d52
and 3, respectively@2#, all simulations are performed we
aboveTSG @8#.

We calculate the local equilibrium spin autocorrelati
function qi(t) for each sitei , which for the paramagnetic
phase can be defined asqi(t)5^si(0)si(t)& @3#. Here angular
brackets indicate an average over choices of the time or
t50. The number of sites in our lattices for bothd52 and 3
is N5642516354096 and hence for eachT simulated we
obtain a set$qi(t)% of 4096 functions. Eachqi(t) is evalu-
ated from t50 to t5tmax, where tmax is chosen so tha
qi(tmax),0.01 for alli , that is, we determine allqi(t) over at
least two decades of decay. The value oftmax increases asT
decreases. It is consequently an appropriate paramete
choosing run times for the equilibration and producti
phases of each simulation since by definition within this tim
all sites become~essentially! uncorrelated from their state a
earlier t. For equilibration, we carry out at least 103 tmax
Monte Carlo steps~MCS!. To evaluate allqi(t) functions to
within an accuracy of60.01, a production phase of at lea
63104 tmax MCS is required. At the lowestT studiedtmax
.500 MCS, leading to run times of at least 33107 MCS.

It is convenient to characterize local relaxation in terms
qi(t) because the bulk autocorrelation functionq(t) conven-
7350 © 1998 The American Physical Society
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FIG. 1. Plots ofqi(t) ~thin lines! for several spins ind52 for kT/J51.6 @~a! and~c!#, andd53 for kT/J52.5 @~b! and~d!#. The bulk
functionq(t) ~heavy line! is also shown.~a! and~b! are semilogarithmic plots versust. In ~c! and~d! the same data are shown in a log-lo
plot of 2t/ log(q) versust. All logarithms are base 10. The locations of the sites for theqi(t) curves given in~c! are indicated in Fig. 4~b!
by s ’s with the corresponding number.
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tionally studied for the Ising spin glass is evaluated by av
aging over allqi(t) functions:q(t)5N21( i 51

Nqi(t) @3,9#.
Our results forq(t) for d53 agree with those of Ref.@3#,
where it was shown that a product of algebraic and stretc
exponential functions

q~ t !.ct2xexp~2t/t!b ~1!

fits well to q(t). c, x, t and b are T-dependent fit param
eters. Depending onT, it has been found thatxP(0,0.5) and
bP(0.3,1.0), whilet diverges asT→TSG @3#.

Figure 1 showsqi(t) for several differenti , representative
of the range of behavior we observe. Also shown for co
parison isq(t). The dynamical heterogeneity expected f
the Ising spin glass is apparent: For bothd52 and 3 there is
a broad range of behavior among theqi(t) curves, with some
decaying much more rapidly than the average and so
much less.

To test if theqi(t) functions, likeq(t), follow the form of
Eq. ~1!, we carry out an exhaustive nonlinear least-square
of Eq. ~1! to qi(t) for all sites. We find that Eq.~1! fits well
to eachqi(t) over the two decades of decay studied here.
also find that a broad spectrum of botht andb values results
from the fits~Fig. 2!. Hence, if the local relaxation in bot
d52 and 3 is analyzed in terms of Eq.~1! over the first two
decades of decay, then the stretched exponential relaxa
of the bulk does not result from a superposition of sim
exponential local relaxations. Rather, we find that the Is
spin glass in this time regime is spatially heterogeneous w
respect to both thet andb parameters in Eq.~1! @10#.
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Note also from Fig. 2 that most of theb values obtained
at onevalue ofT occur in the range from 0.3 to 1.0. In Re
@3#, when Eq. ~1! was fit to q(t) for many different T
.TSG, although b was found to vary through the sam
range,t increased andb decreased asT decreased. This
correlation is reversed in the case ofqi(t): For a givenT, t
tends to decrease asb decreases. Hence, at the level of i
dividual sites at fixedT, slow relaxation isless‘‘stretched’’
than fast relaxation.

The data from Figs. 1~a! and 1~b! are plotted in Figs. 1~c!
and 1~d! so that exponential relaxation gives a horizon
line, while stretched exponential relaxation yields a strai
line with nonzero slope. Despite the fact that bothq(t) and
several qi(t) display stretched exponential behavior, t

FIG. 2. Scatter plots of the fit parameterst andb for all sites for
~a! d52 (kT/J51.6) and~b! d53 (kT/J52.5).
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otherqi(t), specifically the most slowly decaying, appear
large t to be approaching exponential behavior, consist
with the implications of Fig. 2. This observation raises se
eral possibilities.

~i! The observation of nearly exponential relaxation at
local level supports the possibility, raised in earlier stud
@11,12#, that there exist localized regions of the system t
relax independently in the range ofT studied here~the
‘‘Griffiths phase’’!.

~ii ! There may exist a regime oft in which a significant

FIG. 3. P(t i
0) versust i

0 for variousT in ~a! d52 and ~b! d
53.

FIG. 4. ~a! Spatial arrangement oft i
0 values ind52 for kT/J

51.6. Large values oft i
0 are shown in black, small values in white

~b! Locations of unfrustrated sites~j! and sites~numbereds’s! for
which qi(t) is plotted in Fig. 1~c!.
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contribution to the stretched exponential bulk relaxati
arises from a sum of simple exponential functions, each
sociated with a localized region of the system and each w
a different characteristic relaxation time@1,4#.

~iii ! If the slowest relaxing site in the range oft studied
here ~shown as the topmost curves in Fig. 1! remains the
slowest ast→`, then it will impose an upper bound on th
asymptotic functional behavior ofq(t) @9,12,13#. If qi(t) for
this site is asymptotically exponential, thenq(t) will cross
over from stretched to simple exponential relaxation at
→`. Conversely, the slowest relaxing site on the time sc
monitored here may not be slowest ast→`, in which case
other sites, perhaps with nonexponential relaxation fu
tions, may dominate the asymptotic bulk relaxation. Our d
would have to be extended over several more decades oft to
confirm which of these possibilities is most likely. Regar
less of the outcome, our results show that specific scena
for asymptotic bulk relaxation can be developed from a stu
of local relaxation, even on a time scale in which the bu
behavior is far from its asymptotic regime.

Finally, we test for the existence of a characteristic len
scale for dynamical heterogeneity. To this end, we study
distribution and spatial arrangement of local relaxati
times. Since Eq.~1! presently lacks rigorous physical justifi
cation, rather than usingt, we choose a generic~and easier
to evaluate! local relaxation timet i

0 defined as the zeroth
moment of the correspondingqi(t) function, t i

o[*0
`qi(t)dt

@14#. We calculatet i
0 by numerically integrating the data fo

qi(t) from t50 to tmax. The distribution oft i
0 values for

FIG. 5. Scatter plot ofe i versust i
0 for all sites ford52 and

kT/J51.6. Points are shown for unfrustrated sites~j! frustrated
sites~h! and all other sites~d!.

FIG. 6. g0(r ) versusr for variousT in d52 andd53.
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three differentT.TSG in bothd52 and 3 is shown in Fig. 3
As T decreases these distributions broaden dramatically
display an increasingly pronounced tail to larget i

0 , similar
to behavior found recently for local energy and flip rate d
tributions @6,15#.

The spatial arrangement oft i
0 values atkT/J51.6 in d

52 is shown in Fig. 4~a!. The largest values oft i
0 are spa-

tially correlated and their locations correspond well to co
tiguous groups of unfrustrated sites@Fig. 4~b!# @16#. This
correlation is also demonstrated in Fig. 5: unfrustrated s
have both lower energye i and largert i

0 than the average
while frustrated sites have highere i and smallert i

0@17#.
Hence Fig. 4 approximately images the clusters of the G
fiths phase@11#.

To quantify the spatial correlation of the set$t i
0%, we

calculate the correlation functiong0(r ) obtained by averag
ing over sitesi and j separated by the same distancer , the
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quantity (̂ t i
0t j

0&2^t i
0&2)/@^(t i

0)2&2^t i
0&2#. Here angular

brackets denote an average over all sites in the system.
ure 6 showsg0(r ) for different T.TSG. As T decreases,
g0(r ) decays more slowly as a function ofr , demonstrating
that the length scale associated with dynamical heterogen
is growing asT decreases. It would be interesting to dete
mine if this dynamically defined length approaches a fin
value asT→TSG or if it is related to the growth and eventua
divergence of the conventional static correlation length. T
result may indicate how to use these dynamically correla
regions to formulate a cluster description of the Ising s
glass transition@18,19#.
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